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ABSTRACT
Although molecular imaging probes have the potential to non-invasively diagnose a tumor, imaging probes
that can detect a tumor and simultaneously identify tumor malignancy remain elusive. Here, we
demonstrate a potassium ion (K+) sensitive dual-mode nanoprobe (KDMN) for non-invasive tumor
imaging and malignancy identification, which operates via a cascaded ‘AND’ logic gate controlled by inputs
of magnetic resonance imaging (MRI) and fluorescence imaging (FI) signals. We encapsulate commercial
K+ indicators into the hollow cavities of magnetic mesoporous silica nanoparticles, which are subsequently
coated with a K+-selective membrane that exclusively permits the passage of K+ while excluding other
cations.The KDMN can readily accumulate in tumors and enhance theMRI contrast after systemic
administration. Spatial information of the tumor lesion is thus accessible via MRI and forms the first layer of
the ‘AND’ gate. Meanwhile, the KDMN selectively captures K+ and prevents interference from other
cations, triggering a K+-activated FI signal as the second layer of the ‘AND’ gate in the case of a malignant
tumor with a high extracellular K+ level.This dual-mode imaging approach effectively eliminates false
positive or negative diagnostic results and allows for non-invasive imaging of tumor malignancy with high
sensitivity and accuracy.

Keywords: dual-mode imaging probe, fluorescence imaging, MRI, tumor malignancy identification,
potassium ion

INTRODUCTION
Identification of tumor malignancy is essential for
cancer diagnosis, and determines further clinical
therapeutic decision-making [1]. Currently, tissue
biopsy is the gold standard for most malignant tu-
mor identification, which involves complex and in-
vasive procedures that can cause great discomfort
to patients and potentially increase the risk of dis-
tant metastases [2]. Blood biomarker-based liquid
biopsy has emerged as a simple and minimally in-
vasive alternative to tissue biopsy [3], although the
small differences in the expression levels of biomark-
ers between cancer patients and healthy individuals
restrict its detection accuracy [4]. Furthermore, nei-
ther tissue biopsy nor liquid biopsy can achieve real-
time spatiotemporal detection of biomarkers in liv-
ing systems.

With the development of molecular imaging
probes, non-invasive medical imaging modalities,
such asmagnetic resonance imaging (MRI), fluores-
cence imaging (FI), computed tomography (CT)
and ultrasound, have been widely investigated for
cancer diagnosis [5–8]. However, benign and ma-
lignant lesions may display similar MRI signals due
to their similar morphological characteristics, which
lead to the overlap in MRI contrast enhancement
kinetics [9,10]. FI often fails to reveal anatomical
details in vivo due to the limited tissue penetration
of light, making it merely available to assist ma-
lignancy identification during surgery [6,11]. CT
and ultrasound are typically based on the morpho-
logical differences between benign and malignant
lesions, leading to intra- and inter-reader variabil-
ity, as well as high false positive or negative rates
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[12–15]. In fact, due to the intrinsic limitations of
each imaging modality, the development of imag-
ing strategies that can achieve sensitive and accu-
rate identification of tumor malignancy is extremely
challenging.

By rationally integratingdifferent imaging agents,
nanoprobes can be tailored to have versatile proper-
ties for multimodal imaging, which could compen-
sate for the weaknesses of each imaging modality
[1,16,17]. FI brings the capability to identify tumor-
associated biomarkers with high sensitivity [18–20].
MRI is a powerful technique capable of acquiring
structural and anatomical details of tumorswith high
spatial resolution, and it can reinforce the utility of
FI by providing anatomic correlation to the func-
tional information provided by FI [21,22]. Consid-
ering the unique advantages of each imaging modal-
ity, the complementary combination of MRI and FI
modalities is especially promising for tumor diagno-
sis [23–25]. However, to the best of our knowledge,
multimodal-imaging-based high-performance imag-
ing and identification of tumor malignancy are thus
far not realized due to the lack of rationally designed
probes.

Considering that necrotic cell death and overex-
pressed potassium ion (K+) channels aremajor hall-
marks of malignant tumors [26–29], but not benign
ones, the extracellular K+ concentration ([K+]ex)
is significantly elevated in the malignant tumor mi-
croenvironment (∼40 mM) compared to that of
benign tissue (∼5 mM) [30,31]. Herein, we con-
ceive an inspired non-invasive imaging strategy to
detect tumors and simultaneously identify tumor
malignancy by using a K+-sensitive, ‘AND’-logic-
gate-based MRI-FI dual-mode nanoprobe, termed
KDMN.The AND gate is a programmable Boolean
logic device typically used in computer science,
which could also be utilized to process two orthog-
onal inputs to produce a specific single output for
complex biological targets [32–35].The KDMN in-
tegrates MRI-based examination of anatomical de-
tails with FI-based detection of [K+]ex levels at the
region of interest, enabling sensitive tumor imaging
and malignancy identification in a single workflow.
Moreover, the AND logic gate of a KDMN enables
the self-confirmation ofMRI andFI results to ensure
the accuracy of the diagnosis.

RESULTS
Synthesis and characterization of KDMNs
The KDMNs were prepared by loading commer-
cial K+ indicators (Asante Potassium Green-2
tetramethylammonium (TMA+) salt, APGs)
into the hollow cavities of magnetic mesoporous

silica nanoparticles to acquire dual-mode imaging
nanoprobes (DMNs), which were further wrapped
with a K+-selective membrane assembled by three-
dimensional (3D) tripodal ligands (1,1,1-tris{[(2′-
benzyl-aminoformyl)phenoxy]methyl}ethane)
(Fig. 1a and Supplementary Fig. 1).The as-prepared
KDMNs are highly uniform (Fig. 1b–d), with a
hydrodynamic size of 128.5 ± 20 nm and surface
charge of −31.8 mV (Supplementary Fig. 2).
Energy-dispersive X-ray spectroscopy (EDS) ele-
mental line scanning shows that the carbon element
signal derived from the 3D ligands is present in a
KDMNbut not in aDMN(Fig. 1e and f), indicating
the successful assembly of the membrane on the
surface of KDMNs, which is also verified by Fourier-
transform infrared spectra and thermogravimetric
analysis (Supplementary Fig. 3).

We next evaluated the dual-mode imaging
performance of KDMNs. The filter membrane
of KDMNs can selectively permit the passage of
K+ while ensuring that other cations, especially
sodium ions (Na+), do not enter the hollow cavity
to activate APGs [36–38], since Na+ may bind
the aza-crown of APG to induce a false positive
fluorescence signal [39]. According to the molec-
ular dynamics simulation results, the binding
energy of K+ to the pore of the filter membrane is
∼−227 kJ mol–1, which is much lower than that
of Na+ (3.2 kJ mol–1), making K+ energetically
favorable for passing through the filter membrane
(Fig. 1g). X-ray photoelectron spectroscopy of
KDMNs treated with K+ and Na+-containing
solution reveals obvious K2P3/2 and K2P1 binding-
energy peaks, but not a Na1s binding-energy signal
(Supplementary Fig. 4), confirming that only
K+ can coordinate with 3D ligands and enter
the membrane pore. Moreover, among a wider
range of different cations, only K+ can significantly
enhance the fluorescence intensity of KDMNs upon
excitation (Fig. 1h). Notably, the KDMNs show the
enhanced changes in fluorescence intensity when
[K+] is increased from 0 to 150 mM, capable of
accommodating the variation range of [K+]ex in
malignant tumors (Supplementary Fig. 5) [30]. In
comparison, free APGs or DMNs display poor K+

selectivity and can be activated by both K+ andNa+

(Fig. 1h and i). The K+-to-Na+ selectivity ratio of
the KDMNs is estimated to be ∼14.1, much higher
than that of free APGs or DMNs (Fig. 1h). These
results demonstrate the excellent selectivity of
KDMNs for FI of K+, which is essential to excluding
interference from other physiological cations, es-
pecially Na+, that are abundant in the extracellular
space. As to MRI contrast capability, KDMNs show
a transverse relaxivity (r2) value of 256.5 mM–1s–1,
completely adequate forT2-weightedMRI (Fig. 1j).
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Figure 1. Designed fabrication and characterization of KDMNs. (a) Schematic illustration of the preparation of KDMNs
with K+-sensitive FI performance and excellent T2 contrast capability. Transmission electron microscopy (TEM) images of (b)
DMNs and (c) KDMNs. (d) Scanning transmission electron microscopy image of KDMNs. High-resolution TEM images and
the corresponding EDS elemental line profiles along the white lines of (e) DMN and (f) KDMN. (g) Schematic illustration of
the interactions between the filter membrane and K+/Na+ (upper figure), and the binding energy of K+/Na+ to the filter
membrane (lower figure). (h) Selectivity of the free APGs, DMNs and KDMNs toward K+ against other physiological cations.
Significant increase in fluorescence intensity of KDMNs is only detected upon addition of 150 mM [K+], showing that the
KDMNs are highly selective towards K+.�F= F− F0, where F is the fluorescence intensity at a given ion concentration, and
F0 is the fluorescence intensity without addition of any cations. Data are presented as mean± s.e.m. (n= 3). (i) Fluorescence
images of the free APGs, DMNs and KDMNs under different ionic environments. (j) T2-weighted MRI images and T2 relaxivity
(slope indicates r2) of KDMNs.

Cellular level [K+]ex monitoring and MRI
using KDMNs
We further examined the performance of KDMNs
in monitoring [K+]ex fluctuation of living cells.

With the increasing of [K+] in the culture medium,
the fluorescence signals of KDMNs show a
corresponding enhancement outside the cells,
indicating that KDMN-assisted [K+]ex detection
can effectively exclude interference from high
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Figure 2. Cellular-level [K+]ex monitoring and MRI using KDMNs. (a) Schematic illustration of cellular-level [K+]ex monitoring
via KDMN-based FI. (b) KDMN-based FI of 4T1 cells in culture mediumwith different [K+] (scale bars= 15μm). (c) Schematic
illustration of cellular level MRI using KDMNs. (d) KDMN-enhanced T2-weighted MRI of 4T1 cells in culture medium with
different [K+]. (e) Schematic illustration of the [K+]ex monitoring using KDMNs upon addition of K+ efflux stimulator or
digitonin to induce cell death. The increase in [K+]ex of 4T1 cells in response to the (f) K+ efflux stimulator and (g) digitonin
were determined by measuring the fluorescence intensity changes of KDMNs (histogram) and quantifying [K+] using an
atomic absorption spectrophotometer (black line). Data are presented as mean ± s.e.m. (n= 3).

intracellular [K+] (Fig. 2a and b, Supplementary
Figs 6a and 7a).TheMRI contrast effect of KDMNs
will not be influenced by the interaction with
K+ (Fig. 2c and d, Supplementary Figs 6b and
7b), guaranteeing congruent MRI performance in
different conditions with varying [K+]. Moreover,
the [K+]ex can be increased by treating the cells
with the K+ efflux stimulator (amixture of nigericin,
bumetanide and ouabain) [40] or with digitonin

to increase plasma membrane permeability and
induce cell death (Fig. 2e) [41]. Upon drug stim-
ulation, the fluorescence intensities of KDMNs in
extracellular space gradually increase over time,
reflecting the increase of [K+]ex followingK+ efflux,
which is also confirmed by [K+] quantification
using an atomic absorption spectrophotometer
(Fig. 2f and g; Supplementary Figs 6c and d, and
7c and d).
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Figure 3. Logic operation of KDMN-based tumor imaging and malignancy identification in living mice. (a) Schematic illus-
tration of KDMN-based AND logic MRI-FI dual-mode imaging for tumor imaging and malignancy identification. (b) The truth
table of the cascaded AND logic gate of KDMN. (c) T2-weighted MRI images of mice bearing malignant or benign xenografts
before and after i.v. injection of KDMNs. (d) [K+] in TIFs of malignant and benign tumors determined by ICP-MS. Data are
presented as mean ± s.e.m. (n= 3). Data were compared using unpaired two-tailed Student’s t-tests. ∗∗∗P= 0.000202. 3D
MRI images, T2-weightedMRI images, MRI-FI merged images and H&E-stained images (scale bar= 500μm) of mice bearing
(e) malignant and (f) benign xenografts at 1 h after the systemic administration of KDMNs.

Logic operation of KDMN-based tumor
imaging and malignancy identification
The excellent dual-mode imaging performance of
KDMNs encouraged us to introduce the highly
programmable logic device into the process of tu-
mor imaging and malignancy identification. For the

Boolean logic device of a KDMN, the first level of
the cascaded logic circuit is composedof twoparallel
‘YES’ gates based onKDMN-enhancedMRI and FI,
whose outputs are further appointed as the inputs
of the second-level AND logic operation (Fig. 3a
and b). On the one hand, the KDMN-enhanced
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MRI-based YES gate outputs 1 in the presence of tu-
mors; on the other hand, in the K+ rich extracellular
environment of malignant tumors, the KDMNs can
trigger a significant fluorescence signal enhance-
ment and give an output 1 in the FI-based YES
gate. The final output of the logic gate, which is the
diagnostic result, signals a malignant tumor only if
the second-level AND gate outputs 1.This cascaded
AND logic operation enables a self-confirmation of
dual-mode imaging results acquired from KDMN-
enhanced structural MRI and functional FI, and
thus has the potential to bring the accuracy of tumor
malignancy identification to a higher level.

To demonstrate the capability of KDMNs to de-
tect tumors and simultaneously identify tumor ma-
lignancy, we further evaluated the imaging perfor-
mance of KDMNs in mice bearing malignant 4T1
or benign human uterine leiomyoma xenografts.
KDMN-based FI is effective in imaging [K+]ex
change at tumor sites but lacks anatomical informa-
tion,whileKDMN-enhancedMRIoffers anatomical
imageswithhigh soft-tissue resolution that can effec-
tively overcome the intrinsic limitations of FI [25].
After intravenous (i.v.) injection, KDMNs firstly
confer attenuated T2-weighted MRI signals at the
sites of both malignant and benign tumors, which
helps obtain the anatomical location and morpho-
logical information of tumors, and give an output
1 in the MRI-based YES gate (Fig. 3c and Supple-
mentary Fig. 8a). Next, we isolated tumor intersti-
tial fluids (TIFs) of the malignant 4T1 xenograft
and the benign uterine leiomyoma [30], and com-
pared their [K+] levels. The results show that [K+]
in TIFs from malignant tumors is much higher than
that in benign tumors (Fig. 3d), which is consistent
with theoretical prediction, demonstrating the feasi-
bility of K+ as a biomarker for malignancy identifi-
cation. Considering that the extent of tumor necro-
sis has a positive correlation with the aggressive
pathological characteristics of the tumor (such as
tumor size, stage, grade and so on) [42], we fur-
ther compared the [K+]ex in malignant 4T1 tu-
mor xenografts of different sizes, and found that
the level of [K+] in TIFs increases with the tu-
mor size (Supplementary Fig. 9). Moreover, in vivo
FI of [K+]ex showed a significant signal enhance-
ment for malignant tumors after KDMN adminis-
tration, thus generating output 1 in the FI-based
YES logic operation (Fig. 3e, and Supplementary
Figs 8b and 10). This was in stark contrast to the
benign tumors with nearly no changes in fluores-
cence signal after KDMN administration (FI out-
put=0) (Fig. 3f, SupplementaryFigs 8b and10). In-
ductively coupled plasma mass spectrometry (ICP-
MS) results further verified the tumor accumula-

tion of KDMNs (Supplementary Fig. 11). More-
over, as shown in hematoxylin and eosin (H&E)
staining, necrotic regions that would cause elevated
[K+]ex are only present in malignant tumors but
not in benign ones (Fig. 3e and f), which is in line
with their differences in FI signals after KDMN in-
jection. As for the spleen with locally high [K+]ex,
the FI-based logic gate generates the output 1 due
to the enhanced fluorescence signal after the ad-
ministration of KDMNs, while the MRI-based logic
gate produces the output 0 because there is no tu-
mor lesion (Supplementary Fig. 12). Only if both
dual-mode imaging based YES logic gates output 1,
the cascaded AND logic operation will safely out-
put a diagnostic result of malignant tumor. To sum-
marize, KDMN-enabled MRI and FI of [K+]ex,
which is integrated via a cascaded AND logic opera-
tion, can simultaneously achieve tumor imaging and
malignancy identification with high sensitivity and
accuracy.

Diagnostic accuracy verification of
KDMN-based AND logic dual-mode
imaging
The imaging performance of KDMNs via direct in-
tratumoral injection was investigated to further ver-
ify the accuracy of the AND logic imaging strategy.
The T2-weighted MRI signals decrease sharply in
both malignant and benign tumors, leading to en-
hanced imaging contrast and generating outputs 1 in
the MRI-based YES gate (Fig. 4a and Supplemen-
tary Fig. 13a). Consistent with the imaging results
of i.v. administration, only the fluorescence signals
for malignant tumors exhibit significant enhance-
ment after intratumoral injection of KDMNs, giving
rise to output 1 in the FI-based YES gate (Fig. 4a
and Supplementary Fig. 13b). During the second-
level AND logic operation, the diagnostic result cor-
responds to malignant tumors (final output = 1)
when the outputs from the MRI- and FI-based YES
logic gates are both 1 (Fig. 4b). Compared with
KDMNs, freeAPGs show significantly increased flu-
orescence signals in both malignant and benign tu-
mors (Fig. 4a), indicating a failure to identify tumor
malignancy. This is due to the poor K+ selectivity
and rapid cellular uptake of free APGs (Fig. 1h and
i, Supplementary Fig. 14), which results in severe
interference from extracellular Na+ and intracellu-
lar K+. Therefore, we believe that KDMN-based
MRI-FI dual-mode imaging and the correspond-
ing cascaded AND logic operation is a plausible
strategy for accurate tumor imaging andmalignancy
identification.
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DISCUSSION AND CONCLUSION
Thesensitive imaging and accuratemalignancy iden-
tification of tumors are significant in clinical cancer
management [1]. Presently, plenty of approaches
have been developed to evaluate tumor malignancy.
For instance, tissue biopsy with high detection sen-
sitivity plays an important role in malignant tumor
identification, but its complex and invasive sampling
process can cause great discomfort to patients and
potentially increase the risk of distant metastases
[2].On the other hand,medical imaging approaches
such asMRI, CT and ultrasound have been used for
non-invasive tumor diagnosis. Nevertheless, most

of these current imaging strategies often depend
on imaging probes that lack the level of specificity
needed to identify tumor malignancy [9,10,12–15].
Therefore, thus far, to the best of our knowledge, no
strategy can realize real-time tumor imagingwhile si-
multaneously identifying the malignancy. There re-
mains a need to develop high-performance imaging
probes that can improve the sensitivity and accuracy
of malignant tumor imaging.

Herein, we reported a K+-sensitive AND-gate
dual-mode imaging probe, KDMN, that can achieve
simultaneous tumor imaging and malignancy
identification. With the help of KDMNs, detailed
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anatomical information obtained by MRI, and
K+-sensitive fluorescence signals detected by
FI, can work in an AND logic gate, and are both
required to produce an accurate diagnostic result.
Our results show that KDMN-enhanced MRI
confers attenuated signals at the tumor sites for
effective tumor detection regardless of systemic or
local administration. Meanwhile, KDMN-based
K+-sensitive FI shows a significant difference in
fluorescence signals between malignant tumors and
benign ones because there is an elevated [K+]ex
level in the malignant tumor microenvironment
[30,31].Moreover, the integration of KDMN-based
MRI and FI via the cascaded logic circuit suc-
cessfully achieves self-confirmation of dual-mode
imaging results, thus allowing more reliable and
accurate imaging of tumor malignancy.

Overall, the K+-sensitive AND-gate imaging
probe presented here provides a paradigm for de-
signing high-performance contrast agents that inte-
grate the complementary strengths of MRI and FI
modalities for highly accurate imaging of tumor ma-
lignancy. The level of [K+]ex in malignant tumors
is supposed to be related to the subgroups and de-
velopment stages of tumors. Generally, themore ag-
gressive the tumor, the higher [K+]ex is, as there is
a positive correlation between necrosis and the ag-
gressive pathological characteristics of tumors [42].
The K+-sensitive AND-gate imaging probe can be
used to study the factors that influence the [K+]ex of
tumors, and has great potential to monitor dynamic
tumor progression, therapy and prognosis.

Furthermore, the conceptual advancement of
this logic system can be readily extended to other tu-
mor biomarker-activatable FI-MRI bimodal probes
to obtain both the structural and functional infor-
mation of tumors for improved diagnostic efficacy.
Despite the success of simultaneous MRI and FI
in preclinical studies [43], their clinical application
still faces technical challenges, such as the lack of
commercially available equipment integrating MRI
and FI, which certainly requires more industrial
effort. Further development of tissue-penetrating
near-infrared dual-mode AND-gate imaging probes,
e.g. by integrating upconversion nanoparticles and
magnetic nanoparticles, would allow the highly sen-
sitive imaging of K+ level in deep-seated tissues
with reduced background signal noise [37]. Once
immobilized with specific targeting ligands, these
imaging probes shall have broad prospects for pre-
cise imaging and monitoring of not only malignant
tumors, but also many other K+-related diseases in-
cluding neurological disorders and kidney diseases
[38,44]. Moreover, metal ion dyshomeostasis is as-
sociated with the progression of various major dis-
eases [45,46]. Recently, ion channel detection and

regulation have drawnwide attention formedical di-
agnosis and therapy [47–49]. Based on the estab-
lished chemical synthetic approach and future de-
velopment of other specific ion-permeable mem-
branes, it will be practical to further engineer AND-
gate dual-mode imaging probes to respond to other
metal ions, selectively capturing target ions with
well-balanced energetic costs andgains,whichmight
create a new era for developing next-generation
imaging probes for highly sensitive and accurate
diagnosis of a wide range of ion-dyshomeostasis-
associated diseases.

METHODS
Synthesis of KDMNs
For the synthesis of iron oxide nanoparticles
(IONPs), a mixture of iron-oleate complexes
(1.8 g) and oleic acid (0.28 g) was added into 10 g
of eicosane, which was degassed at 100◦C and then
heated up to 343◦C under an inert atmosphere.
The reaction was maintained at this temperature
for 30 min. After cooling the resulting solution to
room temperature, acetone was added to precipitate
nanoparticles. The collected precipitation was
dispersed in 10 mL of chloroform for further use.

The magnetic mesoporous silica nanoparticles
were synthesized using a modified Stoöber process;
0.5 mL of IONPs (4 mg mL–1) was added dropwise
to 5 mL of deionized (DI) water containing 0.1 g of
cethyltrimethylammonium bromide (CTAB). The
mixture was sonicated for 30 min and then heated
to 60◦C to evaporate the chloroform. It was then di-
luted with 45 mL of 0.016 M ammonium hydrox-
ide. Once the mixed solution reached 70◦C, 0.5 mL
of tetraethyl orthosilicate and 3 mL of ethyl ac-
etate were added immediately and the mixture was
kept at that temperature for 3 h under vigorous stir-
ring. The resulting products were collected by cen-
trifugation and washed three times with ethanol.
Then, the obtained nanoparticles were dispersed in
50mLmethanol solution (containing 1wt% sodium
chloride) and stirred overnight at 60◦C to extract
remnant CTAB. After washing with DI water, the
magnetic mesoporous silica nanoparticles were re-
dispersed in 5 mL of DI water.

To prepare DMNs, 1 mL of 10 mg mL–1 mag-
netic mesoporous silica nanoparticles and 2 mL of
0.5 mg mL–1 free APGs in DI water were mixed
and stirred for 24 h at room temperature. The as-
synthesized DMNs were collected by centrifugation
andwashedwithDIwater, then dispersed in 5mLof
acetonitrile solution for further use.

3D tripodal ligands were prepared as fol-
lows: a mixture of N-benzylsalicylamide (3.4 g),
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anhydrous potassium carbonate (2.5 g) and
anhydrous dimethylformamide (25 mL) was
heated to 90◦C, followed by the addition of
1,1,1-tris(p-tosyloxy-methyl)ethane (2.9 g) and
2-aminoterephthalic acid (0.3 mL). Then, the
mixture was stirred for 12 h at 90◦C. After cooling to
room temperature, the reaction mixture was poured
into 200 mL of DI water. The as-synthesized solid
products were subjected to a silica gel column using
petroleum ether-ethylacetate (2 : 1) as eluent to get
3D ligands as a white solid.

To synthesize KDMNs, 2-mL acetonitrile solu-
tion containing 20 mg of 3D ligands was added
into a 5-mLDMNacetonitrile ultrasonic suspension
(2 mg mL–1) under vigorous stirring.The mixed so-
lution was maintained at 50◦C for 10 min, followed
by annealing at room temperature for 12 h. The re-
sulting nanoprobes were collected by centrifugation
and washed with DI water twice, then dispersed in
2 mL of DI water.
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