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Abstract

We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient
interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows
detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the
construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and
deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure
modeling.
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Introduction

Computational protein design tools to date have been useful for

engineering proteins with a wide range of functions, including

DNA binding [1,2,3,4], co-factor binding [5], catalysis [6,7,8,9],

fluorescence spectral change [10], peptide-protein specificity

[11,12], and protein-protein interaction [13,14,15,16,17]. In

building nanostructures, computational protein design methods

have been applied to designing hyperthermophilic proteins

[18,19], metalloproteins [20], water-soluble membrane channels

[21], and higher order macromolecular assemblies [22,23]. Many

of these successes rely on fixed backbone approaches that maintain

the backbone conformations seen in the original high-resolution

crystal structures and focus on remodeling only the sidechains

[18,24]. In some cases, for example in building coiled-coil

structures, an ordered template is often used for designs that

contain various degrees of backbone movement [25].

Flexible backbone protein design requires energy functions of

sufficient accuracy and sampling methods of sufficient power to

allow prediction of the backbone structure that a remodeled

section of the protein chain is likely to adopt. The Rosetta energy

function and sampling methodology, although far from perfect,

have shown considerable promise for protein structure prediction

and hence are reasonably well suited to flexible backbone protein

design [8,26]. This is illustrated by the successful design of a 10

residue protein loop [27], a 16 residue helix-loop segment

contributing to a protein core [28], a protein-binding peptide

[29] and a very stable protein with a novel protein fold [30], all of

which achieved atomic level accuracy.

We describe here a versatile protocol, RosettaRemodel, that

combines the tools in Rosetta to address a wide range of problems

in flexible backbone design. RosettaRemodel utilizes the (1) native

protein parameterized Rosetta force field [31], (2) fragment-based

structural building from Protein Data Bank (PDB) torsion angles

[26,32], (3) robotics-inspired chain closure algorithms [33,34], (4)

iterative approaches for searching the sequence landscape [27],

and (5) short folding simulations for design validation. Figure 1

shows some examples of flexible backbone designs that can be

carried out using RosettaRemodel.

Results

Applications to Date
RosettaRemodel has been applied to a number of design

problems with positive results: a beta-knee was designed on

integrin with various lengths to understand its activation [35]; a

protein antigen of known structure was circularly permuted with a

loop insertion linking the N- and C-termini, and a crystal structure

solved for the circular permutant agreed well with the best model

over the designed loop [36]; sequences from selection experiments

on a DNA binding protein were modeled to deduce terms that

would correlate computational models with experimental selec-
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tions; a model of human granulocyte-macrophage colony-

stimulating factor (hGM-CSF) fusion to HIV GP120 spike was

built to illustrate structural compatibility [37]. Many other

applications of RosettaRemodel are still being tested; the

remainder of this article illustrates the diversity of problems that

can be addressed.

Design and Implementation

Blueprint Interface
The RosettaRemodel protocol uses a simple interface, the

blueprint, and a number of run-time switches to mediate various

protein modeling tasks. Examples from blueprint files for different

tasks are shown in Figure 2; each example will be addressed in the

text below. A blueprint file handles backbone building, sidechain

design, disulfide pairing, and at-build-time constraint assignments

if needed. Its layout allows one to easily understand all the

operations done to a structure. In a column layout, each line in the

blueprint represents a residue in a structure. For backbone

remodeling, residues can change their secondary structure, be

deleted, or be created according to blueprint assignments. For

sidechain perturbations, the blueprint allows all the operations in

RosettaDesign. With these features, RosettaRemodel in most cases

will only need a blueprint and a starting PDB file to carry out

design tasks that involve the backbone, sidechains, or both.

Setting up RosettaRemodel
RosettaRemodel takes an input PDB file (-in:file:s) and a

blueprint file (-remodel:blueprint) to carry out most of its functions.

Although not required, it is recommended that the residues in the

PDB file be renumbered starting from one before creating a

corresponding blueprint file. Due to the layout in columns in the

blueprint file, using editors that allow text column manipulation,

such as vi [38], makes setting up remodeling a relatively simple

task.

Sequence Design
When only sidechain design commands are given in the

blueprint file, RosettaRemodel handles fixed-backbone design in

a similar manner as RosettaDesign. Sidechain mutations or

rotamer re-sampling can be achieved using all the commands

available to a RosettaDesign resfile, such as PIKAA, ALLAA,

APOLAR, EX1, EX2, etc. For an example see Figure 2, section 1.

However, when accompanied by RosettaRemodel specific flags: -

find_neighbors and -design_neighbors, neighboring residues will be

automatically selected following RosettaRemodel specifications

(6 Å). With -find_neighbors alone, neighboring residues will be

repacked without altering their amino acid identity; in combina-

tion with -design_neighbors, all these positions will be designed for the

most suitable amino acid. Due to the stochastic Monte Carlo

process used in sidechain selections, normally one would create

multiple design runs to ensure convergence in the search process.

With RosettaRemodel, this step can be customized by setting the

number of trajectories to try (-num_trajectory) and the number of

lowest energy models to output (-save_top), so that a reasonable

amount of Monte Carlo sampling can be carried out but only the

few decoys with lowest energies will be output. This principle is

used for all RosettaRemodel builds – flexible or fixed backbone –

as RosettaRemodel internally screens structures during a trajec-

tory by their energies.

In addition to the manual assignments described above, residues

are processed automatically according to the number of

surrounding residues and use only a subset of amino acids that

fits the description. Since computational methods are most reliable

in designing the core of a protein with rotamer packing,

RosettaRemodel uses core residues alone to bias the simulation

Figure 1. Examples of backbone manipulation using RosettaRemodel. In the center is the crystal structure of protein G (PDB ID: 1PGA),
which was used as the starting point for all the different cases. The colored regions highlights changed made with RosettaRemodel.
doi:10.1371/journal.pone.0024109.g001
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for a better hydrophobic core. This is achieved by ranking the

degree of exposure for each of the residues involved and reducing

contributions from the highly exposed ones. By masking these

positions – temporarily switching them to alanines – the design

trajectory can be directed to favor interactions in the core. The

automated protocol postpones the decision on designing the fully

exposed positions until reasonable hydrophobic support has been

built, before the final output. The protocol accumulates low

energy designs solely based on hydrophobic packing in a trajectory

before designing surface residues. Although exposed polar residues

are important for stability, modeling them accurately has been

shown to be difficult as RosettaDesign lacks electrostatic energy

terms for general applications. This layered treatment, however, is

not applicable to all situations, and can be turned off by the flag:

-skip_partial.

Backbone Design
New backbones are built up from fragments of specified

secondary structure [8,26,28]. The secondary structure is specified

by the third column of any position in the blueprint file: when

Figure 2. Blueprint Assignment Examples.
doi:10.1371/journal.pone.0024109.g002
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given an assignment of H, L, E, or D, which stands for helix, loop,

extended strand, and degenerate (random), respectively, the

corresponding position will be rebuilt with the specific fragment

type chosen. For an example see Figure 2, section 2. If the

sequence is known for the segment to be built, as is the case when

predicting the conformation of a known loop, one can manually

assign the positions with PIKAA commands to their native amino

acids. In a prediction case, one can also bias the fragment-picking

process by giving preferences to fragments that share identity to

some or all of the positions, following the sequence given in the

second column of the blueprint file. This can be achieved by using

the flag: -use_blueprint_sequence. This process, however, does not

provide secondary structure prediction based on sequence – the

fragment types must be manually assigned and will be strictly

followed. Successful prediction using this functionality will usually

involve strong sidechain-driven structural features and relies on

successful full-atom refinement to model the site.

Implementation of Backbone Remodeling with Direct
Fragment Generation

RosettaRemodel harvests fragments directly from a culled set of

torsion angles from non-redundant x-ray structures and assembles

them on the scaffold structure according to their secondary

structure type. An advantage of harvesting fragments directly is

that one can collect a new set of fragments during a protocol and

not be limited to the pre-defined set provided at the start of the

simulation, resulting in significantly expanded sampling diversity.

The default number of fragments used is 200 segments of nine-,

three-, and single amino acids for each position, as is commonly

used for other Rosetta fold prediction projects [31,39]. Addition-

ally, the protocol allows harvesting fragments that match the entire

length of a remodeled region, potentially with improved fragment

qualities similar to those previously reported [40]. Since the

objective is to design new structures and new sequences, all force

field terms that involve specific sequence information are explicitly

turned off. Only van der Waals, radius of gyration, and

Ramachandran probability terms are used to specifically address

clashing, packing, and chain geometry, respectively. Residues in

the backbone building stage are centroids of valines or alanines,

and thus the Ramachandran term is the same for all moving

positions, but is significantly scaled down to 1/10 its normal

weight to avoid areas of very low probability.

Backbone modeling on internal loops is performed with random

cut sites within the loops preceding fragment building. The

internal chain breaks are subsequently reconnected using closure

algorithms such as Cyclic Coordinate Decent (CCD) [33] or

Kinematic Closure (KIC) [34]. Only models with properly closed

chains after the fragment assembly stages are passed along to the

design stage. There are often cases where successful closure is rare;

in such cases it may be that too few residues are being used or that

the residues at the ends of the loop being modeled are in

orientations not suitable for proper closure and should be allowed

to move.

Forcefield terms that enforce backbone geometry can be applied

and adjusted to suit particular design problems. Backbone-specific

terms, namely strand pairing and hydrogen bonding energies on

helices and sheets, can be selectively applied for different types of

designs; conversely, the terms used by default can be scaled down

or turned off for purposes such as turning off minimization of the

radius of gyration when building a polar surface loop. We use

either centroids of valines or alanines in the fragment assembly

stage as generic space fillers until the design takes place at the full-

atom level. Although contacts between sidechains are evaluated

and are part of the Monte Carlo simulation when sampling

backbone conformations, evaluation of proper chain closure

supersedes all other criteria.

Implementation of Trajectory Accumulator for Multiple
Objective Optimization, Clustering, or Checkpointing

RosettaRemodel tracks structures it has built internally. This

structure accumulation stage has three different purposes. First, it

allows one to use a primary score to collect sorted structures from

the full-atom design step following the centroid building step, and

subsequently filter or find unions with other criteria as a simple

multiple objective optimization tool. Second, the structures

collected can be clustered into groups of unique conformations if

-use_clusters is set true. The search strategy in this case is to first

perform massive random sampling of different regions of the

folding landscape by large fragment-based moves, and once the

cluster centers are identified, then focus on refining the unique

structures by localized sampling. Third, the sorted list of structures

will always contain the best answer in the trajectory at a given

time. A convenient checkpoint scheme (-remodel:checkpoint) is built

into this protocol by maintaining the candidate list on disk.

Iterative Design and Refinement Optimization
Models listed in the accumulator from a centroid building stage

can be subjected to a number of iterative design and refinement

cycles. For speed or other considerations, this can be bypassed by

issuing -remodel:quick_and_dirty flag, which will make models only

from fragment insertion without fine-tuning the backbone

geometry for new sequences. Refinement steps rebuild backbones

with either CCD (default) or KIC, and these backbone altering

steps are followed by sidechain designs according to user’s choices

as described previously in Sequence Design section. This cycle

iterates three times by default (or more, as specified by -dr_cycles

flag with an integer). This iterative design-refinement step, in

conjunction with the trajectory accumulator, allows a more

focused exploration of the sequence landscape by applying time-

consuming refinement only to structures ranking well from

centroid stages or cluster centers that are unique in structures.

Extensions and Deletions
Simply adding and subtracting lines from blueprint files will

create a new structure that follows the corresponding actions. For

examples of extensions and deletions in the blueprint file, see

Figure 2, sections 3 and 4. When inserting a residue, a line in the

blueprint starting with ‘‘0 x’’ will cause insertion of one residue at

the corresponding position in the structure. By assigning secondary

structures to the segments and the regions flanking the modified

region, one can conveniently alter the length of a protein chain.

These are implemented using fragment building as described

above

Constraints
RosettaRemodel handles constraint assignments together with

length changes in the blueprint file. A separate constraint

definitions file used to describe the atoms involved and the

geometry required can be generated without specifying the residue

positions, therefore allowing the same set of constraint definitions

to be used for different designs with varying chain length.

RosettaRemodel uses the constraint file format from the Rosetta

enzyme design protocol [41], allowing constraints to be specified

in up to six degrees of freedom. An example of a constraint file and

its corresponding blueprint are given in Figure 3 (a constrained

blueprint is also shown in Figure 2, section 5), where two

constraint blocks were defined to form a hydrogen bonding pair

Framework for Flexible Backbone Protein Design
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Figure 3. Constraints file and its associated blueprint file. Each block in the constraints file is represented in the blueprint file with the CST1A,
CST1B, CST2A and CST2B notation. The enzdes constraint format is discussed in Richter et al. [41] in detail. In this figure we show the association
between cst and blueprint files. Each enzdes constraint block, defined between CST::BEGIN and CST::END statements, always contains two elements,
and to interface with blueprint, the first definition is defined as ‘‘A’’ and the second as ‘‘B,’’ and each element requires a corresponding assignment in
the blueprint. Each block is also associated with a numerical value from 1 to the total number of blocks defined in the cst file. In this example, the first
constraint pair (CST1A/CST1B) is used to restraint one of the residues (residue 17) on the strand being built (residues 16–20) to within a hydrogen
bonding distance with a stationary residue (residue 12). The second constraint pair (CST2A/CST2B) operates on the sidechains of residue 9 and 20 for
hydrogen bonding between the functional groups. The distinction between a backbone and sidechain definition is the choice of atom types using
Rosetta atom type names and a required ‘‘is_backbone’’ statement because enzdes constraint protocol does not automatically treat atoms as
backbone by names. In this example, the hydrogen bonding constraint is defined for a pair of atoms within 2.8+/20.2 Å, with a force constant of 100.
The trailing ‘‘0’’ in the distanceAB definition is for non-covalent interaction.
doi:10.1371/journal.pone.0024109.g003

Figure 4. Examples of designs made with RosettaRemodel. A) A cysteine protease site, with cys-his intermediate shown in green sticks. The
loop in cyan was rebuilt from its original position (in green) to introduce sidechain-directed stabilization of the oxyanion in the intermediate. The re-
designed model uses an asparagine in direct contact with the oxyanion instead of the wild-type aspartic acid (in pink). B) Two interacting loops in a
symmetry arrangement were rebuilt to increase interactions across the subunits. C) Domain localization. A domain assembly designed with a pair of
linkers. In this figure, the ensemble of an internally inserted domain is shown moving relative to the stationary structure that hosts the insertion as a
result of sampling the loops linking them. With this type of sampling, one could model the localization of the final assembly.
doi:10.1371/journal.pone.0024109.g004
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with distance constraints. In Figure 4A, we showed an example of

modeling a sidechain to satisfy an oxyanion intermediate on a

cysteine protease active site with RosettaRemodel and constraints.

To use constraints in remodeling, one can specify if sidechain or

backbone atoms are involved and those constraints will be applied

in different building stages. During fragment insertion, all

sidechains are represented by default as centroids of valines (but

can be changed to alanine centroids), so only backbone constraints

will be used. Constraints involving sidechain atoms will only be

used during rotamer optimization. To satisfy a constraint involving

at least one atom on a sidechain, it is advised that the constraint

setup have an accompanying definition for their backbones. For

example, if a hydrogen bond donor on a sidechain is to be

constrained to an acceptor, in addition to the description of the

sidechain hydrogen bond, a rough distance constraint can be

assigned to the backbone atoms of the donor residue so that during

the backbone building stage the residue would be brought to the

proximity of the acceptor. This would maximize the chance of

building the donor sidechain with the desired geometry.

Symmetry
By giving RosettaRemodel a symmetry definition file [42], one

can simultaneously remodel all the subunits in a symmetrical

assembly. This setup allows users to take advantage of all of

RosettaRemodel’s functionality to build sections of a subunit that

interact with other subunits in a symmetrical arrangement. The

blueprint used for these cases only needs to describe a single

subunit; symmetry related units will be automatically generated

and output. In Figure 4B, we show building a loop-mediated

interaction across a dimer interface. In this model, strands on the

starting template were extended to allow new contacts to be

introduced across the interface. The loops in red were built

simultaneously obeying symmetry.

De novo Structure Modeling
Because RosettaRemodel selects fragments only by their

secondary structures following the user’s suggestions, it is

straightforward to build de novo structures. In Figure 2, section 7,

by asking for a string of helical fragments, one can build an ideal

helix that could be used for other remodeling purposes. If building

a specific topology out of secondary structure elements and the

lengths of the building blocks are known, one can build a protein

de novo, much like that of Top7, a previously reported protein with

novel topology [30].

Disulfides
Although improving packing has been shown to achieve

improved stability, in some cases a disulfide linkage is a better

alternative. RosettaRemodel offers two different ways of engineer-

ing disulfides: (1) building disulfides in the native environment with

minimum perturbation, if a realistic disulfide can readily be made

with the native backbone, and (2) aggressively rebuilding the

backbone until disulfide geometries can be satisfied. The difference

is the inclusion of fragment insertion steps, controlled by a flag: -

bypass_fragments. Disulfides are treated as connecting a mobile

region to a stationary region. To build disulfides from one region

of the structure to the other, a range of mobile positions should be

designated for rebuild in a blueprint file by assigning the desired

secondary structure types, and the flag -build_disulf must be issued.

The entire rebuilding (mobile) range will be considered for

disulfide building; this range can be further restricted by tagging a

subset of the movable positions with ‘‘DM_start’’ and ‘‘DM_stop’’

tags in the blueprint file – these tags stand for ‘‘disulfide mobile

start’’ and ‘‘disulfide mobile stop’’, respectively. The stationary

positions considered for disulfide design default to all positions not

designated for backbone movement and can also be narrowed

down to more specific regions by either tagging two positions in

the blueprint as ‘‘DS_start’’ and ‘‘DS_end’’, or using the flag -

disulf_landing_range followed by two integer numbers. Giving the

same position as both the start and end position will restrict

samping of disulfides only to this position. See Figure 2, sections 8,

9, and 10 for examples. The engineered disulfide will always

connect one position in the specified rebuilding (mobile) region

with one position in the specified stationary region. All position

pairs in the specified regions with their Cb atoms within 5 Å of

each other will be checked for disulfide geometry. If multiple pairs

satisfy the Cb distance check in one structure, all are considered

and handled by the structure accumulator described previously.

To assess candidate disulfide geometries at a higher resolution

than Cb distance, RosettaRemodel compares a pair of protein

backbones with realistic disulfide geometries described in a

database and returns a RMSD score. A threshold value can be

set (-match_rt_limit) to allow distant matches to be tested; if this

threshold is set too low, RosettaRemodel may not find any

candidate position pairs. Once a pair of positions has been

identified, the residues at those positions will be mutated to

cysteine on the all-atom level, and series of subsequent

minimization steps will optimize the disulfide geometry before

continuing the rest of the RosettaRemodel protocol.

Advanced Functionality
Domain insertion and motif grafting. A structure segment

can be inserted unmodified to another protein, transplanting a

linear structural motif, an ideal structure, a domain, or an entire

protein. The file with the structure to be inserted in PDB format

should be edited to contain only the section of interest. Contents in

the file will be processed by RosettaRemodel with the invocation

of the flag -insert_segment_from_pdb, followed by the filename. The

insertion should be described in a blueprint file as part of a

rebuilding segment, but rather than being assigned for rebuild with

secondary structure notations H, E, L or D, the inserted segment is

designated with ‘‘I’’, for insertion. The number of residues with

insertion designation should match the number of residues in the

inserting file. The range of the insertion should be flanked by

several rebuilding residues to maintain proper connection with the

rest of the structure. The number of residues to be used as the

linker is usually determined by trial and error.

Tethered docking. In certain cases, the polypeptide chain

can be gradually built out from one end of the structure to the

other, often guided by loose constraints instead of chain closure.

The stringent requirement for chain closure by RosettaRemodel

may sometimes compromise secondary structure integrity during a

simulation if an erroneous chain length is used. Predicting a priori

the optimal chain length is difficult and is best obtained by trials

with large sampling. This, however, requires much computing

time. Instead, if the objective is to optimize packing of a helical

segment with its neighbors, one can first optimally dock the helix

in a tethered fashion to the site to satisfy features described by the

environment. Once the helix is placed in the structure, the chain

can grow out further in the next iteration until it is fully connected

with the rest of the structure. To sample such processes, each

intermediate step can use the flag -bypass_closure to turn off the

chain closure requirement for that step.

Domain localization test, domain assembly, tethered

docking and circular permutation. RosettaRemodel can be

used to sample the degrees of freedom when engineering protein

fusions with linkers, and this can be extended to sample domain

assembly problems where a known linker is between two rigid

Framework for Flexible Backbone Protein Design
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body domains. For a simple linear two-domain assembly [43], one

can simply define the linear region with its appropriate secondary

structures and run RosettaRemodel with the -no_jumps flag to fold

through the linker to sample the degrees of freedom. We offer here

a recipe for a more complicated scenario that combines the use of

several features in RosettaRemodel. In collaboration with

Goreshnik and Maly [44], we used RosettaRemodel to sample

linker lengths to optimally position inhibition domains, shown in

Figure 4C. In order to create the linear fusion of BclxL-DH-BH3

while maintaining the dimer structure of BclxL and BH3, the PDB

of BclxL/BH3 complex was first renumbered as a single chain,

ignoring the chain break that was originally the termini for the two

molecules, making a new PDB with the N-terminal leading into

BH3 and C-terminal exiting out of BclxL. The DH domain was

then similarly circularly permuted with a text manipulation script

to move its original N- and C-termini internal to the sequence.

With these permutations, the BclxL/BH3 complex could be

inserted in between the original N- and C-termini of DH using the

domain assembly scheme describe above and effectively created

the BclxL-DH-BH3 fusion. A number of linker lengths were

sampled in order to position the BclxL/BH3 complex atop the

binding site of DH. This could be done directly using chain closure

to model all three molecules together such that only linkers

sufficiently long will yield results, or it could be done in the step-

wise fashion as discussed in the tethered docking section so only

one linker was built at a time. Superposition of the models

generated provided information on the degree of freedom of this

assembly, and indeed for our test built with the linker sizes chosen,

we modeled the BclxL/BH3 complex atop of the DH binding site

for steric occlusion/inhibition.

Local sampling and focused library generation. A model

or a starting structure can be subjected to a number of design-

relaxation refinement cycles to sample local conformational spaces

and variations in sequences. This could be done to optimize the

sequences for a design or for the purpose of collecting sequences

compatible with the topology to make focused experimental

libraries. For local structural changes, fragment insertion can be

skipped by using the flag -bypass_fragments, and instead of running

the default CCD based refinement, the relaxation step is run using

the Rosetta Relax protocols by issuing -run_pose_relax flag. When

these two flags are used, the secondary structure designation in the

blueprint file is no longer relevant; the H, L, E, or D assignments

become equivalent and only provide information on whether a

residue is restrained. In RosettaRemodel the structural relaxation

stage is further restricted by automatically restraining positions

untouched in the blueprint file to their starting position. One can

also specify the number of design-relaxation cycles to be used

(default is three) by issuing the -dr_cycles flag, followed by an integer

number.

Structure prediction and validation of remodeled

sequences. Structure prediction starting from amino acid

sequences alone requires deducing possible secondary structures

from the linear sequence, and RosettaRemodel should not be used

for predicting structures from primary sequences as it does not

handle secondary structure prediction information. In the context

of sampling conformations of a short range of residues within a

protein, however, RosettaRemodel can take advantage of the

conformational sampling steps to achieve reasonable ‘‘structure

prediction’’ results by exploring the energy landscape around the

residues of interest. Structure prediction in this sense can be

considered a subset of design because both require the build stages

and only the sequence is invariant for predictions. By assigning

each position its final amino acid designation through the PIKAA

command in the blueprint, a structure prediction run can be

carried out, relying largely on full-atom refinement. If the second

column of the blueprint file is left as the native sequence, one can

also bias fragment picking to favor fragments that share common

amino acid residues with the corresponding sections using the flag:

-use_blueprint_sequence. The user can use the default CCD

refinement protocols or alternatively switch to using KIC with a

flag (-swap_refine_confirm_protocols) to use the method as described in

Mandell, et. al. [34].

We tested this functionality of RosettaRemodel on a set of 40

proteins with eight residue loops. Since the full set of sequence-

dependent scoring functions normally used for prediction is not

part of the design toolset, we do not expect results to match those

of the prediction runs. For benchmarking if native structures can

be recovered largely by full-atom refinement alone, we did not bias

fragment selection based on sequences – RosettaRemodel used

only loop fragments harvested randomly for each trajectory.

Nonetheless, we expect reasonable performance and indeed that is

what we find. The Ca RMSD distribution of the models produced

by RosettaRemodel are below 2 Å deviation for the majority of

the cases, only slightly worse than the reported values [39].

Several different versions of the build protocol were tested

against the eight-residue loop set, and a correlation was observed

between the convergence of the two closure algorithms and the

predicted Ca RMSD against native structures. While this

correlation should not be considered as the definitive measure in

picking out models for experimental testing, it does provide a

qualitative measure of the loops generated, and RosettaRemodel

reports these values for reference. We noted that the correlation

with RMSD to native was only observed when KIC was applied

after structural refinement with CCD. We observed little

advantage of KIC over CCD in the iterative building-refinement

stage. Therefore the algorithm is setup to iteratively design and

refine using the CCD algorithm, and only before the final model is

generated will an optional KIC refinement stage be applied.

Conclusion
RosettaRemodel was originally created to handle structural

design problems involving flexible backbones, and was further

extended to handle a wider variety of design problems. It offers a

unified ‘blueprint’ interface for many design scenarios which can

conveniently access a range of Rosetta functionalities. Currently

there are a number of tools using Rosetta for structure

manipulation, ranging from the fully interactive FoldIt [45] to

the fully automated RosettaScripts. RosettaRemodel is semi-

interactive because it relies on the user to provide a sensible

blueprint for the simulations and it often requires a few iterations

of user modifications to the blueprint before a good setup is found.

Although RosettaRemodel describes a fully self-contained proto-

col, it is sometimes desirable to use it in the RosettaScripts setup to

take advantage of other specialized protocols, and this is indeed

possible.

The build examples described here are the general problems

that can be addressed using RosettaRemodel. Several cases can be

combined into one remodeling step or used in separate steps to

build a structure that meets the desired specifications. Flexible

backbone design problems are difficult and RosettaRemodel aims

to provide a convenient way to address them.

Availability and Future Directions

RosettaRemodel is part of the Rosetta molecular modeling

suite, available through http://www.rosettacommons.org/. A

multi-threaded structure accumulator is being developed for

RoesttaRemodel to facilitate runtime efficiency and potentially
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incorporate mechanisms for multi-state designs. A front-end user

interface using FoldIt to facilitate annotating and generating

blueprint files is also being planned, such that designs can be

carried out in a single interactive environment and not depend on

text manipulation and external visualization processes.
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