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Improving the performance 
of ghost imaging 
via measurement‑driven 
framework
Hanqiu Kang1, Yijun Wang1, Ling Zhang1* & Duan Huang2 

High-quality reconstruction under a low sampling rate is very important for ghost imaging. How to 
obtain perfect imaging results from the low sampling rate has become a research hotspot in ghost 
imaging. In this paper, inspired by matrix optimization in compressed sensing, an optimization 
scheme of speckle patterns via measurement-driven framework is introduced to improve the 
reconstruction quality of ghost imaging. According to this framework, the sampling matrix and sparse 
basis are optimized alternately using the sparse coefficient matrix obtained from the low-dimension 
pseudo-measurement process and the corresponding solution is obtained analytically, respectively. 
The optimized sampling matrix is then dealt with non-negative constraint and binary quantization. 
Compared to the developed optimization schemes of speckle patterns, simulation results show that 
the proposed scheme can achieve better reconstruction quality with the low sampling rate in terms 
of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM). In particular, the 
lowest sampling rate we use to achieve a good performance is about 6.5%. At this sampling rate, the 
MSSIM and PSNR of the proposed scheme can reach 0.787 and 17.078 dB, respectively.

As a novel and non-local imaging technique, ghost imaging (GI) was first experimentally demonstrated by using 
quantum entanglement source generated by the spontaneous parameter down-conversion (SPDC) process1. 
Considering the difficulty of generating quantum entanglement source, it was proved in theory and experiment 
that GI could be implemented with thermal and pseudo-thermal light2–8. In recent years, with the proposal of 
various GI schemes6,9–11, GI has a bright application prospect in many related fields, such as remote sensing12,13, 
imaging through scattering media14–17, optical encryption18,19 and terahertz imaging20–24.

In a typical GI system, the target image can be obtained by correlation measurement between two distrib-
uted light beams1,2. Due to the existence of background noise, the signal-to-noise ratio (SNR) and visibility of 
the reconstructed image are lower than expected25,26. To address these issues, various schemes have been pro-
posed and verified, among which differential GI (DGI)27 and normalized GI (NGI)28 demonstrate significant 
improvement in the SNR though at the cost of more measurements; intensity threshold29 and time–space-average 
domain30 schemes show that the visibility of the image restoration can be remarkable enhanced. Compressed 
sensing (CS)31 theory combined with GI technique9,32,33 can not only improve the performance of the image 
reconstruction, but also reduce the number of measurements. In addition, the sampling efficiency can be further 
improved, which is helpful to promote the practical application of GI. In general, the GI methods based on CS 
usually work better than traditional GI based on the second-order correlation when the sparsity is considered in 
the process of image restoration34. Deep learning-based GI schemes10,11,17,35 have also been proved to be effective 
in improving sampling efficiency and imaging quality. Furthermore, the imaging speed is faster compared with 
conventional GI method.

Despite that many schemes have been proposed to improve performance of GI from different perspectives, 
the problem of sampling efficiency still cannot be ignored36,37. The high sampling efficiency means that enough 
information about the target can be obtained with a few samplings, and then high-quality reconstruction can 
be achieved. Therefore, how to improve the sampling efficiency deserves further study in GI. In fact, the prob-
lem of enhancing sampling efficiency can be transformed into the speckle pattern optimization problem, that 
is, the sampling matrix optimization problem, which can learn from the matrix design methods in CS36–40. So 
far, various speckle patterns have been designed to optimize the light fields of GI, such as multi-scale speckle 

OPEN

1School of Automation, Central South University, Changsha  410083, China. 2School of Computer Science and 
Engineering, Central South University, Changsha 410083, China. *email: lingzhang2019@csu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-86275-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6776  | https://doi.org/10.1038/s41598-021-86275-2

www.nature.com/scientificreports/

patterns36, sinusoidal patterns37 and hadamard patterns41. Furthermore, mutual coherence minimization39 and 
dictionary learning40 schemes have also been proved to be reasonably effective. It should be pointed out that the 
dictionary learning scheme can be regarded as using a data-driven framework or a task-driven framework42. 
Under this framework, the sparse coefficient matrix is obtained from high-dimensional training data and updated 
along with the sparse basis. Different from the dictionary learning scheme that optimizes the speckle patterns 
through the learned sparse basis or dictionary from a given training set40, in this paper we propose a novel 
optimization scheme from the perspective of optimizing the sampling matrix and sparse basis, which is based 
on the measurement-driven framework (MDF)43. Under the MDF, the sparse coefficient matrix is obtained by 
low-dimensional pseudo-measurement process and updated separately from the sparse basis.

In this work, we formulate the optimization problem of sampling matrix and sparse basis in GI as an Frobe-
nius-norm minimization problem, and then propose an alternating optimization algorithm to solve the design 
problem and obtain the corresponding analytical solution. The proposed scheme also suggests a new binary 
quantization threshold for the optimized sampling matrix, which can effectively overcome the influence of 
quantization error. Compared with grayscale speckle patterns, binary speckle patterns refresh faster on the 
digital micro-mirror device (DMD)44, which may be used in some aspects of GI. We perform a simulation using 
given dataset to test the feasibility of proposed method, and evaluate the performance under different sampling 
rates and noise levels. Results show that our proposal can achieve the high imaging quality at low sampling rate.

Methods
Problem formulation.  Mathematically, the sampling process in GI can be expressed as45

where y is an M dimension column vector that denotes the signal measured by the bucket detector in the sig-
nal arm, � is an M × N sampling matrix detected by the detector in the reference arm and preserves the light 
field intensity information, x is an N dimension column vector that stands for the object to be reconstructed, ε 
represents the additive noise.

According to the CS theory, the object x can be approximately described in the form of

where � is a certain overcomplete sparse basis, z is called sparse coefficient vector, e is referred to as the sparse 
representation error (SRE). Denote X and Z as the training dataset and sparse coefficient matrix, respectively, as

here, P represents the number of training samples. And then, the total SRE is given by

The recent works in CS have shown that the accuracy of image reconstruction can be improved in designing a 
sensing matrix with consideration of possible SRE43,46,47. Motivated by these works, we first introduce the SRE 
into the optimization of speckle patterns in GI with the MDF. Next, we present our scheme in detail.

Let sampling matrix � be constrained by the form43

where IM is an M-dimensional unit matrix, U  and V  are two arbitrary orthonormal matrices of dimensions 
M ×M and N × N , respectively. A matrix restricted by Eq. (5) is actually a tight frame with good expected-case 
performance for CS applications48. Then, additional non-negative constraints are imposed on elements of the 
sampling matrix to meet the requirement of light field intensity, namely,

Inspired from the problem formulation in43, we combine the SRE with the above sampling matrix constraint 
conditions in our scheme. The following objective function to be minimized for optimizing sampling matrix 
and sparse basis is proposed:

where IN is an N-dimensional unit matrix, � · �F is the Frobenius-norm, ω is a trade-off factor with the value of 
(0,1).

Optimization of sampling matrix and sparse basis based on MDF.  We propose an alternating opti-
mization algorithm via MDF to solve the optimization problem in Eq. (7). It consists of two processes, namely 
the pseudo-measurement process and the alternating optimization process. Note that we define the measure-
ment process of the training samples as the pseudo-measurement process, in order to distinguish it from the 
measurement process of the target images or test set in our scheme. In fact, given the training samples, sampling 
matrix and sparse basis, we first acquire a pseudo measure of the training samples through randomly initial-
ized sampling matrix. Then, according to the pseudo-measurement results, sampling matrix and sparse basis, a 
certain reconstruction algorithm is used to obtain the sparse coefficient matrix, for example using orthogonal 
matching pursuit (OMP)51. However, the actual measurement process is to sense the specific targets with the 

(1)y = �x + ε

(2)x = �z + e

(3)X(:, p) = xp, Z(:, p) = zp, p = 1, · · · , P

(4)E = X −�Z

(5)� = U[IM 0]V⊤

(6)�m,n ≥ 0

(7)
min�,� ρ(�,�) = �(IN − ω�⊤�)(X −�Z)�2F
subject to � = U[IM 0]V⊤ and then�m,n ≥ 0
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optimized sampling matrix. After obtaining the sparse coefficient matrix, sampling matrix and sparse basis are 
then updated alternately. The above two processes are specifically as follows.

Given the training dataset X , sampling matrix �0 , sparse basis �0 , sparsity level K, number of iterations Iter 
and trade-off factor ω . Firstly, pseudo-measurement process. With the pseudo-measurement result Y = �0X , 
solve the following problem:

where � · �0 is the ℓ0-norm. Then sparse coefficient matrix Ẑ is obtained by OMP algorithm51. Secondly, alternat-
ing optimization process. For i from 1 to Iter, with �i−1 fixed, update sparse basis �i by:

then, with �i fixed, update sampling matrix �i by:

Obviously, with OMP algorithm, the Ẑ can be obtained by the low-dimension pseudo-measurement Y  , rather 
than the high-dimension training dataset X , which is different from data-driven or task-driven frameworks 
adopted in dictionary learning problems42. The detailed updating processes of sparse basis and sampling matrix 
are shown in Supplementary S1 and S2, respectively.

Constraints on the optimized sampling matrix.  After getting the optimized sampling matrix �̂ , we 
need to perform the following two steps on the sampling matrix:

•	 Non-negative constraint. Considering the non-negativity of speckle patterns displayed on the DMD, We need 
to impose the following constraint on the sampling matrix: 

•	 Binarization threshold optimization. Compared with grayscale patterns, binary patterns have significant 
advantages in data storage and transmission. Moreover, binary patterns refresh faster on the DMD, which is 
extremely important in real-time ghost imaging applications44. Different from the previous binary threshold 
selection strategies49,50, an effective binarization threshold is provided to quantize the sampling matrix. Let 
α > 0 be the binarization threshold, which is defined as the average of all non-zero elements of the optimized 
sampling matrix, then 

We notice that the (1, − 1) patterns are also selected to generate measurement results17. Compared with the (1, −1) 
patterns, the optimized non-negative speckle patterns can significantly reduce memory requirement. Moreover, it 
can be loaded directly onto the DMD while the (1, −1) patterns are in an indirect way. More importantly, it may be 
used to generate the (1, −1) patterns and produce better recovery quality in comparison with the (1, −1) patterns.

Results
Imaging schematic diagram.  The schematic diagram of ghost imaging system is shown in Fig. 1. Through 
the Köhler illumination system, the light generated by a light-emitting diode (LED) is evenly projected on the 
DMD. After being modulated by the optimized speckle patterns preloaded on the DMD, the reflected light from 
the DMD is projected on the object to be measured through a lens. Then, the reflected light from the specific 
target is collected by the lens and eventually recorded by the bucket detector.

Imaging reconstruction.  The validity of the proposed scheme via MDF is verified by simulations. All the 
simulations are performed in MATLAB R2016b. In our simulations, the MNIST database53 is selected to gener-
ate the training data, where pixel values of each digit image with a size of 28× 28 are normalized to the range of 
0 to 1. We first randomly select 5000 digital images from the training set to optimize the sampling matrix and 
sparse basis. Next, the optimized sampling matrix is constrained by Eq. (11) and Eq. (12). Then, each row of the 
sampling matrix is reshaped into a speckle pattern consistent with the size of imaging object. Finally, the speckle 
pattern on the DMD is approximately regarded as the light field intensity distribution on the object plane. In each 
sampling process the result of dot product between the speckle pattern and imaging object is obtained and then 
all the intensity values of the result are summed as the measurement result of the bucket detector. We compare 
the proposed method with the unoptimized case and Xu’s method39. For convenience, we denote the optimized 
ghost imaging scheme based on the measurement-driven framework as OGIMDF, and the corresponding unop-
timized case without MDF is denoted as UGI. The characteristics of these methods are summarized in Table 1.

For Xu’s method39, the Discrete Cosine Transform (DCT) basis is used as the sparse representation basis, while 
random Gaussian matrices with a Gaussian distribution of zero-mean and unit variance are chosen as sparse basis 
for UGI method. The sampling matrices of all test methods are subjected to non-negative constraint in Eq. (11) 
and binary threshold quantization in Eq. (12). For UGI and OGIMDF methods, the images are reconstructed 
by solving the following problem:

(8)Ẑ = argmin
Z

�Y −�0�0Z�
2
F subject to �Z(:, p)�0 ≤ K , p = 1, · · · , P

(9)�i = argmin
�i

ρ(�i−1,�i)

(10)�i = argmin
�i

ρ(�i ,�i) subject to �i = U[IM 0]V⊤

(11)�̂m,n = 0 if �̂m,n < 0.

(12)�̂m,n =

{
1, if �̂m,n ≥ α,

0, if �̂m,n < α.
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via the fast iterative shrinkage-threshold algorithm (FISTA)52, where � > 0 is a regularization parameter, � · �1 
is the ℓ1-norm, Xtest is chosen from MNIST test set, and each column of it can be reshaped into a target image. 
The reconstruction algorithm for Xu’s scheme is selected according to the corresponding reference.

Simulation results.  Figure 2 presents the simulation results with various schemes. The corresponding time 
cost of matrix optimization and reconstruction is recorded in Table 2. The reconstruction time of each method 
is the average of the total reconstruction time of 500 test images under the corresponding sampling rate. The 
reconstruction images at the given sampling rate are shown in the Fig. 2a. The sampling rate (SR) is defined as 
the ratio of the number of samplings to the number of image pixels. Figure 2b,c show the peak signal-to-noise 
ratio (PSNR) and mean structural similarity (MSSIM) index curves of the restored images with respect to SR, 
respectively. As the quantitative metrics of the reconstructed image quality, PSNR and MSSIM54 are defined as 
follows:

where F and G are the original image and reconstructed image, respectively, H is the maximum value of the image 
pixels and H = 255 in this paper, N is the total number of the image pixels, W is the number of local windows 
in the image, fj and gj are the corresponding windows with a size of 14× 14 pixels. The structural similarity 
(SSIM) is given by

(13)X̂ = argmin
X ′

1

2
�Y ′ − �̂X ′�2F + ��X ′�1 subject to Y ′ = �̂Xtest

(14)PSNR(F,G) = 10 log10

(
H2

MSE(F,G)

)

(15)MSE(F,G) =
1

N

N∑

j

(
Fj − Gj

)2

(16)MSSIM(F,G) =
1

W

W∑

j

SSIM(fj , gj)

(17)SSIM
(
fj , gj

)
=

(
2µfjµgj + c1

)(
2σfgj + c2

)
(
µ2
fj + µ2

gj + c1

)(
σ 2
fj + σ 2

gj + c2

)

DMD
LED

Köhler 
Illumination

Computer

Lens

Lens

Object

 BucketDetector

Speckle Pattern

Figure 1.   Conceptual diagram of a computational ghost imaging system. The light is spatially shaped via a 
DMD into speckle patterns which illuminate the object. The overall scattered light from the sample is acquired 
via a bucket detector and the signal is feed into the optimisation loop.

Table 1.   The characteristics of three schemes in terms of sampling matrix and its constraints and sparse basis.

Method Sampling matrix Sparse basis Constraints of �m,n

Xu39 Matrix optimization DCT Eq. (11) and Eq. (12)

UGI Eq. (5) Random Gaussian Eq. (11) and Eq. (12)

OGIMDF Matrix optimization Matrix optimization Eq. (11) and Eq. (12)
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where (µfj , σfj) and (µgj , σgj) are the means and variances of fj and gj , respectively, σfgj is the co-variance of fj and 
gj , c1 = (0.01H)2 and c2 = (0.03H)2 . We calculate the averaged values of PSNR and MSSIM of 500 reconstructed 
images and then plot the corresponding curves.

As seen from the Fig. 2, the recovered performance of the proposed OGIMDF is overall better than the 
other schemes. Compared with the UGI method, the proposed scheme can significantly improve the PSNR 
and MSSIM, especially at the low SR, mainly owing to the optimization of the sampling matrix. We can also see 
that the MSSIM for the Xu’s method performs comparably with the UGI scheme under different SRs, but the 
performance of PSNR in the Xu’s method is inferior to the UGI scheme when the SR exceeds 0.775. The main 
reason is the relatively large reconstruction error for the Xu’s method at the high SR ranges. It can also be seen 
from Fig. 2a that the reconstructed image quality of the proposed scheme is clearer than that of the other two 
schemes at the given SR.

We study the performance of the proposed scheme at low SRs, which is what we are concerned about in 
practice. We present the performance of the OGIMDF scheme when the SR is between 0.025 and 0.15, and the 
results are shown in Fig. 3. In the Fig. 3a, the reconstructed images at the given SR are displayed. Fig. 3b,c show 
the averaged performance of PSNR and MSSIM of 500 restored images with regard to SR, respectively. As shown 
in Fig. 3, when the SR is less than 0.065, the image quality of the OGIMDF method is poor and the recovered 
images are blurred and damaged. With the increase of SR, the imaging quality is improved and the recovered 
images can be recognized. Therefore, we think that 0.065 may be the lowest SR that the OGIMDF method can 
achieve in the case of good imaging quality.

We note that the PSNR of the proposed scheme decreases slightly when the SR is between 0.80 and 0.90 in 
Fig. 2b. To explain this phenomenon, we draw the SNR curves of the reconstructed images for OGIMDF and 
UGI schemes at the different SRs, as shown in Fig. 4. For the OGIMDF scheme, the SNR has a similar downward 
trend with the PSNR in Fig. 2b when the SR ranges from 0.80 to 0.90. This means that the noise of the recon-
structed images is enhanced in this SR region. However, the PSNR and SNR values of the proposed scheme are 
still higher than the UGI scheme in this SR range, and begin to increase again when the SR is more than 0.90, 
both of which prove the superiority of our proposal.

The above simulations do not take into account the impact of additional noise on the reconstruction perfor-
mance. In the practical environment, noise is inevitable. To evaluate the influence of noise on the three schemes, 
we add Additive White Gaussian Noise (AWGN) to the bucket values. Fig. 5 presents the corresponding results 
of various schemes when SR is 0.50. In the Fig. 5a, the reconstructed images at the given SNR are displayed. 

SR = 0.15 SR = 0.40 SR = 0.65

Xu

UGI

OGIMDF

Ground 
Truth

(a)

(b)

(c)

Figure 2.   Simulation results of three schemes under different SRs. (a) The images in the first row are 
reconstructed using Xu method, the second row shows the images reconstructed using UGI, the third row 
shows the restored objects using OGIMDF, and the images in the last row are the ground truth. (b) and (c) show 
the change curves of PSNR and MSSIM of reconstructed images using Xu, UGI and OGIMDF under different 
SRs, respectively.

Table 2.   Running time of three methods in terms of matrix optimization and image reconstruction.

Method Matrix optimization (s) Reconstruction (s)

Xu39 0.654 to 4.310(for 100 iterations) 0.478 to 1.284

UGI – 1.137 to 1.828

OGIMDF 37.347 to 43.722(for 5 iterations) 1.210 to 1.802
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Figure 5b,c show the averaged performance of PSNR and MSSIM of 500 restored images with regard to SNR, 
respectively. From the Fig. 5b,c, we can find that when the SNR does not exceed 20 dB, the PSNR values of three 
methods all lie in the relatively low level and the MSSIM of the UGI behaves slight advantages among these 
schemes. In the Fig. 5a, as a result, the images reconstructed by UGI, OGIMDF and Xu’s methods are blurred to 
a certain extent when SNR is 20 dB. Obviously, under the low SNR, the useful information is destroyed by noise, 
so it is difficult to restore the original image clearly. However, with the growth of SNR, both the PSNR and MSSIM 
of the OGIMDF accelerate rapidly. When SNR exceeds 30 dB, the OGIMDF begin to establish its superiority, 
i.e., when SNR is 40 dB, the PSNR values of UGI, OGIMDF and Xu’s methods are 18.83 dB, 30.50 dB, 20.04 dB, 
respectively. Moreover, the MSSIM value of the OGIMDF is 7.30% higher than that of the Xu’s method at this 
SNR. Accordingly, from the Fig. 5a, we can also see that the reconstruction results of the OGIMDF are remark-
ably clearer than the other results. Therefore, in practical application, the noise acting on the bucket detector 
should be reduced as much as possible to obtain high quality reconstruction performance for the OGIMDF.

We further study the reconstruction quality of grayscale targets under different sampling numbers. The 
Frey faces database55 including 1965 face images with a size of 28× 20 is selected to generate training and test 
data. In our simulation, 1915 faces randomly selected from the database are used as training samples, and the 
remaining faces are used for testing. Figure 6 presents the simulation results of UGI and OGIMDF schemes, and 

SR = 0.055 SR = 0.065 SR = 0.075

OGIMDF

Ground 
Truth

(a)

(b) (c)

Figure 3.   Simulation results of the OGIMDF method at the low SRs. The SR is between 0.025 and 0.15. (a) The 
images in the first row are reconstructed using OGIMDF method, and the images in the second row are the 
ground truth. (b) and (c) show the change curves of PSNR and MSSIM of reconstructed images using OGIMDF 
under different SRs, respectively.

Figure 4.   The SNR curves of reconstructed images with respect to SR for UGI and OGIMDF schemes.
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the sampling numbers are 476, 504 and 560, respectively. As shown in Fig. 6, with the increase of the number 
of sampling, the quality of the reconstructed image is also improved. when the sampling number is 560, the 
two methods can both reconstruct the image clearly. This verifies that the proposed scheme is also capable of 
reconstructing grayscale images.

We also verify the extensibility of the proposed method. The training data contains 5000 images randomly 
selected from the MNIST database53. We test the proposed scheme with English letters and double-seam patterns, 
and give the reconstruction results in the Fig. 7. We can see that it can still reconstruct well the English letters 
and the double-seam patterns when the SR is 0.15. At this SR, the PSNR and MSSIM are 17.47 dB and 0.85, 
respectively. When the SR increases to 0.65, the reconstruction images of the English letters and the double-seam 
patterns become clearer. These results well demonstrate the extensibility of the proposed scheme.

Conclusion
In this paper, we have proposed an optimization scheme of speckle patterns via measurement-driven framework 
to improve the reconstruction quality of GI. We have analyzed the performance of the proposed scheme under 
different SRs by using PSNR and MSSIM metrics, and compared it with the unoptimized case and Xu’s method. 
Simulation results show that it can produce better recovery quality in comparison with the other two methods 
especially at a low SR. We also verify the extensibility of the proposed scheme and the ability to reconstruct 
grayscale images. We believe that the proposed scheme can promote the development and applications of GI, 
for example binary sampling GI.

SNR=20dB SNR=30dB SNR=40dB

Xu

UGI

OGIMDF

Ground 
Truth

(a)

(b)

(c)

Figure 5.   Simulation results of three schemes under different SNRs with SR = 0.50. (a) The images in the first 
row are reconstructed using Xu method, the second row shows the images reconstructed using UGI, the third 
row shows the restored objects using OGIMDF, and the images in the last row are the ground truth. (b) and 
(c) show the change curves of PSNR and MSSIM of reconstructed images using Xu, UGI and OGIMDF under 
different SNRs, respectively.

UGI

OGIMDF

Ground 
Truth

M = 476 M = 504 M = 560

Figure 6.   Reconstruction results of grayscale targets under different sampling numbers for UGI and OGIMDF 
schemes. M represents the sampling number.
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