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Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that affects thinking,

memory, and behavior. Limbic-predominant age-related TDP-43 encephalopathy (LATE) is

a recently identified common neurodegenerative disease that mimics the clinical symptoms

of AD. The development of drugs to prevent or treat these neurodegenerative diseases has

been slow, partly because the genes associated with these diseases are incompletely

understood. A notable hindrance from data analysis perspective is that, usually, the clinical

samples for patients and controls are highly imbalanced, thus rendering it challenging to

apply most existing machine learning algorithms to directly analyze such datasets. Meeting

this data analysis challenge is critical, as more specific disease-associated gene identifica-

tion may enable new insights into underlying disease-driving mechanisms and help find bio-

markers and, in turn, improve prospects for effective treatment strategies. In order to detect

disease-associated genes based on imbalanced transcriptome-wide data, we proposed an

integrated multiple random forests (IMRF) algorithm. IMRF is effective in differentiating

putative genes associated with subjects having LATE and/or AD from controls based on

transcriptome-wide data, thereby enabling effective discrimination between these samples.

Various forms of validations, such as cross-domain verification of our method over other

datasets, improved and competitive classification performance by using identified genes,

effectiveness of testing data with a classifier that is completely independent from decision

trees and random forests, and relationships with prior AD and LATE studies on the genes

linked to neurodegeneration, all testify to the effectiveness of IMRF in identifying genes with

altered expression in LATE and/or AD. We conclude that IMRF, as an effective feature

selection algorithm for imbalanced data, is promising to facilitate the development of

new gene biomarkers as well as targets for effective strategies of disease prevention and

treatment.
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Introduction

Dementia represents a set of slowly progressing neurodegenerative disorders with enormous

public health impact, caused by a number of different underlying diseases. Alzheimer’s disease

(AD) is one of the most common contributors to the neurocognitive disorder syndrome. Neu-

ropathologically, AD is characterized by the accumulation of amyloid plaques and neurofibril-

lary tangles (NFTs). Currently, there is no treatment or effective preventative strategy. Further,

a clear understanding of the causes of AD remains elusive.

Recently, limbic-predominant age-related TDP-43 encephalopathy (LATE) was defined

[1]. LATE is a TDP-43 proteinopathy and generally affects persons aged 80 years and above.

Clinically, LATE mimics AD-type dementia syndrome; LATE may be presented in isolation,

or it could be comorbid with AD [2]. Therefore, it is often difficult to distinguish LATE from

AD. In addition, existing research has revealed that AD, as a chronic age-related neurodegen-

erative disease, usually starts slowly and the cognitive deterioration of LATE is even slower

than AD individually; however, AD-LATE comorbid disease typically causes a more rapid

clinical decline than either of them individually. There are no effective techniques to confi-

dently diagnose LATE or distinguish LATE from AD with clinically available biomarkers,

including disease-associated genes. More detailed clinical differences and associations between

AD and LATE are summarized in Table 1.

Another type of dementia, frontotemporal dementia (FTD) (Also known as Pick’s disease

after Arnold Pick, who first noticed a patient with distinct symptoms affecting language in

1892), is also related to the tau and TDP-43 proteins; however, LATE usually can be distin-

guished from FTD, because FTD typically affects people under age 60 while LATE affects older

people, and LATE neuropathologic change has a relatively restricted neuroanatomical distri-

bution of TDP-43 proteinopathy [3].

In the present study, we focused on the differentiation of LATE, AD, and comorbid AD

+LATE using transcriptome-wide data, and the identification of putative disease-related

genes. Typically, the clinical samples for patients and controls are highly imbalanced (i.e., the

number of controls is generally manyfold larger than that of patients), thus rendering it chal-

lenging to apply most existing machine learning algorithms directly to analyze such datasets to

find differentiating features. To meet this challenge, we develop a novel, integrated algorithm,

IMRF, to identify the disease-related genes by classifying AD+LATE comorbid, pure LATE,

pure AD, and control subjects in imbalanced transcriptome-wide data. IMRF systematically

integrates multiple RFs, it can effectively exploit differentiating features implied in imbalanced

data. IMRF, as a feature selection algorithm, empirically achieves better performance than sev-

eral potential RF-base algorithms, including RF with class weighting (abbreviated as RF-CW),

RF with bootstrap class weighting (abbreviated as RF-BCW), and RF with random undersam-

pling (abbreviated as RF-U) [4, 5], and existing feature selection algorithms, including feature

Table 1. LATE vs. AD.

LATE AD

Discovery Nelson et al., 2019 Alzheimer, 1906

Age Usually 80+ Usually 65+

Clinical features LATE is slower than AD, but AD plus LATE will cause a more rapid

decline

Correlation About a quarter of AD patients actually have LATE, which mimics AD in

syndrome

Pathologic biomaker TDP-43 Aβ and tau

Measurement TDP-43 Braak and CERAD

https://doi.org/10.1371/journal.pone.0256648.t001
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selection using stochastic gates (abbreviated as STG) [6], least absolute shrinkage and selection

operator (abbreviated as Lasso) [7], univariate feature selection (abbreviated as UFS) https://

scikit-learn.org/stable/modules/feature_selection.html; see Figs 8 and 10.

Here we employed three existing clinical or neuropathological diagnostic criteria to catego-

rize whether a subject has AD and/or LATE: 1) Braak score [8, 9], which is an ordinal measure

to delineate the distribution and severity of NFT pathology with seven stages 0–6; 2) CERAD

score [9, 10], which is a semiquantitative measure with four grades 1–4 to describe the neuritic

plaque density; 3) TDP-43 stage [11], which has four grades to measure the TDP-43 distribu-

tion, or, a recommended dichotomy version with values 0 and 1 by the Rush AD Center

(RADC). We used the first two scores for recognizing subjects with AD and the third criterion

for LATE.

Materials and methods

RF [12] is an ensemble learning algorithm that has been widely used. For classification and fea-

ture selection, RF is typically suitable for balanced data, and usually has degraded performance

on highly imbalanced data. To address this issue, different variants of RF have been proposed,

including RF-CW, RF-BCW, and RF-U [4, 5]. RF-CW assigns different costs to misclassifica-

tions in different classes and achieves a balance between precision and recall through cost-sen-

sitive learning. In this process, the feature importances would be also rescaled by the cost

weights. Since the class weights may have a wide range, the ranked features using the feature

importances appear less reliable. Also, it may artificially change the distribution of training

samples. RF-U extends RF by performing undersampling of the majority classes with replace-

ment for each iteration of RF, thus making the samples used for training different for each

iteration and the testing performance less stable. RF-BCW constructs each decision tree by

bootstrapping samples, and it may lead to less effective ensemble learning and feature selection

because the distribution of samples for each tree is different.

In this study, our main purpose is to identify the disease-related genes for LATE, AD, and

LATE+AD based on imbalanced transcriptome-wide data. The existing variants of RF mainly

focus on how to classify imbalanced data rather than how to select a subset of important fea-

tures from such data. If only a part of the samples from the majority class(es) were used, it

would under-utilize the clinically valuable data and obtain misleading feature importance.

Also, if the majority class(es) are boostrapped many times while the remaining minority class

(es) are kept the same, then the subset of samples used in constructing the decision trees by

RF would be almost the same for different bootstrapping iterations, leading to degraded

ensemble learning performance. To remedy the above drawbacks, we develop a novel RF-

based approach, IMRF, by integrating multiple RFs to sufficiently analyze and discriminate the

imbalanced samples in different classes. For class-imbalanced data, it can not only effectively

achieve a more balanced precision-recall tradeoff, but also aggregate the feature importances

calculated from multiple RFs to identify the informative features. The overall scheme of IMRF

is shown in Fig 1. It consists of five stages: Firstly, bootstrapping to balance the samples, which

splits all the samples into several balanced subsets; Secondly, training each subset of samples

with balanced classes by RF to evaluate learning parameters such as feature importance;

Thirdly, computing the classification results, such as precision, recall, F1 score, and accuracy,

for multiple RFs on validation samples; Fourthly, averaging the feature importances and vali-

dating results from different RFs; Finally, obtaining the classification and feature identification

results.

In order to guarantee the robustness and stability of the identified genes, for the calculation

of feature importances from multiple RFs, we adopted a strategy of firstly grouping, then
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averaging, and finally intersecting; see Fig 2. First, we grouped the feature importances from

the L samplings of bootstrapping step into q subgroups by averaging. Second, in each group,

we identified the top d features. Third, we selected the common features of the d features from

different groups. Fourth, we averaged the positions of these common features in their group.

Finally, we obtained the identified and ranked features by sorting their average positions. The

number of the resulting ranked features may be smaller than d, because features in the top d
features from different subgroups may be different. Further, in order to make the selected fea-

tures more stable and reduce the variation due to initialization, a number of p initializations

were used in each sampling calculation. Besides, we theoretically analyzed or empirically

examined the effects of the number of initializations p, number of sampling L, number of

subgroups q, and number of top features in each group d on the performance of IMRF; we

Fig 1. Overall scheme of IMRF. As an illustration, we show the use of IMRF on synthetic dataset with or without tiny black points for visualization.

https://doi.org/10.1371/journal.pone.0256648.g001

Fig 2. The procedure for calculation of feature importances from multiple RFs.

https://doi.org/10.1371/journal.pone.0256648.g002
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concluded that IMRF is consistent for these hyper-parameters; see the discussion in Section 8

in S1 File.

Computational complexity

For RF, its time complexity is OðTmn log nÞ [13], where T is the number of decision trees, n is

the number of samples, and m is the number of features. While using RF as a building block,

our proposed IMRF requires L samplings and p initializations in each sampling calculation.

So, the time complexity of IMRF is OðLpTmn log nÞ; that is, the time complexity of IMRF is

about Lp times more than that of RF. However, it is worth noting that, with IMRF, it is easy to

use multiple cores to parallelize, such as parallel computations for Lp RFs or parallel computa-

tions for different decision trees in these RFs. Thus, in practice, this parallelization can signifi-

cantly reduce the runtime of IMRF, even rivaling RF.

Invariance and variance of informative features

In the following, we give a simple yet important theorem to elucidate why sometimes the infor-

mative features/genes discriminative for more classes are not so for fewer classes, sometimes

the features/genes are discriminative for fewer classes but not for more classes, and when there

exist discriminative features/genes both for more classes and for fewer classes. Without loss of

generality, we consider three different samples from three different classes; the proof is given

in Section 1 in S1 File, and it can be easily generalized to more classes.

Theorem 1 (Invariance and variance of informative features). Let Oi 2 R
m, i = 1, 2, 3,

denote three different samples from three different classes. Let � : Rm ! O
k be a feature map-

ping. Let

ComðO1;2;3Þ ≜ �ðO1Þ \ �ðO2Þ \ �ðO3Þ

and

DisðO1;2;3Þ ≜ �ðO1Þ [ �ðO2Þ [ �ðO3Þ � �ðO1Þ \ �ðO2Þ \ �ðO3Þ:

That is, Com(O1,2,3) and Dis(O1,2,3) respectively represent the common features and the discrimi-
nating features of O1, O2, and O3. Then we have the following properties:

1) If ω 2 Dis(O1,2,3), then ω 2 Dis(O1,2), ω 2 Com(O1,2), or ω 2 ϕ(O3);

2) If ϕ(O1) and ϕ(O2) are distinct, i.e., Dis(O1,2) 6¼ ;, then there exists a feature ω 2 Dis

(O1,2,3), such that

o 2 DisðO1;2Þ;

3) #Dis(O1,2) ⩽ #Dis(O1,2,3);

4) Further, suppose that we stratify the discriminated features into two levels:

Disl1ðO1;2;3Þ

≜ �ðO1Þ [ �ðO2Þ [ �ðO3Þ � ð�ðO1Þ \ �ðO2ÞÞ

[ð�ðO1Þ \ �ðO3ÞÞ [ ð�ðO2Þ \ �ðO3ÞÞ;
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and

Disl2ðO1;2;3Þ

≜ ð�ðO1Þ \ �ðO2ÞÞ [ ð�ðO1Þ \ �ðO3ÞÞ

[ð�ðO2Þ \ �ðO3ÞÞ � �ðO1Þ \ �ðO2Þ \ �ðO3Þ:

Generally, the features in Disl1(O1,2,3) are considered more differentiating than those in
Disl2(O1,2,3). Then, we have the following properties:

(1) Disl1(O1,2) = Dis(O1,2);

(2) Disl1(O1,2,3) \Disl2(O1,2,3) = ;;

(3) Disl1(O1,2,3) [Disl2(O1,2,3) = Dis(O1,2,3);

(4) If ComðO1;2;3Þ⫋ComðO1;3Þ, or ComðO1;2;3Þ⫋ComðO2;3Þ, then there exists a feature ω,
such that

o 2 DisðO1;2Þ;

but

o =2 Disl1ðO1;2;3Þ:

Results

Datasets to be used

Gene expression datasets used in this study are from the Religious Orders Study and Mem-

ory and Aging Project (ROSMAP) (See link https://www.synapse.org/#!Synapse:syn3219045.

This data consists of two parts. One is a longitudinal clinical-pathologic cohort study of

aging and AD, and the other is a longitudinal, epidemiologic clinical-pathologic cohort

study of common chronic conditions of aging with an emphasis on the decline in cognitive

and motor function and risk of AD). The RNA array expression data for brain samples

(With Synapse ID syn3800853) were obtained from the RADC research resource sharing

hub (An AD research centers designated and funded by the National Institute on Aging.

See link https://www.radc.rush.edu), and so were the corresponding clinical indexes and

pathology annotations. RNA expression-label association was performed on the datasets.

The original RNA array data contain 490 samples. After preprocessing, finally we obtained

430 samples, each with 48,803 features (The total number of different genes is 37,846. For the

accuracy of the analysis, we did not preprocess the measurements for the same genes). We

categorized these samples, with Braak and CERAD scores used for recognizing AD, and

TDP-43 stage for LATE. The detailed rules for categorization are presented in Table 1. After

categorizing, we obtained 41 samples for LATE+AD, 75 samples for pure LATE, 31 samples

for pure AD, and 283 samples for control. We present the demographics for the study popu-

lation stratified by these rules in Fig 3.

Besides, details on hyper-parameters of IMRF used in this study are provided in Section 2

in S1 File. Although our algorithm was developed for gene expression data, for assessing its

effectiveness of selecting informative features with imbalanced general data, we used three

additional datasets: one synthetic dataset, one cross-domain dataset (i.e., MNIST [14], which is
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from the computer vision field), and one AD RNA dataset from the Mount Sinai Brain Bank

Array Tissue Panel Study (MSBB_ArrayTissuePanel) See link https://www.synapse.org/#!

Synapse:syn3157699.

The synthetic and cross-domain datasets were used because they may provide a visually

meaningful way for the validation of IMRF in both classification and feature identification

with imbalanced multi-class data. MNIST has a training set of 60, 000 collected handwritten

digits and a test set of 10, 000 examples, each digitized to a 28 × 28 grayscale image, and syn-

thetic databast consists of 400 samples of size 112 × 92 which are generated by randomly

sampling from interval [0, 244]. We considered the following task for the purpose of validat-

ing our algorithm: For MNIST, we chose 400 samples with the digits 1 and 9 by a ratio of

19:1, and we did the same with 3 and 8. These ratios are similar to those of different classes

in ROSMAP data. For synthetic data, firstly, we added “artificial informative features” to

images with a 4 × 4 black point on the upper left corner, the lower left corner, and both.

Then, the resulting dataset has four classes, i.e., class 0 without any black point, class 1 with a

black point on the upper left corner, class 2 with a black point on the lower left corner, and

class 3 with black points on both upper and lower left corners (The black point on these cor-

ners is not fixed; instead, it is designed to randomly appear in four directions with an offset

of 3 pixels. This design is to mimic the subtle variations that might occur in the location of

genes). These four classes were designed to be at a ratio of 26:3:7:4. These ratios also mimiced

those of the classes with ROSMAP data. In addition, we considered a cross case: there is a

common black point in the middle of the right side for the above classes 1 and 2. For these

two datasets with artificial features, we illustrate randomly chosen examples in Tables 1–4 in

Section 3 of S1 File.

The prefrontal cortex (PFC) is responsible for high levels of cognitive function, including

working memory and language. PFC with AD is prone to neurodegeneration [15]. So, we

chose AD RNA data of prefrontal cortex from MSBB_ArrayTissuePanel as an additional

source of data for further validation. The AD dataset contained 56 samples, each with

35,339 features after preprocessing. We annotated the samples into 39 controls and 17

ADs, where control samples are those devoid of AD neuropathological changes in the brain,

with〚Braak〛< 5, and AD samples are those with extensive AD neuropathological changes

in the brain, with〚Braak〛⩾ 5.

Fig 3. Demographics for the stratified study population of RNA array expression. (a) Distribution with respect to four classes, LATE+AD, pure

LATE, pure AD, and control, in sex. The vertical axis represents the number of samples. (b) Age distribution with respect to the four classes. The

vertical axis represents the age of samples. The horizontal axes for (a) and (b) denote different classes.

https://doi.org/10.1371/journal.pone.0256648.g003
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Validation on synthetic and cross-domain datasets

Firstly, we validate IMRF on above-designed MNIST and synthetic datasets. The feature iden-

tification-related results are displayed for visual inspection in Fig 4, and the classification

results are provided in the Section 4 in S1 File. It is observed that IMRF effectively locates and

detects informative features, in spite of significant variations of different noise backgrounds.

Interestingly, from Fig 4(e), it is observed that the samples with classes 1 and 2 have identified

features similar to those with all four classes in Fig 4(c). On the other hand, from Fig 4(f), it is

seen that the identified features in the middle of the right side in Fig 4(d) are not included in

(f). The reason is that, if some important features for discriminating four classes are shared by

classes 1 and 2, they would not be selected as important features for classifying classes 1 and 2.

Further, Fig 4(e) and 4(f) both show that the classification for two classes has fewer identified

features than those for four classes, implying that classifying two classes generally depends on

fewer informative features than four classes. Additionally, in Fig 4(e) and 4(f), some features,

which are not so informative for four classes, are identified as important for two-class

Fig 4. Supervised feature selection on MNIST and synthetic data. (a) MNIST with the digits 1 and 9; (b) MNIST with the digits 3 and 8; (c) Four

classes of noise background images with or without black points; (d) Four classes of noise background images with or without cross black points. The

black point in the middle of the right side is a common black point for classes 1 and 2; (e) Using classes 1 and 2 in Table 3 in Section 3 of S1 File for

classification and feature selection; (f) Use classes 1 and 2 in Table 3 in Section 3 of S1 File for classification and feature selection. In (a)-(f), the selected

features are marked in red for visualization. Best viewed with color when zoomed in.

https://doi.org/10.1371/journal.pone.0256648.g004
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scenarios. The above observations can be made more general, which have theoretical guaran-

tees given in Theorem 1.

Validation on AD dataset

We adopt IMRF to select the top 5 genes, which are shown in Table 2. It is seen that these

genes are already discussed in prior AD studies.

Classification and gene identification

The validation using the above synthetic cross-domain datasets and AD RNA dataset manifests

that IMRF can effectively pinpoint important features, despite strong variations of noises in

the background and high dimensionality of RNA data. Here, we applied it to the preprocessed

AD and LATE brain transcriptome-wide data to classify samples and then identify the disease-

associated genes. We respectively presented the classification results in Fig 3 and Table 9 in

Section 5 of S1 File, and visually depicted the top 31 identified genes in Fig 5. Also, we ranked

these top 31 genes and provided the existing studies related to them in Table 4. About half

of these identified genes by IMRF were implicated with prior neurodegeneration and aging

studies.

For further verifying the significance of IMRF-identified genes, we performed the classifica-

tion and gene identification for four-class classification and for binary classification with two

different classes using IMRF. Moreover, for fairly comparing their performance, we used the

Support Vector Machines (SVM) model with a polynomial kernel as a benchmark classifier,

which is based on function approximation and thus completely different from rule-based deci-

sion trees and RF. We respectively applied it to the total genes and the IMRF-identified genes.

Concretely, we studied the following three cases:

Case 1: We compared the performance of SVM on the IMRF-identified genes to that on

the total genes, and the resulting precisions and accuracies are shown in Fig 6(a). It is evident

that the performance on the IMRF-identified genes has been improved upon all the genes.

Such a result implies that the subset of genes identified by IMRF is significant to distinguish

Table 2. Top 5 genes identified and ranked from 35,339 genes for differentiating controls and ADs, and the related

prior studies in the literature on these genes.

Rank Gene name Related study

1 TGFBR3 [16–18]

2 MRC2 [19]

3 NFX1 [20]

4 RGS1 [19, 21]

5 LAMA2 [22]

https://doi.org/10.1371/journal.pone.0256648.t002

Fig 5. The 31 genes selected from 48,803 genes by IMRF. Red vertical lines with gene names represent the IMRF-identified

genes.

https://doi.org/10.1371/journal.pone.0256648.g005
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LATE+AD, pure LATE, pure AD, and control, as independently verified by a totally different

classifier from those used in IMRF.

Case 2: Based on those IMRF-identified genes in Case 1, we implemented SVM on the

IMRF-identified genes and the total genes for three scenarios of binary classifications, includ-

ing LATE+AD vs. control, pure LATE vs. control, and pure AD vs. control. The results are

given in Fig 6(b). It is found that the performance on the IMRF-identified genes has been

improved in all three scenarios, but the improvement in each scenario is not as large as that in

Case 1; the reason is that the IMRF-identified genes are for all four classes and some of these

genes become less important when classifying two classes, analogous to what was shown in

(d)-(f) of Fig 4 for synthetic and cross-domain data.

Case 3: We further considered the scenarios of classifying the remaining pair-wise classes

in Case 2, including LATE+AD vs. pure LATE, LATE+AD vs. pure AD, and pure LATE vs.

pure AD. We directly applied IMRF to find the informative genes for discriminating these

pair-wise classes. Then we also adopted SVM to classify the IMRF-identified genes and the

total genes. The results are depicted in Fig 7. It is apparent that for all scenarios of classifying

these pair-wise classes, the performance on IMRF-identified genes is significantly improved

upon all genes.

The IMRF-identified genes on all six pair-wise classes, including LATE+AD vs. pure LATE,

LATE+AD vs. pure AD, pure LATE vs. pure AD, LATE+AD vs. control, pure LATE vs. con-

trol, and pure AD vs. control, are displayed in Table 3. It is noted that some of the IMRF-

Fig 6. Comparison of F1 scores and accuracies by SVM on the total and IMRF-selected genes. (a) Class-wise F1 scores

and overall accuracy for four-class classification; (b) Accuracy for three scenarios of binary classification.

https://doi.org/10.1371/journal.pone.0256648.g006
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Fig 7. Comparison of F1 scores and accuracy for three scenarios of binary classification using the total genes and

using the IMRF-selected genes. (a) LATE+AD vs. pure LATE; (b) LATE+AD vs. pure AD; (c) pure LATE vs. pure

AD.

https://doi.org/10.1371/journal.pone.0256648.g007
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identified genes for binary classifications are also identified when classifying for four classes, as

shown by Table 4, but some identified genes are different. This observation is similar to that

for Case 2, as analogously shown in (d)-(f) of Fig 4 for synthetic and cross-domain data. These

empirical results are theoretically proved to be true in Theorem 1.

Additionally, it is worth noting that it is the first time/algorithm that aims to identify dis-

ease-specific genes and then classify LATE from AD. The classification accuracy based on

IMRF-identified genes appears low, since LATE is a newly discovered disease and it mimics

AD. And it is a highly challenging task; in particular, so far there has been no clinical bio-

marker to distinguish between the two diseases.

Comparison of different algorithms

To further demonstrate the effectiveness of IMRF, we compared it with RF-CW, RF-BCW,

and RF-U on gene expression data. We used a baseline classification model SVM to evaluate

the quality of the sets of identified genes by different RF-based algorithms. From each class

we randomly chose 16 as test samples. For fair comparison, the numbers of trees and identi-

fied features were set to 10, 000 and 31, respectively for all algorithms in comparison. The

results in F1 score were shown in Fig 8. The results, in precision and recall, and the identi-

fied genes by different algorithms were given in Fig 4 in Section 6 of S1 File. One can

observe that IMRF achieves a more stable and class-balanced performance than other

Table 3. Genes identified by IMRF from 48803 genes for six scenarios of pair-wise classes. The p-values calculated

by ANOVA are shown in the parentheses. The genes in bold are also selected for differentiating four classes, which are

shown in Table 5. There are respectively 4, 6, 7, 1, 3, and 3 genes with p-values greater than 0.05 for LATE+AD vs. pure

LATE, LATE+AD vs. pure AD, pure LATE vs. pure AD, LATE+AD vs. control, pure LATE vs. control, and pure AD

vs. control.

Class Gene name (p-value)

LATE+AD vs. pure

LATE (20)

HS.406790 (1.02E-4), NDUFA7 (7.91E-5), HS.253475 (1.31E-3), DDX26B (5.20E-2),

MANBAL (8.84E-1), C8ORF58 (3.62E-4), OVOS2 (9.51E-1), ZBTB5 (9.75E-5), VGF
(7.67E-5), HS.559151 (1.07E-2), HS.561747 (1.29E-4), KEAP1 (6.66E-4), HS.554346
(2.97E-3), STARD7 (1.67E-4), LOC651123 (4.38E-3), UIMC1 (7.26E-2), SEC31B (2.91E-

2), HS.128396 (1.34E-3), LOC441546 (7.62E-4), LOC391692 (7.48E-5)

LATE+AD vs. pure AD

(24)

RNASE4 (8.83E-1), OSR2 (2.72E-3), EPGN (1.57E-4), CDC6 (2.18E-4), SP140 (1.26E-1),

ADSSL1 (5.21E-1), OVOS2 (2.71E-1), LOC645723 (4.38E-3), CLEC7A (7.17E-1),

HS.543051 (7.59E-4), HS.560742 (3.80E-5), IL29 (2.89E-1), LOC648251 (3.82E-3), TNR
(1.69E-3), TPSG1 (4.73E-2), FGF16 (1.46E-3), HS.416810 (1.48E-2), HS.135067 (8.17E-3),

FBXO43 (2.00E-3), HS.536734 (4.25E-3), HS.156651 (3.78E-5), PLA2G15 (2.21E-3),

FLJ42133 (3.36E-4), BARX2 (1.22E-3)

pure LATE vs. pure AD

(21)

ANAPC11 (6.91E-2), SGCD (4.85E-1), CDC6 (4.69E-4), HYOU1 (5.56E-4), GRIPAP1
(4.51E-2), DTNB (4.33E-2), NIPBL (5.00E-1), SLTM (2.59E-4), XKRY (3.50E-3), ZHX1
(5.37E-3), SEC14L5 (7.27E-4), CLEC7A (7.79E-1), GOLGA4 (2.33E-3), PSMB8 (9.93E-1),

USP4 (7.95E-1), ZNF823 (2.24E-3), FBXO43 (1.18E-4), SRPR (4.05E-5), HS.581994
(1.14E-3), INHA (1.20E-2), BHLHB9(8.37E-2)

LATE+AD vs. control

(12)

NDUFA7 (2.75E-7), LOC644291 (6.02E-4), DDIT3 (6.68E-3), LOC730534 (5.31E-6),

MED25 (1.52E-5), HSP90B1 (3.97E-5), NSMCE1 (7.01E-5), LOC148915 (2.59E-7), SDSL
(5.72E-4), NRIP2 (1.28E-6), SMAD7 (5.75E-1), SLC6A12 (5.39E-7)

pure LATE vs. control

(18)

SEC31B (3.46E-3), LOC392481 (7.24E-5), NEUROG1 (8.55E-5), N-PAC (3.83E-5),

HS.540598 (7.54E-5), SGCD (7.38E-1), HS.543684 (9.86E-5), HS.542777 (6.39E-5),

C2ORF61 (9.00E-4), HS.545899 (4.10E-3), RBM4 (1.99E-1), LOC150207 (1.59E-4),

AHCTF1 (5.51E-2), ARF1 (7.62E-3), HS.579437 (3.48E-3), TMSB4X (4.15E-4), HS.549460
(2.55E-3), HSFY1 (1.80E-3)

pure AD vs. control (14) ALG9 (8.66E-5), CDC6 (4.38E-4), C11ORF17 (3.10E-1), LOC392395 (6.34E-4), JUB
(4.58E-1), ALAD (3.04E-4), HS.581468 (4.22E-3), HS.543116 (5.71E-3), LOC651208
(7.81E-3), CLEC7A (7.69E-1), LOC440934 (2.59E-3), LOC728056 (3.06E-4), SEPHS1
(1.86E-3), INHA (2.94E-2)

https://doi.org/10.1371/journal.pone.0256648.t003
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methods. Also, we provided the identified genes from different algorithms in Table 10 in

Section 7 of S1 File, and we respectively compared the ratios of genes with p-value ⩾ 0.05

and p-value < 0.05 over 31 selected genes by different algorithms in Fig 9. It is observed that

nearly 80% of IMRF-selected genes have p-values greater than 0.05, which is much higher

than the other four algorithms.

Table 4. Top 31 genes identified and ranked from 48803 genes for differentiating the four classes, their p-values by using ANOVA, and the related studies on these

genes.

Rank Gene name p-value Related study

1 LOC391692 1.09E-6

2 NEUROG1 9.79E-4 AD [24]

3 STARD7 6.84E-5 AD [25]

4 LOC148915 2.47E-7

5 CLEC7A 7.12E-1 Neurodegenerative diseases [26–29]

6 SEC31B 2.83E-2 AD [30]

7 MED25 5.37E-6

8 SGCD 6.74E-1 AD [31] and limb girdle muscular dystrophies [32]

9 N-PAC 2.34E-4 Neurodegenerative diseases [33]

10 KPTN 3.72E-5 AD [34, 35]

11 HS.529514 4.86E-6

12 LOC392481 3.69E-4

13 LOC441546 7.00E-4

14 MANBAL 1.78E-1

15 HS.542777 7.76E-5

16 LOC730534 8.67E-6

17 NDUFA7 8.32E-7 AD [34, 36] and other types of dementia [37]

18 C2ORF61 2.82E-3

19 HS.540598 1.58E-3

20 KEAP1 1.42E-3 AD [38–42]

21 LOC440934 2.65E-4

22 TRMT5 7.21E-6 Its mutations will cause exercise intolerance, neuropathy, and muscle weakness or developmental delay and spastic paraparesis [43]

23 ARMCX6 1.38E-1 Associated to mental retardation syndromes but with unknown molecular basis [44]

24 BRD4 9.90E-1 Cognition and memory [45, 46]

25 HS.406790 7.50E-4

26 PCDH12 6.00E-2 Brain calcifications [47]

27 NSMCE1 2.56E-4 Involved in maintaining genome integrity, DNA damage response, and DNA repair. Defective DNA repair may lead to neurological

disorders like AD [48]

28 LOC651123 5.53E-2

29 SLTM 9.12E-5 AD [49, 50]

30 ZBTB5 2.57E-3 AD [51]

31 HSFY1 1.29E-2 The APOE genotypes are associated with HSFY1 [52]

https://doi.org/10.1371/journal.pone.0256648.t004

Table 5. Subject categorization rules for RNA expression data. Here,〚�〛denotes the grade corresponding to the

specific metric.

Rule Class

〚Braak〛⩾ 5,〚CERAD〛⩽ 2, and〚TDP-43〛= 1 LATE+AD

〚Braak〛< 5 or〚CERAD〛> 2, and〚TDP-43〛= 1 pure LATE

〚Braak〛⩾ 5,〚CERAD〛⩽ 2, and〚TDP-43〛= 0 pure AD

〚Braak〛< 5 or〚CERAD〛> 2, and〚TDP-43〛= 0 control

https://doi.org/10.1371/journal.pone.0256648.t005
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Besides, we compared IMRF with several existing feature selection algorithms: 1) STG,

which is based on probabilistic relaxation of the ℓ0 norm for feature selection; 2) Lasso, which

is by ℓ1 norm to select features; 3) UFS, which was adopted from scikit-learn, where two filters

were considered, that is, χ2 test and mutual information (MI). Meanwhile, we also considered

adopting SMOTE [23] as a preprocessing for these algorithms. The results in F1 score were

provided in Fig 10, indicating that IMRF achieved a superiority performance over these

algorithms.

Discussion

We used IMRF to identify 31 genes with disease-related differential expression (out of 48803

genes). By ranking these genes, using ANOVA to calculate the p-value of each IMRF-selected

gene, and relating them to prior neurodegeneration and aging studies in Table 4, we demon-

strated that IMRF was effective at identifying informative genes potentially associated with

neurodegenerative diseases. Among these 31 genes, at least 12 genes have already been related

to neurodegenerative diseases in prior studies, with 10 being implicated with AD. The 22nd

ranked gene TRMT5 was found to affect motor intolerance and neuropathy, leading to muscle

weakness, growth retardation, and spastic paraparesis [43]. The 23rd and 24th ranked genes,

ARMCX6 and BRD4, were linked to impairments in cognition and memory [44–46], which

are regarded as the common symptoms of dementia. The 26th ranked gene PCDH12 was pre-

viously associated with brain calcifications [47], which could cause memory loss, personality

Fig 8. SVM classification performance in F1 score using the original number of genes and using the selected genes by

different RF-based algorithms.

https://doi.org/10.1371/journal.pone.0256648.g008

Fig 9. The ratios of genes with p-value ⩾ 0.05 vs. p-value< 0.05 for 31 selected genes by different algorithms.

https://doi.org/10.1371/journal.pone.0256648.g009
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changes, and diminished intellectual function [53], thereby potentially leading to psychosis or

neurocognitive disorder [54, 55]. The 31st ranked gene HSFY1 was found to affect APOE4

genotypes, while the patients with different APOE4 genotypes, such as APOE4-negative and

APOE4-positive, possibly have different decline speeds on language, attention, executive, and

visuospatial functioning [56]. Though about half of the top-ranked genes were already impli-

cated in neuropathology such as AD by prior studies in the literature, to the best of our knowl-

edge, the remaining genes have not been reported for associations with neurodegenerative

diseases.

We respectively compared the p-values of IMRF-selected genes for four classes and six pair-

wise classes in Fig 11. It is seen that there are 7 genes having p-values greater than 0.05; only 4

genes for all cases with p-values greater than 0.05. Since the calculation of the p-value by

ANOVA is for testing univariate and linear relationships, it does not consider the complex

nonlinear feature-class relationships and interactions among features. In contrast, IMRF iden-

tifies genes by taking into account nonlinear relationships and interactions among different

features. Thus, it is possible that some IMRF-selected genes individually and linearly have no

significant effect on the disease, but may have a nonlinear effect on the disease or interact with

other genes to have an effect on the disease.

Comparing Table 3 with Table 4, where the IMRF-selected genes were selected for differen-

tiating four classes and for six pair-wise classes, respectively, one can observe that a number of

genes identified for four classes are not among those selected for two classes. Yet, many are

Fig 10. SVM classification performance in F1 score on the original number of genes and the selected genes by

different feature selection algorithms. Without (a) or with (b) using SMOTE as a preprocessing procedure to

counteract the class imbalance.

https://doi.org/10.1371/journal.pone.0256648.g010
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among those selected both for four classes and for two classes, including HS.406790, NDUFA7,

MANBAL, ZBTB5, KEAP1, STARD7, LOC651123, SEC31B, LOC441546, and LOC391692 for

discriminating LATE+AD vs. pure LATE, with 5 of them already implicated in AD in prior

studies; CLEC7A for LATE+AD vs. pure AD; SGCD, SLTM, and CLEC7A for pure LATE vs.

pure AD, with the first two already associated with AD in prior studies; NDUFA7, LOC730534,

MED25, NSMCE1, and LOC148915 for LATE+AD vs. control, with NDUFA7 and NSMCE1
already linked to AD; SEC31B, LOC392481, NEUROG1, N-PAC, HS.540598, SGCD,

HS.542777, C2ORF61, and HSFY1 for pure LATE vs. control, with N-PAC related to other

kinds of neurodegenerative diseases, and with NEUROG1, SEC31B, and SGCD previously asso-

ciated to AD; and finally, CLEC7A and LOC440934 for pure AD vs. control. Notably, CLEC7A
is also highly ranked for LATE+AD vs. pure AD and LATE vs. pure AD, which was implicated

in neurodegenerative diseases in prior studies. By Property 1) of Theorem 1, certain informa-

tive features for differentiating more classes may be not so informative for fewer classes. It

explains why only a fraction of IMRF-selected genes for discriminating four classes are among

those for pair-wise classes. By Property 2) of Theorem 1, as long as the samples in different

pair-wise classes are distinct, one can always find important features that are simultaneously

discriminative for more classes and for fewer classes. This property explains why there are

always genes which are identified for two classes as well as for four classes. Finally, by Property

4) of Theorem 1, certain informative features that are able to differentiate fewer classes may

fail to work for more classes. This property explains our observations that some genes highly

ranked for discriminating two classes are not among those for four classes.

We have demonstrated that IMRF is effective to identify differentiating genes associated

with AD and LATE based on the following evidences:

Evidence 1: Validation using synthetic and cross-domain datasets. IMRF can effectively

detect differentiating features on synthetic and cross-domain datasets despite the strong inter-

ference from various backgrounds, as demonstrated in Fig 4;

Evidence 2: Cross-validation classification results on validation data sets. As shown in

Table 9 in Section 5 of S1 File, IMRF achieves reasonably good performance for four-class clas-

sification on ROSMAP dataset;

Evidence 3: Enhanced classification performance using IMRF-identified genes compared

with using all genes. Figs 6 and 7 reveal that the performance of a downstream classifier, SVM,

which is completely independent from IMRF, using IMRF-identified genes has been obviously

improved upon using all genes;

Evidence 4: 17 out of 31 selected genes were already implicated in neuropathology, such as

AD and LATE, in prior studies. These genes were found to be closely linked to various types of

neurodegenerative diseases.

Fig 11. Schematic representation of the p-values of the IMRF-selected genes for four classes and six pair-wise classes.

https://doi.org/10.1371/journal.pone.0256648.g011
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In summary, IMRF-selected genes are promising for discriminating LATE, AD, and LATE

+AD based on transcriptome-wide gene expression patterns; in particular, the remaining

IMRF-identified genes in Table 4 that have not been reported in existing studies potentially

warrant further study.

Conclusion

IMRF enabled effective identification of putative genes associated with subjects having LATE

and/or AD by discriminating them from controls based on transcriptome-wide data. Various

forms of validations, such as verification on synthetic and cross-domain datasets, improved

and competitive performance using the identified genes, testing the selected genes with a clas-

sifier that is completely independent from decision trees and RF, and relationships with prior

studies on the genes linked to neurodegeneration, all testify to the effectiveness of IMRF in

identifying genes with altered expression in LATE and/or AD. We conclude that IMRF is an

algorithm of potential to facilitate the development of new gene biomarkers and targets for

effective disease prevention and treatment strategies.
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