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Abstract

Motivation: Disordered flexible linkers (DFLs) are disordered regions that serve as flexible linkers/

spacers in multi-domain proteins or between structured constituents in domains. They are different

from flexible linkers/residues because they are disordered and longer. Availability of experimen-

tally annotated DFLs provides an opportunity to build high-throughput computational predictors of

these regions from protein sequences. To date, there are no computational methods that directly

predict DFLs and they can be found only indirectly by filtering predicted flexible residues with pre-

dictions of disorder.

Results: We conceptualized, developed and empirically assessed a first-of-its-kind sequence-based

predictor of DFLs, DFLpred. This method outputs propensity to form DFLs for each residue in the in-

put sequence. DFLpred uses a small set of empirically selected features that quantify propensities

to form certain secondary structures, disordered regions and structured regions, which are pro-

cessed by a fast linear model. Our high-throughput predictor can be used on the whole-proteome

scale; it needs <1 h to predict entire proteome on a single CPU. When assessed on an independent

test dataset with low sequence-identity proteins, it secures area under the receiver operating

characteristic curve equal 0.715 and outperforms existing alternatives that include methods for the

prediction of flexible linkers, flexible residues, intrinsically disordered residues and various com-

binations of these methods. Prediction on the complete human proteome reveals that about 10%

of proteins have a large content of over 30% DFL residues. We also estimate that about 6000 DFL

regions are long with �30 consecutive residues.

Availability and implementation: http://biomine.ece.ualberta.ca/DFLpred/.

Contact: lkurgan@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Intrinsically disordered proteins (IDPs) lack stable tertiary structure

under physiological conditions, either along their entire sequence or

in localized regions. IDPs are abundant in eukaryotes (Peng et al.,

2015; Ward et al., 2004) and are typically involved in signaling,

regulation, control, storage of small molecules, sites for post-

translational modifications (PTMs), transcription, translation and

assembly of multi-protein complexes (Dunker et al., 2008; Dyson

and Wright, 2005; Peng et al., 2014; Tompa, 2005; Wright and

Dyson, 1999; Xie et al., 2007). Their functions complement func-

tions of structured proteins, which include small molecule binding,

transport and catalysis (Radivojac et al., 2007). The newest release

of DisProt database (Sickmeier et al., 2007), the main source of

functionally annotated IDPs, lists >30 functions (Dunker et al.,

2002) that have been assigned to about 1200 disordered regions.

About 74% of the functionally characterized disordered regions in

DisProt concern binding to a variety of partners: proteins, DNAs,

RNAs, metals and lipids. The most populated non-binding functions

include flexible linkers (9%), sites for several types of PTMs (7%),

transactivation (4%), nuclear localization signals (1%) and electron

transfer (1%). Several methods have been developed for the predic-

tion of binding disordered regions from protein sequences. They in-

clude methods that address protein binding (Disfani et al., 2012;

Dosztanyi et al., 2009; Fang et al., 2013; Jones and Cozzetto, 2014;
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Khan et al., 2013; Malhis and Gsponer, 2015; Meszaros et al.,

2009; Peng and Kurgan, 2015; Yan et al., 2015) and RNA and

DNA binding (Peng and Kurgan, 2015). However, methods for the

prediction of the other functions of the intrinsically disordered re-

gions are lacking.

The disordered flexible linkers (DFLs) are disordered regions

that serve as linkers or spacers between domains in multi-domain

proteins and between structured constituents in domains (Dunker

et al., 2002). Experimental annotation of DFLs primarily relies on

the X-ray crystallography, NMR spectroscopy and circular dichro-

ism. We consider these regions for several reasons. First, this is the

most annotated and not related to binding function of disordered re-

gions. Second, DFLs are important for a variety of cellular processes.

A few recent examples include formation of amyloid fibrils

(Shvadchak and Subramaniam, 2014), linking multiple disordered

protein binding regions (Oldfield and Dunker, 2014), and move-

ment of structured domains between catalytic sites (Anand and

Mohanty, 2012). Third, there is no computational methods that pre-

dict this class of disordered regions. DFLs are cousins of linkers,

which are regions that connect domains and maintain inter-domain

interactions (Chen et al., 2013; George and Heringa, 2002). A sub-

class of linkers are flexible linkers, defined as flexible inter-domain

regions that allow two domains to move relatively to each other

(Chen et al., 2013). DFLs differ from linker regions in two aspects:

(1) DFLs are characterized by extreme level of flexibility and lack of

defined structure (they form conformational ensembles) as com-

pared with linkers and flexible linkers that have more defined struc-

tures; and (2) linkers are shorter (avg length of 10 residues) and

localized between domains (George and Heringa, 2002), while

DFLs tend to be longer (avg length of 25 residues in our dataset) and

could be localized in domains, for instance to link structured elem-

ents in a domain; we show empirically that they are frequently local-

ized in domains and give examples of intra- and inter-domain DFLs.

Although there are no computational methods that directly pre-

dict DFLs in protein sequences, Udwary–Merski algorithm (UMA)

(Udwary et al., 2002) can be used to predict flexible linker regions.

It assumes that flexible linkers are less likely to be conserved in the

sequence and secondary structure and to be depleted in hydrophilic

residues. Thus, UMA quantifies every residue as a weighted sum of

hydrophobicity score and conservation scores for sequence and sec-

ondary structure. The two conservation scores are derived using

ClustalX (Thompson et al., 1997) and PHDsec (Rost and Sander,

1993; Rost and Sander, 1994), and the hydrophobicity score is as-

signed using the Kyte and Doolittle’s hydropathy index (Kyte and

Doolittle, 1982). A low UMA score indicates that a residue is more

likely to be a flexible linker. Because flexible linkers are a subset of

flexible residues, they could be also potentially identified with

sequence-based predictors of flexible residues. These predictors in-

clude PROFbval (Schlessinger and Rost, 2005; Schlessinger et al.,

2006), FlexPred (Kuznetsov and McDuffie, 2008; Kuznetsov, 2008),

PredBF (Pan and Shen, 2009), PredyFlexy (de Brevern et al., 2012)

and DynaMine (Cilia et al., 2013, 2014). PROFbval predicts B-fac-

tors using a neural network model, where a low/high real B-factor

value indicates a low/high propensity of a residue being flexible.

PredBF also predicts B-factors but using a two-layer support vector

regression model. FlexPred predicts conformationally variable pos-

itions in the input protein chain using a support vector machine

model. PredyFlexy classifies every input residue as rigid, intermedi-

ate or flexible and also outputs putative normalized B-factors and

root mean square fluctuations, from molecular dynamic simulations.

DynaMine quantifies backbone flexibility in terms of N-H S2 order

parameter values using regression where smaller S2 means that a

given residue is more likely to be flexible.

The UMA method and protein flexibility predictors predict flex-

ible linkers/residues, but they do not accommodate for the dis-

ordered state of these residues. Moreover, UMA requires that the

input sequence has homologous sequences to generate multiple se-

quence alignment profiles, which means that it may not generate

predictions for some proteins, and is tedious to execute because its

implementation requires manual processing. To this end, we have

developed DFLpred, the first method that predicts DFLs. DFLpred

does not need alignment profiles, is fast to execute and is provided

to the end users as a fully automated webserver at http://biomine.

ece.ualberta.ca/DFLpred/.

2 Materials and methods

2.1 Datasets
The functionally annotated data were collected from the newest re-

lease 6.0.2 of DisProt that includes 694 sequences. We excluded

DP00688 sequence that was too long (>18 000 residues) to predict

with the PSIPRED (Buchan et al., 2013) to generate secondary struc-

ture. We selected 204 sequences, which include 82 proteins that

have annotations of DFLs and 122 proteins that do not have DFL

annotations but for which all residues are annotated. This way we

included all annotated DFLs and reduced the number of ambiguous

(unannotated) residues.

We assumed that residues that are not annotated as DFLs but

have other functional annotations are non-disordered flexible linker

(NDFL) residues. The residues without functional annotations were

excluded from the design and assessment. We divided the set of 204

proteins into five subsets and reduced sequence similarity between

these subsets with BLASTClust (Altschul et al., 1990). First, we clus-

tered the 204 sequences with sequence identity threshold at 25%

and coverage of at least 10% of the sequence length. Second, the re-

sulting 160 clusters that include similar sequences (>25% similarity)

were divided at random between the five sub sets to ensure that each

subset has similar number of sequences and similar ratio of DFL to

NDFL residues. Four of these subsets were used in 4-fold cross-

validation protocol to empirically design our predictor, i.e. to con-

ceptualize and select inputs for the predictive model, and to select

and parameterize this model. These data constitute the training

dataset. The remaining fifth subset was used as an independent

(never used in the design) test dataset. This way, sequences in the

test dataset share low similarity with sequences in the training data-

set, and also sequence in individual folds of the training dataset

share low similarity with sequences in the other folds. The training

and test datasets have 144 sequences and 60 sequences, respectively,

and they are available at http://biomine.ece.ualberta.ca/DFLpred/.

2.2 DFLs and protein domains
We used Interpro (Mitchell et al., 2015) to annotate domains to em-

pirically investigate whether DFLs are localized within or between

domains. Interpro is a template-based method that integrates 11

databases including Pfam (Finn et al., 2014), PRINTS (Attwood

et al., 2012), PROSITE (Sigrist et al., 2013) and ProDom (Servant

et al., 2002) to provide prediction of proteins families and domains.

The comprehensive coverage of the source databases, 15 years of

history and high rate of updates make Interpro a mainstream tool

for the annotation of domains (Goujon et al., 2010). The ratio of

the number of intra-domain to inter-domain DFL residues in the

training dataset is 905/1098 ¼ 0.82. This indicates that a large
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fraction of DFLs are localized in domains. The ratio of intra-domain

DFL to NDFL residues is 905/7019 ¼ 0.13 and for inter-domain is

1098/14 132 ¼ 0.08. To sum up, our results suggest that DFLs are

often localized in protein domains.

2.3 Evaluation procedures
The prediction of DFLs results in a numeric score in the range be-

tween 0 and 1 representing propensity of each residue in the input

sequence being in a DFL. We used the receiver operating characteris-

tic (ROC) curve and the area under ROC (AUC) to examine the pre-

dictive quality. To plot ROC curves and quantify AUC values, we

calculated the true-positive rates (TPRs) and false-positive rates

(FPRs) by comparing predictions with native annotations at differ-

ent cutoffs imposed on the predicted scores. If a score is more than

or equal to a given threshold, then the corresponding residue is

assumed to be in DFL, otherwise it is assumed as NDFL. TPR and

FPR are defined as:

TPR ¼ TP= TPþ FNð Þ ¼ TP=number of DFL residues (1)

FPR ¼ FP= FPþ TNð Þ ¼ FP=number of NDFL residues (2)

where TP is the number of true positives (correctly predicted DFL

residues), FN is the number of false negatives (DFL residues that

were predicted as NDFL residues), FP is the number of false posi-

tives (NDFL residues that were predicted as DFL residues), TN is

the number of true negatives (correctly predicted NDFL residues).

Given TPR and FPR values at different thresholds ranging between

0 and 1, we plotted the ROC curve and calculated the corresponding

AUC value.

We also calculated AUClowFPR, which is the AUC for low range

of FPR values, between 0 and 0.1. This part at the beginning of the

ROC curve reflects ability to predict a small number of high-quality

DFL residues, i.e. only a relatively small portion of these predictions

are FPs. We also compute Ratio ¼ AUClowFPR/AUCrandom where

AUClowFPR is divided by the AUC of a random predictor (for which

TPR always equals to FPR) computed for FPR values between 0 and

0.1. This Ratio reflects how much better a given predictor is when

compared with a random prediction.

Following (Disfani et al., 2012; Peng and Kurgan, 2015; Yan

et al., 2015), we tested statistical significance of differences in pre-

dictive quality offered by DFLpred and other methods, and between

the selected design of DFLpred and other considered designs. This

test investigates whether results on a given dataset are not biased by

a subset of proteins by measuring whether the predictive perform-

ance is consistent over different subsets of the dataset. First, we ran-

domly selected half of proteins from a given test dataset (test dataset

or test folds from the cross validation on the training dataset) 10

times and we measured predictive performance of all considered

methods on these 10 protein sets. We compared these 10 pairs of re-

sults between DFLpred and other methods. Given that measure-

ments are normal, as assessed with the Anderson-Darling test

(Anderson and Darling, 1952), we used paired t-test, otherwise we

used the Wilcoxon signed-rank test (Wilcoxon, 1945). We con-

sidered a given difference to be significant if the p-value<0.01.

2.4 Overall design
The architecture of DFLpred (Fig. 1) includes three layers:

1. Represent every residue of the input sequence with its amino

acid (AA) type and information predicted directly from the

sequence including propensity to form structured regions, intrin-

sically disordered regions and helical and coil conformations.

2. Convert this representation into empirically selected set of nu-

meric features that are computed using sliding windows.

3. Input the selected features into an empirically selected and para-

meterized predictive model to generate propensity scores.

2.4.1 Sequence representation

In the first layer, we represented every residue by its AA type, its

physicochemical properties estimated based on the AA indices from

the AAindex database (Kawashima et al., 2008), secondary structure

predicted with PSIPRED (Buchan et al., 2013), intrinsically dis-

ordered and structured regions predicted with IUPred (Doszt�anyi

et al., 2005) and sequence complexity computed with SEG

(Wootton, 1994). Supplementary Figure S1 summarizes enrichment

and depletion of the 20 AA types in DFL regions. We note a clear

pattern where DFLs are significantly enriched in the disorder-pro-

moting residues, such as Q, S, E and P, and depleted in the order-

promoting residues, including F, Y, I, M, L and V; details are

discussed in Supplementary Section 1.

2.4.2 Considered features

In the second layer, we generated numerical features that quantify

the considered structural and sequence-based properties for each

residue of the input AA sequence. We represented every residue by a

feature vector calculated from a sliding window centered on that

residue. The sliding window aggregates structural and sequence-

based information by considering characteristics of AAs adjacent in

the sequence. The concept of the sliding window has been adopted

in other relevant predictors such as MoRFpred, fMoRFpred,

DisoRDPbind, PROFbval, FlexPred, PredBF, PredyFlexy and

DynaMine. We set the length of the sliding window to 17, which is

the median value of the length of longest per protein DFLs in our

dataset. This way the selected window size covers the full length of

at least half of DFLs without recruiting much of potential noise

(NDFL residues) when used to predict shorter regions. We did not

pad the window for the residues located at either terminus of the se-

quence, and correspondingly the length of the sliding window is

reduced on one of its sides, i.e. window size is 8 for the first and last

residues in the sequence. Consequently, we normalize values of fea-

tures computed over the residues in the window by the size of the

window. In total, we considered 2236 features including 40 features

derived directly from the sequence, 2124 features derived from phys-

icochemical properties of AAs quantified based on the AAindex

database, 22 features generated from the putative secondary struc-

ture, 40 features from putative intrinsic disorder and structured re-

gions and 10 features from the sequence complexity. These features

quantify composition of AAs; composition, counts and length of

Fig. 1. Architecture of the DFLpred method
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putative secondary structures, intrinsically disordered regions, struc-

tured regions and high sequence complexity regions in the sliding

window; average physicochemical properties of residues in the slid-

ing windows; and AAs type, secondary structure, disorder status, se-

quence complexity status and physicochemical properties of the

residue in the center of the window. We decided to use all physico-

chemical properties from AAindex (thus the large number of these

features) and our empirical feature selection to remove irreverent

and redundant features because there are no prior results that we

could use to pre-select a subset of these properties. Detailed list and

description of the considered features are included in Supplementary

Section 2.

2.4.3 Selected features and predictive model

Our vector of 2236 features likely includes features that are irrele-

vant to the prediction of DFLs and features that have high mutual

correlations. We used a two-step empirical feature selection to select

a subset of features characterized by high predictive value and low

mutual correlations.

In the first step we removed low-quality features that have low

correlation with the annotation of the DFLs. We have two types of

features: real-valued (e.g. features computed as an average over the

sliding window) and binary (e.g. disordered versus ordered status of

the residue in the center of the window). Inspired by (Disfani et al.,

2012; Yan et al., 2015), we used point-biserial correlation coeffi-

cient (rpb) and u coefficient (u), respectively, for these two feature

types:

rpb ¼
MDFL �MNDFL

Sn
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nDLF � nNDLF

n2

r
(3)

u ¼ countF1ADFL
� countF0ANDFL

� countF1ANDFL
� countF0ADFL

countF1
� countF0

� count ADFL
� countANDFL

(4)

In formula (3), MDFL and MNDFL (nDFL and nNDFL) are the

means (numbers) of values a given real-valued feature for the resi-

dues annotated as DFLs and NDFLs, respectively; n ¼ nDFL þ nNDFL

and Sn is the standard deviation of all values of that feature. In for-

mula (4), countFiAk is the number of values i ¼ {0, 1} of binary fea-

ture F corresponding to residues with values k ¼ {NDFL, DFL} of

the annotation A; countFi and countAk are the number of values i ¼
{0, 1} of binary feature F and the number of residues with values k ¼
{NDFL, DFL} of the annotation A, respectively. We calculated aver-

age rpb (for the real-valued features) and u (for the binary features)

for all considered features from four correlations computed on the

training folds from the 4-fold cross-validation on the training data-

set. We normalized the values of the average rpb and u correlations

to the �1 to 1 range using min–max normalization, and removed

the features for which the absolute normalized rpb or u value is less

than threshold Tstep1. Next, we ranked the remaining features by

their absolute normalized rpb or u values.

In the second step, inspired by (Disfani et al., 2012; Yan et al.,

2015), we eliminated mutually correlated features using the Pearson

correlation coefficient (rpc). First, a set of selected features is initial-

ized with the top-ranked in the first step feature. Next, we calculated

rpc between the next-ranked feature and all selected features. If the

absolute value of this rpc is less thanthreshold Tstep2, then we add

this next-ranked features into the set of selected features, otherwise

we do not add it. We apply this procedure through the entire list of

ranked features passed from the first step.

We vary values of each of the two thresholds, Tstep1 and Tstep2

between 0.1 and 0.9 with step of 0.05, to obtain 17 � 17 ¼ 289

different feature sets. The corresponding feature sets vary in size be-

tween 1 and 884 features. Each feature set is used with three classi-

fiers: logistic regression, naive Bayes and k-nearest neighbor, in the

4-folds cross-validation on the training dataset to select the design

that offers the highest AUC value. We also parameterized logistic re-

gression and k-nearest neighbor classifiers for each of these experi-

ments by selecting their parameters that correspond to the highest

AUC in the 4-folds cross-validation on the training dataset. Naive

Bayes has no parameters. For the logistic regression, we considered

ridge ¼ 10x, where x ranges from �4 to 4 with step of 1. For the

k-nearest neighbor, we consider the number of neighbors k ranging

from 50 to 800 with the step of 50. Supplementary Table S1 sum-

marizes results with the highest AUC value for each of the three clas-

sifiers, which are selected from across the experiments that

correspond to 7514 combinations of the two thresholds and differ-

ent parameters of classifiers (289 combinations for Naı̈ve Bayes þ
9*298 for logistic regression þ 16*289 for k-nearest neighbor).

We selected the logistic regression classifier with four features

that gives the highest values of AUC, AUClowFPR and ratio. The dif-

ferences in these three measures of predictive quality between the lo-

gistic regression and the other two classifiers are statistically

significant. The ratio reveals that the selected design is 3.3 times bet-

ter than a random predictor when predicting with low FPR, i.e.

when a high fraction of predictions of DFL residues (predicted posi-

tive residues) is correct. The architecture of this model is shown in

Figure 1. Given an input AA sequence, it uses putative annotations

of structured and long disordered regions generated with IUPred

and two physicochemical properties of residues that quantify pro-

pensity for formation of helices and turns.

3 Results

3.1 Analysis of the DFLpred’s predictive model
DFLpred’s model combines values of four empirically selected fea-

tures using a linear function to generate the output propensities.

These features were computed from the sequence using sliding win-

dows on putative annotations generated with IUPred and two AA

indices; their details are summarized in Table 1. Figure 2 compares

values of the four features between the native DFL and NDFL resi-

dues in the test dataset (these results were not used to design the

model, which is based on the training dataset).

The WIN_IUP_fractionD0 feature quantifies fraction of residues

predicted with IUPred_struct not to be in structured regions in a

window centered on the predicted residue. Its average for DFL resi-

dues is 0.29, for the NDFL residues is 0.60 and for the NFDL resi-

dues annotated as structured is 0.11. The structured residues have

the lowest value because they should be primarily predicted to be in

structured regions; the value > 0 because some of the residues in the

surrounding window could lack structure. The high value of mean

for NFDL residues is driven by the fact that these residues include

disordered residues that are not DFLs which have a large number of

nearby (in the sequence) unstructured residues. The average for

DFLs is in between the other two averages. This reveals that propen-

sity of these residues to be nearby putative structured regions is

lower than for other disordered regions but higher than for struc-

tured regions. This makes sense because residues in DFLs link pri-

marily structured domains, and thus their neighbors in the sequence

should include a sizable fraction of structured residues, but not as

large as for the structured residues.

The plot of the WIN_IUP_stdL feature in Figure 2 suggests

that putative propensities for disorder of residues in DFLs have
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higher standard deviation in the window compared with the

other residues. This means that these propensities fluctuate more

in residues adjacent to DFL residues. This is reasonable given that

DFLs link structured domains where propensity for disorder

should be substantially lower compared with DFLs. In contrast,

residues located in structured or in disordered regions would ex-

perience less variability in the propensities for disorder in these

regions.

The last two features are computed by averaging values of the se-

lected two AA indices in the sliding window. Higher values of the

AURR980118 index (Aurora and Rosee, 1998) indicate higher like-

lihood of a given residue to be included in a helical conformation.

Thus, the corresponding feature can be used as a proxy to quantify

likelihood of helical conformations in the window. Figure 3 shows

that residues in DFLs have lower values of this feature, which sug-

gests that they are less likely to include helices nearby in the se-

quence compared with NDFLs. This again is rational because DFLs

are unstructured. The second, PALJ810114 index (Palau et al.,

1982), quantifies likelihood of forming turns. Here, DFLs have

higher values compared with the other residues, which is sensible

given that turns are relatively flexible, which is also characteristic

for DFLs.

We also investigated predictive quality of these features

individually and in different sets to find out how much they contrib-

ute to the predictive model and whether they complement each

other. The AUC values based on the 4-fold cross-validations on the

training dataset for the individual features sorted in the order shown

in Table 1 are 0.599, 0.604, 0.584 and 0.580. The fact that AUC

values are similar suggests that these features contribute equally to

our model. When we use the top n ¼ 1, 2, 3, 4 features (ranked as in

Table 1, which is based on the normalized point-biserial correlation

rpb), the corresponding AUC values are 0.599, 0.646, 0.672 and

0.702. This means that each feature adds to the model and demon-

strates that they complement each other.

Overall, we demonstrated that the four features are meaningful

markers of DFLs. They complement each other by using a different

type of information to pinpoint location of DFLs. This agrees with

our empirical approach to design DFLpred in which we explicitly se-

lected highly predictive features (first step of feature selection) that

are characterized by low mutual correlation (second step of feature

selection).

Table 1. Summary of DFLpred’s predictive model

Feature name Description rpb Coeff

WIN_IUP_fractionD0 Number of residues predicted with IUPred_struct not to be in structured

regions in a sliding window divided by the window length.

�1.00 �1.10

WIN_IUP_stdL Standard deviation of propensity scores from IUPred _long for residues in

the sliding window.

0.70 6.60

WIN_AAind_avgAURR980118 Average value of AURR980118 AA index for all residues in the sliding

window.

�0.66 �4.58

WIN_AAind_avgPALJ810114 Average value of AURR980118 AA index for all residues in the sliding

window.

0.57 3.32

Intercept of the linear function N/A �0.92

rpb: Normalized point-biserial correlation coefficient of a given feature with the annotation of DFLs in the training dataset; Coeff: coefficient of a given feature

in the linear model generated with logistic regression using training dataset.

Fig. 2. Comparison of values of features used in the DFLpred model between

the native DFL residues (black lines) and native NDFL residues (gray lines) in

the test dataset. The features are ranked by their absolute rpb values from the

highest on the left to the lowest on the right (see Table 1). Values of the

WIN_IUP_stdL are multiplied by 10 to better fit the range of values of the other

features. Dots are the averages and the error bars show the first and third

quantiles
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Fig. 3. ROC curves on the test dataset for methods that achieved AUC � 0.52

in Table 2 (on the whole test dataset) or in Supplementary Table S2 (for resi-

dues in or between domains). Insert in the bottom right corner focuses on the

ROCs for FPR between 0 and 0.1. The scope of the prediction (all residues, in
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next to the names of methods in the figure legend
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3.2 Comparison of predictive performance with closest

alternative methods
We compared the predictive performance of DFLpred with closest

alternative methods that could be used to find DFLs. These

approaches include the UMA method that finds flexible linkers, pre-

dictors of flexible residues and disordered residues, and a domain

predictor given the fact that classical linkers are localized between

domains. We also combined the results of UMA with the results of

the disorder predictors and the results of the flexibility predictors

with the disorder predictors. This was motivated by the fact that

these combinations could potentially find flexible linkers or flexible

residues localized in disordered regions, which is the hallmark of the

DFLs. We used two ways to combine their predictions, by multiply-

ing the scores predicted with UMA and flexibility predictors by the

binary disorder predictions and by the predicted real-valued propen-

sity for the disorder. In the first case, the UMA and flexibility scores

remain the same for the predicted disordered residues and are set to

zero for the residues that are not predicted to be disordered. In the

second scenario, the UMA and flexibility scores are scaled by the

predicted propensity for disorder. We used a comprehensive set of

predictors of flexible residues including PROFbval, FlexPred,

PredBF, PredyFlexy and Dynamine. We also considered several pre-

dictors of disorder including two versions of IUPred (short and

long), MFDp (Mizianty et al., 2010) and three versions of Espritz

(NMR, X-Ray and DisProt; Walsh et al., 2012). We applied

ThreaDom (Xue et al., 2013) to predict domains, given its strong

predictive performance and availability of a webserver. Details on

the computation of predictions with the other methods are given in

Supplementary Section 3.

Table 2 summarizes results of DFLpred and the other methods

on the test dataset. We show results for DFLpred, UMA, five meth-

ods for prediction of flexible residues, three methods for prediction

of disordered residues (we show results for one version of IUPred

and Espritz that secures the highest AUC) and ThreaDom for the

prediction of domains. We also include result for each of the two

ways to combine these methods, as described above, which secured

the highest AUC value. DFLpred secures the highest AUC,

AUClowFPR and Ratio values. The improvement offered by DFLpred

are significant at p-value < 0.01 when compared with all considered

methods. The Ratio indicates that DFLpred is 3.3 times better than

a random predictor in AUC for the low values of FPR � 0.1. The in-

sert in Figure 3 visualizes this difference between this AUC of a ran-

dom predictor (thin diagonal line) and DFLpred (thick black line).

We use two proteins from the test dataset to visualize prediction

of DFLs localized between domains (chemotaxis cheA protein;

Supplementary Fig. S2A) and inside of a domain (troponin I protein;

Supplementary Fig. S2B). CheA includes five domains and we focus

on the C-terminus that includes Hpt, CheY binding and signal trans-

ducing H kinase domains that are connected by two inter-domain

DFLs. Troponin I includes two domains: troponin I N-terminus do-

main, which is disordered, and troponin I domain, which is com-

posed of two sub-domains: IT arm and regulatory head. The IT arm

sub-domain has DFL, which links two of its helices that interact

with troponins T and C that compose the troponin complex. The se-

cond DFL links the two sub-domains. Both of these intra-domain

DFLs enable movement of several structural elements of the tropo-

nin I domain, allowing it to interact with the other members of the

troponin complex (Takeda et al., 2003). The figures show predic-

tions from DFLpred, UMA, domain predictor ThreaDom and the

best-performing (based on Table 2) disorder predictor Espritz and

flexibility predictor PredyFlexy. DFLpred generates higher propen-

sities in the vicinity of the two inter-domain DFLs in CheA, with the

second one predicted less accurately. It also finds the first intra-

domain DFL and to some extent, given the lower values of propen-

sity, the second intra-domain DFL in troponin I. ThreaDom

accurately finds the inter-domain residues that overlap with the two

DFLs in CheA, but its prediction also includes residues at the

N-terminus that are not DFLs. This method finds the inter-domain

region in troponin I, which is not a DFL, and has difficulty with the

troponin I domain, given it is fragmented into sub-domains compos-

ition. Espritz accurately predicts the disordered residues, which co-

incide with the inter-domain DFLs in CheA, but it also finds

disorder at the N-terminus. It correctly finds the first two disordered

regions in troponin I but it misses the second intra-domain DFL and

predicts the disordered region at the N-terminus the highest propen-

sity while this region is not a linker. UMA finds three flexible linkers

(residues with high scores) in CheA and only the last one coincides

to some extent with the second DFLs. For the second protein, this

method annotates only the N-terminus as a flexible linker and fails

to identify the intra-domain DFLs. Finally, PredyFlexy does not find

inter-domain residues, DFLs or disordered regions, but rather it esti-

mates local flexibility, which fluctuates widely along the sequence of

both proteins. These observations provide context to interpret re-

sults of the other methods in Table 2.

The UMA method secures low AUC and this could be explained

by the fact that UMA predicts flexible linkers that likely exclude link-

ers located in disordered regions; the latter stems from the low value

of AUClowFPR and is confirmed by our examples. The low AUC of

UMA is owing to a concave shape of ROC curve that in turn results

from high levels of false positives on the left side of the curve. These

false positives are the residues predicted as DFLs for the purpose of

our evaluation but which in fact correspond to the putative flexible

linkers predicted by UMA with the highest values of propensity. The

predictors of disordered residues have similar weakness. They predict

all disordered residues, irrespective of their function, while most of

them are not DFLs. Their low values of AUClowFPR and our troponin

I example suggest that propensities generated for DFLs are lower than

the propensities for other disordered regions. This results in high

Table 2. Comparison of predictive quality on the test dataset

Prediction target Method AUC AUClowFPR Ratio

DFLs DFLpred 0.715 0.016 3.265

Flexible linkers UMA 0.384a 0.003a 0.531a

Flexible residues PredyFlexy 0.531a 0.007a 1.307a

FlexPred 0.486a 0.004a 0.768a

PROFbval 0.453a 0.007a 0.337a

PredBF 0.445a 0.005a 0.988a

Dynamine 0.396a 0.003a 0.573a

Disordered

residues

Espritz_NMR 0.399a 0.001a 0.218a

IUPred_short 0.359a 0.000a 0.092a

MFDp 0.325a 0.004a 0.201a

Domains ThreaDom 0.521a 0.003a 0.569a

DFLs Espritz_NMR &

PredyFlexy (the best

based on binary

disorder)

0.459a 0.006a 1.154a

Espritz_NMR &

PredyFlexy (the best

based on disorder

propensity)

0.429a 0.003a 0.653a

The methods were ranked by AUC value in each category.
aDenotes that difference in predictive quality when compared with

DFLpred is significant at p < 0.01.
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FPRs, concave shapes of ROC curves and consequently low AUC val-

ues. Predictors of flexible residues also secure relatively low AUC val-

ues. These methods were built using crystallographic data that

exclude disordered residues and thus they cannot accurately find dis-

ordered residues, which was shown in (Peng and Kurgan, 2012). Our

example reveals that they focus on local, in the sequence, flexibility

that does not correlate with the localization of DFLs. ThreaDom finds

the inter-domain regions but only some of them are DFLs and it in

general fails to find the intra-domain DFLs. Consequently, its AUC

value is relatively low. Interestingly, combining UMA/flexibility pre-

dictors with the disorder predictors also does not produce high-

quality predictions. This is likely because neither UMA nor predictors

of flexibility provide accurate estimates for the disordered regions.

Overall, we conclude that while currently there are no approaches

that can accurately predict DFLs, our DFLpred offers such accurate

predictions.

We also evaluate the considered methods separately for inter- and

intra-domain residues, see Supplementary Table S2. DFLpred can ac-

curately predict DFLs both inside and outside of domains, with AUC

¼ 0.72 and 0.73 and Ratio ¼ 3.3 and 3.8, respectively. These results

are significantly better than the results of all other considered meth-

ods. The UMA method has substantially higher AUC for prediction of

DFLs outside of domains compared with the results for residues local-

ized inside the domains. This difference reflects the fact that flexible

linkers that are targeted by UMA are localized between domains. On

the other hand, flexibility predictors secure slightly better predictive

quality for residues in domains compared with the residues outside

the domains. Finally, disorder predictors are equally inaccurate for

both inter- and intra-domain residues and the best combinations of

flexibility predictors and disorder predictors work better inside the

domains. The latter is perhaps because these combinations use

PredyFlexy predictors that perform better inside the domains.

We plot ROC curves for all methods for which the AUC > 0.52

based on the evaluations on the entire test dataset and separately for

the inter- and intra-domain residues, see Figure 3. Supplementary

Figure S3 shows the ROC curves in larger format for methods with

the AUC > 0.5. We also include the result when using sequence

alignment. The alignment-based predictor copies DFL annotations

of aligned residues from the most similar sequence in the training

dataset based on its alignment to a query sequence from the test

dataset. The alignment is done with PSI-BLAST using default par-

ameters (Altschul et al., 1997). Because alignment transfers binary

annotations of DFLs from the training proteins, we can show only

one point for the ROC curve for this simple predictor. The FPR and

TPR values of alignment-based predictors equal 0.039 and 0.014,

respectively. In other words, it predicts only 1.4% of DFL residues

with the cost of predicting 3.9% of NDFL residues as DFL residues.

This is because our test dataset is designed to share low (25% or

lower) sequence similarity with the training dataset. In contrast,

DFLpred can produce high-quality results even in the absence of se-

quence similarity. When considering the same FPR ¼ 0.039,

DFLpred’s TRP is 10 times higher and equals 0.148. Moreover,

DFLpred’s ROC curves are substantially above the curves of other

methods over the entire range of FPR values. We also note a large

improvement for the low FPR values (see insert in Fig. 3).

3.3 Relation between predicted propensity and

predictive quality
DFLpred outputs real-valued propensities for each residue in the in-

put protein chain where higher values of propensity denote higher

likelihood that a given residue is a part of a DFL. Figure 4 shows

relation between the values of propensity and the predictive quality

by calculating fraction of residues in native DFLs (black line) and

native NDFLs (gray line), which are predicted with propensities

below a value shown on the x-axis. Larger vertical separation be-

tween the two lines corresponds to a better separation between

DFLs and NDFLs by outputs produced with DFLpred. The propen-

sities generated by DFLpred are constrained to the 0–0.3 range and

offer a large separation. We picked two representative values of pro-

pensities (vertical dotted lines in Fig. 3) to demonstrate how to inter-

pret DFLpred’s predictions. Half of the NDFLs are found among the

residues predicted with propensity < 0.07, while these residues in-

clude only about 20% of DFLs. Similarly, half of DFLs and only

20% of NDFLs are found among the residues for which the pre-

dicted propensity >0.12.

3.4 Runtime
DFLpred is implemented as a linear function of features computed

directly from sequence and from sequence-derived predictions gener-

ated with IUPred. IUPred’s predictions are calculated from pairwise

energy profile without a time-consuming alignment or predictive

model. Consequently, DFLpred is fast.

We quantify and compare DFLpred’s runtime with the runtime

of UMA and all individual methods that obtained AUC > 0.5 in

Table 2 or Supplementary Table S2. The predictions were run on the

same 64-bit computer with 3.5 GHZ CPU and 4 GB of RAM run-

ning Ubuntu operating system. UMA is run manually and requires

computation of hydrophobicity, finding homologous sequences and

prediction of secondary structure. We estimate a lower bound on

the UMA’s runtime by computing time to complete the most time-

consuming finding of homologs. This is based on executing BLAST

against the NR database using the suggested by the author e-value ¼
1e-20. We used stand-alone version of PredyFlexy that was provided

by the authors. FlexPred and PredBF do not provide stand-alone ver-

sions but both methods use PSI-BLAST to generate position-specific

scoring matrix against the NR database. We use this calculation to

estimate lower bounds of their runtime. As suggested by the authors,

we compute the runtime of running PSI-BLAST with five iterations

and default e-value for FlexPred, and with three iterations and

e-value ¼ 0.001 for PredBF. We did not include ThreaDom because

it requires running LOMETS (Local Meta-Threading-Server) frame-

work, which takes substantially longer time than the other methods.

We collected the runtime of the considered methods for 204 proteins

from the training and test datasets. We sorted the proteins by their
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size quantified with the sequence length, divided them into 10

equally sized groups based on the size and computed average run-

time for each group.

Figure 5 compares the average runtime against the average

length of sequences for the five methods. The runtime of DFLpred,

Espritz_NMR, PredyFlexy, UMA, FlexPred and PredBF is in the

range of 102, 102 to 103, 104 to 105, 105 to 106 and 106, respect-

ively, measured in milliseconds. DFLpred is up to 4 orders of magni-

tude faster than the alternatives, which is a significant advantage.

To put this into perspective, if these methods would be used to pre-

dict the complete reviewed human proteome from UniProt (20 193

sequences with an average length of 561), DFLpred, ESpritz,

PredyFlexy, UMA, FlexPred and PredBF would take about 40 min,

80 min, 11.5 days, 185 days, 231.5 days and 231.5 days, respect-

ively. This estimate is based on a linear fit into the measured data

that are shown in Figure 5 and assuming use of the same computer

that we used to measure the runtime. The measured runtime of

DFLpred on the human proteomes using this computer was 38 min,

which is close to the estimated 40 min and which demonstrates that

our estimates are accurate. To summarize, DFLpred is faster than

the less accurate alternatives and is capable of providing predictions

for the complete human proteome (and any other proteome, which

by definition, would be smaller) using a modern personal computer

in under an hour.

3.5 Analysis of putative DFLs in human proteome
We analyzed putative annotations of DFLs generated with DFLpred

in the complete reviewed human proteome collected from UniProt.

We considered a given residue to form DFL is its propensity gener-

ated by DFLpred > 0.18. This cutoff corresponds to low 0.05 FPR

based on the results from the cross-validation on the training

dataset.

Figure 6A shows a histogram of the content of putative DFLs

residues per sequence (fraction of these residues in a sequence).

About 24% of proteins have no DFLs, i.e. the content is <5%, while

our estimated FPR is at the same level, and another 52% have small

amount of DFL residues. About 10% and 1.8% of proteins have the

content >30% and >50%, respectively. We found 341 and 152 pro-

teins that have the content of DFL residues at >50% and 60%,

respectively.

Figure 6B is a histogram of the length of putative DFLs. Most of

these regions are relatively short, with about 80% of them being

shorter than 10 residues; some of them could be spurious predictions

given the assumed 5% FPR. However, about 7% and 2.6% of these

regions span at least 20 and 30 consecutive residues, respectively.

We found 6029 DFL regions that that are at least 30 residues long.

3.6 Webserver
DFLpred is freely available as a webserver at http://biomine.ece.ual

berta.ca/DFLpred. It requires the end user only to provide the input

protein sequence(s) in FASTA format and email address. The email

is used to deliver a notification of the finished prediction and URL

of results that are available for download. The same information is

available in the browser window given that this window will not be

closed until the prediction is finished. The server automatically gen-

erates the corresponding propensities and binary predictions (DFL

versus NDFL residue). The binary predictions are computed from

the propensities using the cutoff ¼ 0.18 (residues with propensity

>0.18 are assumed to form DFLs), which corresponds to the 5%

FPR. The webserver allows for batch predictions of datasets with up

to 5000 proteins.

4 Summary

We conceptualized, designed, tested and deployed a novel computa-

tional method, DFLpred, for the prediction of the DFLs from pro-

tein sequences. We developed four strong and complementary

sequence-derived markers of DFLs and combined them using a lin-

ear function to build DFLpred. Empirical tests on independent
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(blind) test dataset demonstrated that our method provides relatively

accurate predictions even for proteins that share low sequence iden-

tity. DFLpred outperformed the closest related methods including

UMA, which predicts flexible linkers, several protein flexibility pre-

dictors and their combinations with disorder predictors. We note

that the value of AUC ¼ 0.72 secured by DFLpred is affected by the

challenging nature of the dataset (proteins in this dataset share low,

<25%, identity with the training sequences) and the fact that the an-

notations of DFLs could be incomplete. In other words, results on

proteins that share larger sequences similarity with our training

dataset should be better and some of the false positives in our test

dataset could in fact corresponds to DFLs that are yet to be anno-

tated. Another potential issue is the precision with which the boun-

daries of DFLs are annotated. This is shown in our first example

(Supplementary Fig. S2A) where the boundaries of domains are

slightly misaligned with the boundaries of DFLs. This will result in

annotation noise that reduces the achievable limit of predictive per-

formance. Our prediction is also characterized by a low runtime,

with prediction of the entire proteome taking <1 h on a modern

desktop computer. Finally, our analysis of putative DFLs in human

proteome generated with DFLpred shows that DFLs likely can be

found in many human proteins. About 10% of human proteins have

a significant content of >30% of DFL residues and a few thousand

of these regions are >30 consecutive residues.
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