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Continuing the development of the FFLUX, a multipolar polar-

izable force field driven by machine learning, we present a

modern approach to atom-typing and building transferable

models for predicting atomic properties in proteins. Amino

acid atomic charges in a peptide chain respond to the substi-

tution of a neighboring residue and this response can be cat-

egorized in a manner similar to atom-typing. Using a machine

learning method called kriging, we are able to build predic-

tive models for an atom that is defined, not only by its local

environment, but also by its neighboring residues, for a mini-

mal additional computational cost. We found that prediction

errors were up to 11 times lower when using a model specific

to the correct group of neighboring residues, with a mean

prediction of �0.0015 au. This finding suggests that atoms in

a force field should be defined by more than just their imme-

diate atomic neighbors. When comparing an atom in a single

alanine to an analogous atom in a deca-alanine helix, the

mean difference in charge is 0.026 au. Meanwhile, the same

difference between a trialanine and a deca-alanine helix is

only 0.012 au. When compared to deca-alanine models, the

transferable models are up to 20 times faster to train, and

require significantly less ab initio calculation, providing a prac-

tical route to modeling large biological systems. VC 2016 The
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Introduction

The 20 natural amino acids can be mixed and matched to create

proteins performing all manner of biological function. In essence,

peptide chains should be relatively simple to model given their

repeating backbone and tendency to form predictable second-

ary structures. However, in reality, a protein becomes a web of

interatomic interactions, many contributing to secondary and

tertiary structures that determine protein function. Force fields

constructed from harmonic potentials, properly parameterized,

have been a popular approach to tackle this degree of complex-

ity. For each type of interatomic interaction, a new potential can

be constructed but one that may not be applicable outside of

the data used to parameterize it. Meanwhile, (re)parameteriza-

tion is a costly process that does not guarantee the improve-

ment of a force field’s predictive power.

In practice, difficulties in modeling peptides can begin at a

more fundamental stage. A single atom is commonly atom-

typed by considering its immediate atomic neighbors, ignoring

neighboring (amino acid) residues. However, a given atom

does experience significant charge transfer and polarization

effects from the neighboring residue, neither of which is well-

handled by traditional force fields. It is known that neighbor-

ing residues[1] have a significant effect on chemical shift, which

is commonly related to atomic charge.[2,3] For example, neigh-

boring amino acids in catalytic triads are often ignored but,

surprisingly, these residues are strongly conserved in Nature

and are important to the function and structure of the active

site.[4] Surprisingly little effort has been made to show the

effects of neighboring residues on the atomic charges used so

confidently by modern force fields.

The above concerns are likely to be important to future devel-

opments of popular force fields. For example, CHARMM’s[5]

atom-typing process has become increasingly sophisticated but

is still focused solely on neighboring atoms with little awareness

of nearby residues.[6] Recent improvements to CHARMM’s han-

dling of peptides[7] and peptoids[8] have involved reparameteri-

zations of the backbone and torsional parameterizations of the

sidechain and amide group. AMBER’s[9] ubiquitous “GAFF”

parameter set has demonstrated success but also tends to suffer

from a lack of polarization,[10,11] charge transfer and poor elec-

trostatic interaction energies[12] such as hydrogen bonding,

which is in part due to parameterized charges lacking anisotro-

py.[13] GAFF defines a given atom’s atom-type by its element

and its immediate, bonded neighbor atoms. Thus, an atom-type

is a specific atom in a small molecular fragment. In both AMBER

and CHARMM, more accurate atomic charges can likely be

gained through consideration of neighboring resides.

Of course, these oversights linger on due to the great chal-

lenges posed by overcoming them. Earlier work in our

group[14] studied the transferability of the intra-atomic energy

of topological atoms in sequences of five amino acids (penta-

peptides), and three amino acids (tripeptides), with that of

atoms in a single amino acid. This work was carried out for

seven peptides built from the same amino acid, and
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concluded that intra-atomic energies in tripeptides are repre-

sentative of those in pentapeptides. Hence, it is sufficient to

use tripeptides for constructing atom-types that can be safely

transferred to larger systems such as proteins themselves.

Even just considering an amino acid’s immediate neighbors,

there are 8000(520 3 20 3 20) possible natural tripeptide

combinations, making handling each of these combinations

explicitly quite impractical. While some tripeptide combina-

tions are common, it may be true that others seldom occur,

which would guide atom-typing. Unfortunately, due to the

meagre amount of data available, it is difficult to draw mean-

ingful insight into the 8000 possible tripeptides and, more dif-

ficult still, to group the tripeptides in a meaningful way.

Indeed, even when considering single amino acids, there is dis-

agreement as to their relative frequencies in proteins[15–19]

(Table S1 of the Supporting Information). It is our hope that

neighboring amino acids can be grouped in terms of their

influence on a central residue and that atom-types will emerge

from these groupings. Amino acids are commonly discussed as

being functionally related to one another, such as neutral ami-

no acids, charged amino acids, or aromatic amino acids.[20]

Using chemical intuition to group amino acids is useful for an

isolated amino acid but is not so simple when considering

how these same amino acids might affect a neighboring resi-

due and how atom-typing might reflect that effect. Thus,

atom-typing and parameterization is often accomplished by

considering experimental data (often crystallographic) but

these are not always available or even reliable.[21] Therefore,

we suggest discerning amino acid groupings based on ab ini-

tio calculation of these neighboring effects rather than relying

on chemical intuition alone.

It is with these considerations in mind that we continue the

development of FFLUX,[22] which is a multipolar force field

that applies machine learning to properties derived from

quantum chemical topology[23,24] (QCT). The latter approach

originates from the “Quantum Theory of Atoms in Molecules”

(QTAIM).[25,26] Changes in molecular configuration cause

changes in the electron density, which in turn affect atom-

centred multipole moments. These higher multipole moments

(i.e., everything beyond the monopole moment or point

charge) capture the anisotropy of the electron density and

hence the correct polarization of the system.[27,28] In the past

we have shown FFLUX to be applicable to water clusters,[29,30]

methanol,[31] N-methylacetamide[32] and all amino acids[33,34]

including aromatic amino acids,[35] alanine helices,[36] and car-

bohydrates.[37] In previous publications, we have explored the

concept of transferability using the machine learning method

kriging[38] for small molecules and now turn our attention

toward the challenge of predicting interatomic electrostatic

interaction in proteins. In such systems, polarization has prov-

en to be an important factor in hydrogen bonding[39–43] and

structural determination,[44–46] and many groups work to incor-

porate these effects into modern force fields.

Using QCT, we can partition the electrostatic (and non-elec-

trostatic) energy of a chemical system into (both physically

and chemically) meaningful contributions, without invoking a

reference electron density, parameters or molecular orbitals

explicitly. QCT defines (topological) atoms with well-defined

boundaries as shown for trialanine (AAA) in Figure 1. The so-

called interatomic surfaces separate the atoms, without over-

lap or gaps, that is, in a space-filling manner. All space within

the atomic boundary is said to “belong” to the atom and so

does the electron density. Atomic properties are then obtained

by integration over each atomic volume. These atomic proper-

ties are highly sensitive to the extended chemical environ-

ment, making them potentially difficult to generalize to other

systems. However, it has been shown in our past publications

that these atomic charges can be related to molecular geome-

try using the machine learning method kriging.

It is important to put the QTAIM (and hence QCT) atomic

charge briefly in context. We have repeatedly made clear that

the QCT atomic charge has not been designed[47,48] to repro-

duce an atomic electrostatic potential. Instead, we have always

seen charge as the first term of a multipolar expansion of the

electrostatic potential or interaction. Many years ago, we have

proven[49,50] that with a sufficient number of terms one can

exactly reproduce an atomic electrostatic potential. Neverthe-

less, QTAIM charges are still sometimes criticized for failing to

reproduce the electrostatic potential by themselves, although

at long-range even charges alone suffice to obtain the exact

electrostatic interaction.[51] QTAIM charges have also been dis-

paraged for being too large but these criticism has been

rebutted.[52]

In a recent publication,[36] we showed that kriging models

for an atom within an alanine unit in deca-alanine can be

generalized to predict properties on any atom within the

helix. By taking a fragment of a molecule (such as that in the

bottom panel of Fig. 1), a kriging model can be made that

predicts charges for an atom in that fragment. If this given

fragment is common to many molecules, such as an amino

acid in a protein, then the model can be reused in a very

Figure 1. Superposition of the molecular graph and topological atoms in

(top panel) “trialanine” (AAA, 42 atoms) and (bottom panel) the central frag-

ment (10 atoms). The space-filling nature of the atoms makes it easy to iso-

late molecular fragments. The hydrogen atom that is bonded to the Ca is

hidden in both panels. [Color figure can be viewed at wileyonlinelibrary.com]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2017, 38, 336–345 337

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


large number of chemical systems. For example, the tripeptide

Ala-Ala-Ala (termed “AAA”) can have its central alanine frag-

ment (Fig. 1, bottom) isolated and models created for it. In

theory, these models could then predict alanine charges in

the tripeptide Val-Ala-Val (VAV). This generalization is the basis

of transferability within FFLUX and should allow for large sys-

tems to be modeled. Unfortunately, an atom’s properties

change significantly as its extended environment changes.

Hence, an alanine neighboring a tryptophan might differ sig-

nificantly from one neighboring a valine, thus requiring a sep-

arate kriging model. However, models can conceivably be

shared if multiple amino acids are proven to have similar

influence as neighbors.

In this work, we use FFLUX to investigate three questions

important to transferability in FFLUX and force fields at large:

1. Can the natural amino acids be grouped according to

their influence on a neighboring residue?

2. Can the influences of neighboring amino acids be

accounted for using kriging machine learning?

3. What is the minimum size of a peptide that can be used

to train kriging models for predicting atomic charges in

a polypeptide chain?

By answering these questions, we can define a methodology

for transferability that is sensitive to both local and extended

chemical environments while maintaining the simplicity of the

standard understanding of atom-typing in proteins.

The current work involves the ab initio calculations of more

than 22,000 peptide chains and their QTAIM properties, and

builds on past work to develop the FFLUX force field.

Methods

Definition of the datasets

Three data sets are described here, each with a specific pur-

pose. The data sets are illustrated in Figure 2 and outlined

below, followed by general computational details.

Data Set 1. A set of tripeptides is created and “cleaned” in

three dimensions using ChemSketch, setting all bond lengths

and angles to reference equilibrium values. Each tripeptide

consists of a chain of two alanines and one additional amino

acid, as shown in Data Set 1 in Figure 2. Thus, every tripeptide

in Data Set 1 differs from the others only by the sidechain of

its third residue. This data set will show how different amino

Figure 2. Two-dimensional illustrations of each the three types of peptide data set. Schematic images of molecules are not representative of their actual

geometries. Carbon atoms (black) are not labeled and hydrogen atoms are not shown. [Color figure can be viewed at wileyonlinelibrary.com]
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acid residues (i.e. the third residue) affect the properties of

atoms in the central, neighboring residue.

Data Set 2. Another tripeptide, VAV (valine-alanine-valine), is

created and geometry-optimized by the program GAUSS-

IAN09.[53] The resulting energy minimum is used as a template

from which hundreds of distorted geometries are generated

through the molecule’s normal modes of vibration based on

in-house methodology.[37,54] No bond distance or valence

angle is distorted beyond 615% of its original value in the

minimum energy geometry. This tripeptide (VAV) can then be

converted to other tripeptides by substituting relevant side-

chains to create the tripeptides VAA, AAA, GAA, and GAG. Fur-

thermore, three tripeptides, KAK, YAY, and WAW (Lysine (K),

Tyrosine (Y), and Tryptophan (W)) are created in the same

manner. Data Set 2 will help determine whether a kriging

model can predict the properties of a central alanine when

the neighboring residues are (or are not) part of the same

group of amino acids as those in the training set.

Data Set 3. A final set of molecular geometries are based on

a 310 alanine helix taken from the Brookhaven Protein Data

Bank (PDB) (entry IL36.pdb). Hydrogens were appended to the

helix in the appropriate places using the program GAUSSVIEW

with default bond angles and lengths before geometry-

optimizing it using GAUSSIAN09 at HF/6-31 1 G(d,p) level. A

single alanine unit can be cut out of the helix and again com-

pleted with the mandatory additional hydrogens to create a

single alanine with a local geometry identical to that of an ala-

nine in the helix. The same process creates tripeptides. A set

of 2000 single (capped) alanine molecules and (capped) ala-

nine tripeptides is created from the 2000 helix geometries.

This data set should establish which minimum size of molecule

must be trained for to accurately model much larger peptide

chains.

Ab initio treatment and machine learning of data sets 1, 2,

and 3

The program GAUSSIAN09 calculated all wavefunctions at HF/

6-31 1 G(d,p) level, which proved[55] to be an excellent com-

promise between CPU time and accuracy. This fact is taken

advantage of for the more than 22,000 wavefunctions calculat-

ed in this work, such that we do not have to invoke the

B3LYP/apc-1 level, which we have used in past publications.

The diffuse functions on the heavy atoms occurring in the 6-

31 1 G(d,p) basis set help in accurately portraying the electro-

statics of biological systems. We note that hydrogen bonds do

exist in the studied molecules and would ideally be included

in a final atom-typing project.

For Data Sets 2 and 3, the Cartesian coordinates are con-

verted to a set of 3N-6 non-redundant descriptors of the

geometry (termed “features”), where N is the number of atoms

in the system. Features are then removed from the data set if

they describe an atom outside of the desired fragment. For

example, Figure 1 shows a fragment surrounding the alpha

carbon (Calpha) of a central alanine residue, which contains

only 10 of the 42 atoms in the tripeptide, thus reducing the

data set from 3 3 42 2 6 5 120 features to 3 3 10 2 6 5 24

features. Not only does this reduction lead to faster training

times but also means that the resulting model can be used for

any other molecule containing this fragment, which includes

any tripeptide with a central alanine. These fragments are

described in full in a previous publication.[36]

Multipole moments are calculated for all atoms using the

program AIMAll.[56] The multipole moments give a complete

description of the ab initio molecular electron density. The

multipole moments are formulated in the non-redundant

spherical tensor formalism, up to the hexadecapole moment.

Hence, there are 1 1 3 1 5 1 7 1 9 5 25 moments for each

atom, making up 25N values in total for a system with N

atoms. All atomic multipole moments are rotated (using the

method of Su and Coppens[57]) to their respective atomic local

frames[32] (ALFs) and all values in the database are normalized.

An ALF is centred on an atom and the axes are oriented

according to the position of that atom’s highest priority bond-

ed neighbors (according to Cahn-Ingold-Prelog rules). Thus, a

given atom sees its environment independently of the mole-

cule’s rotation. The normalization process is not strictly

required for kriging but is sensible when treating angles and

distances on the same footing within a single model. The

database is filtered for “undesirable” entries where geometries

with large integration errors (L(X)) are filtered alongside those

whose molecular net charge deviates significantly (>0.001 au)

from the desired value (of zero for the neutral tripeptides used

in this article). The remaining database entries (typically �1500

remain from an original set of 2000) are split into a “training

set” and a “test set.” The tripeptides in this work each reserve

800 examples to training kriging models and the remaining

examples are used for testing purposes.

Machine learning

The machine learning method “kriging”[38] is used to create

models from the training data that can predict multipole

moments using molecular geometries. Here we follow the

method laid out by Jones et al.[58] The kriging method is given

fully in earlier works[59] and so only its key concepts are cov-

ered here. The kriging method creates a relationship between

a molecule’s features (geometry) and output (multipole

moments), ŷ x�ð Þ, which can be expressed as sum of the global

term, l̂, and a so-called error (the summed term) as shown in

eq. (1),

ŷ x�ð Þ5l̂1
Xn

i51

ai � u x�2xi
� �

(1)

where ai is the ith element of a5R21 y21l̂ð Þ where R is a

matrix of error correlations between training points, and 1 is a

column vector of ones. Thus, we take into account the correla-

tion between the prediction example and all training exam-

ples, and assign importance to these correlations accordingly

with u. Indeed, if the prediction example is very close to a

pre-existing example in the training set, both examples are

highly correlated and we can expect that they share a similar
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output value. In fact, the kriging predictor passes exactly

through training points and a “perfect” prediction is achieved

when attempting to predict the outputs for a known geome-

try. The prediction of any given point is greatly dependent on

the training points that directly surround it in the feature

space rather than those at increasing distances from the pre-

diction point. If we cannot find a well-correlated example in

the training set, the output will tend toward the global term

l̂. This is a useful consequence of the kriging method when

applied to chemical systems, giving sensible mean multipole

moment values when a good prediction cannot be made.

Some studies present kriging as a method for making good

predictions on sparse data sets.[60] Hence, it is not necessarily

true that poorly correlated examples are unfit for use in

modeling.

Finally, we can calculate the error between predicted multi-

pole moments and their original (ab initio) counterparts. The

error of a single atomic multipole moment is given in eq. (2),

Qerror
lm 5

��Qorig
lm 2Qpred

lm

�� (2)

where Qlm is a moment of rank l and component m. The rank

and component of a multipole moment indicates its shape

and can be considered akin to typical atomic orbitals. A rank-0

multipole moment can be considered analogous to an s-orbit-

al, rank-1 moments to p-orbitals, and so on. Each rank consists

of 2l 1 1 components (m) that take integer values between –

l and 1l. Thus l 5 0 is a monopole and consists of a single

moment whereas l 5 1 is a dipole consisting of 3 moments

(where m 5 21, 0, and 1) and these are analogous to p-orbi-

tals: px, py, and pz. The focus of this work revolves around the

atomic charge Q00 (l 5 m 5 0) because it features most in mul-

tipolar electrostatics. Put more precisely, when going through

all the possibilities of two multipole moments interacting with

each other, the atomic charge (i.e., the zeroth moment) is

combined with most other multipole moments (of higher

rank). Second, given the long-range nature of charge-charge

interactions they perpetuate over the longest distances, and

hence, the largest number of interatomic interactions will still

generate sizeable electrostatic (charge-charge) energies. More-

over, the QTAIM charges have a chemical meaning[47] unless

they are interpreted naively, if not erroneously.[61] The error

involved with the reproduction of atomic charges is used to

assess the quality of a kriging model and thus the success of

exploited transferability.

Results

Question 1: on the grouping of amino acids

We begin by considering the question: Can the natural amino

acids be grouped according to their influence on a neighboring

residue? The answer to this question can mean the difference

between needing to treat each of the 8000 possible tripeptide

combinations as a unique case and treating the complete set

of natural tripeptides as just a handful of different “groups”

where each group is a collection of different tripeptides that

have similar properties. Thus, a tripeptide “group” draws paral-

lels to an atom’s “type” in common force fields where an atom

type is a collection of similar atoms that can share a single

model or set of parameters.

Twenty tripeptides are constructed, as illustrated in Data Set

1 of Figure 2. All tripeptides (termed “AAX”) have identical

geometries except for the third residue, which is substituted

for each natural amino acid (the “X” in “AAX”). The effect on

the central residue of each substitution can be measured as a

comparison with the unsubstituted “AAA” tripeptide. Compar-

ing each AAX tripeptide to AAA provides a basis for how we

may group the amino acids when deciding which ones should

share predictive models. Inspecting the atomic monopole

moment (Q00) and the atomic kinetic energy T, we propose

the following simple criteria for grouping the results:

� DQ00< 0.005 au and DT< 10 kJ mol21 then group A.

� DQ00< 0.005 au and DT> 10 kJ mol21 then group B.

� DQ00> 0.005 au and DT< 10 kJ mol21 then group C.

� DQ00> 0.005 au and DT> 10 kJ mol21 then group D.

� Proline is given a group of its own due to conventionally

being considered a unique case because of its ability to

invoke strong structural change to peptide secondary

structure (group E).

Given the above criteria, neighboring residues can be

assigned a group. We generated data for alanine’s Calpha Q00

with 20 different neighboring residues, now represented by four

groups. Thus, we can make four kriging models for alanine’s Cal-

pha Q00, one for each neighboring group. Compared to modeling

a single amino acid, these new models contain information of

the alanine’s neighboring residues and should provide better

predictions of alanine when part of a larger peptide chain. If the

amino acids were not grouped, 20 highly specific models could

be constructed, instead. However, we aim at striking a balance

between accuracy, speed and ease of use in FFLUX.

The proposed grouping makes intuitive sense in most cases.

It is not surprising that glycine, valine, alanine and isoleucine

share a group (group A) because their sidechains are of similar

composition. However, it is surprising that phenylalanine is also

present in group A but leucine is not. That said, these data are

based on comparison of single-point (i.e., unoptimized) geome-

tries and may not hold when the geometries are relaxed such

that sidechains increase their ability to interact with neighboring

sidechains. For a final, definitive atom-typing, we suggest a

more exhaustive data gathering and analysis of any present

hydrogen bonds, which may also help to understand the group-

ing. A group consisting of glycine, alanine and valine makes

intuitive sense and is backed up by our data, and so we proceed

with this group (Data Set 2, Fig. 2) as a proof-of-concept.

Question 2: on the influence of neighboring amino acids on

kriging

Data Set 1 has proven that QTAIM properties of amino acids

are sensitive to changes in neighboring residues and can be

grouped accordingly. It is now that we can address our second
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question: Can the influences of neighboring amino acids be

accounted for using kriging machine learning? To answer this,

we must first establish that amino acids within a group share

similar charges and that their responses to geometric change

are similar. Second, it is important to build kriging models that

can predict charges in the presence of amino acid neighbors

of a particular group.

Data Set 2 has the added complexity of a residue being

added to each side of the central alanine residue. It should be

determined whether the side that the residue is added to has

a profound effect, which must be taken into consideration by

the model. The tripeptides in Data Set 2 are a progressive

series where each tripeptide is compared to the next-largest

tripeptide. Residues are added in turn to either side of the

central residue and the change this elicits in the central ala-

nine residue is plotted in Figure 3.

As the plots in Figure 3 deviate from zero, the step between

the two tripeptides means a larger difference in the charge of

the central Calpha. Series around zero difference such as GAG-

GAA and GAA-AAA show that the corresponding tripeptides

are extremely similar to one another (in terms of their effects

on the central Calpha charge). The change in going from VAA

to AAA yields by far the largest change while VAV to VAA also

deviates significantly from zero (although confusingly to the

opposite direction). Changing a valine to an alanine involves

eliminating two methyl groups compared to going from ala-

nine to glycine (eliminating a single methyl group), thus a

larger change is expected. When substituting glycine residues

with alanines, it does not appear to be greatly significant

which side of the central residue the substitution is made to,

nor whether a single or double substitution is made. However,

the change when substituting an alanine with a valine is com-

paratively large. Interestingly, a second alanine-valine substitu-

tion appears to almost completely counteract the effect of the

first alanine-valine substitution. The positive aspect of this test

is that, even at its most extreme, a difference in charge of only

around 0.005 au is observed, although rare (�0.1%) outliers do

exist. These effects are not deemed significant enough to war-

rant different models for valine or models dependent on

which side the substitution occurs. It is important to realize

these changes in charge in the context of the charge’s abso-

lute value, shown in Figure 4.

As the series of tripeptides share the exact same set of local

geometries, their properties can be directly mapped to one

another, geometry-by-geometry. Thus, each geometry number

has five different values for the charge on the central Calpha,

one for each tripeptide in the series GAG, GAA, AAA, VAA, VAV,

differing only in their terminal sidechains. It is evident that the

charge of Calpha depends much on molecular geometry, given

the large range of charges seen with geometric change com-

pared to changes in the terminal sidechains. Given that neigh-

boring amino acids G, A, and V are similar in terms of their

effect on the central residue, it is likely that multiple amino

acid neighbors can be accounted for by the same model.

It remains to be seen whether a kriging model can predict

the central Calpha charges to an acceptable degree of accuracy.

A kriging model will not reproduce charges for AAA perfectly,

even when trained with AAA data. Making the jump to pre-

dicting a different tripeptide’s charges will inevitably incur

some additional error. To further complicate matters, a kriging

model in FFLUX has 3N-6 features where N is the number of

atoms, meaning that two systems with a different number of

atoms do not share the same number of features. Since the

number of features in a kriging model is (at this time) static, a

model cannot be used for multiple different systems without

some modification. The solution is to make the number of fea-

tures identical for each molecule removing features from each

system until a common fragment is found as described earlier

and depicted in Figure 1. Thus, we use fragments for all krig-

ing models unless stated otherwise.

Figure 3. A set of 100 geometries for the tripeptide GAG undergoes a

series of substitutions (GAG, GAA, AAA, VAA, VAV, see Data Set 2, Fig. 2)

and its central alanine’s Calpha charges (Q00, given by the program AIMAll)

are plotted as the change between each substitution. For example, the

green series gives the difference in charges (obtained through ab initio cal-

culation) between the tripeptides AAA and VAA in Data Set 2. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 4. A set of 100 geometries for the tripeptide GAG undergoes a

series of substitutions (GAG, GAA, AAA, VAA, VAV, see Data Set 2 in Fig. 2)

and its central alanine’s Calpha charges (given by the program AIMAll) are

plotted. Each geometry number has a single set of tripeptides (GAG, GAA,

AAA, VAA, VAV) that share an identical backbone geometry. The difference

in charge between geometries can be seen when comparing the results

for different geometry numbers (x-axis) while the difference in charge due

to different terminal sidechains can be seen when comparing tripeptides

of the same geometry number. [Color figure can be viewed at wileyonline-

library.com]
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In Figure 5, a kriging model for predicting the charge of the

central alanine Ca in a tripeptide is created using trialanine

(AAA) data. This model can be used to predict the charge of

alanine Ca atoms in other tripeptides and the prediction errors

give a sense of the transferability of this model. As expected,

the kriging machine learning is able to predict charges for the

GAG or VAV molecule even when only trained using data for

AAA, as both glycine and valine are of the same amino acid

group (i.e., A) as alanine. In fact, predictions for GAG and VAV

are surprisingly better than those for AAA, the system for

which our model was created. When constructing kriging

models of fragments, much of the specificity is lost due to

lack of description of anything beyond an atom’s local geome-

try and so it is conceivable that we obtain lower errors for sys-

tems other than the one specifically trained for.

Meanwhile, predicting a tripeptide that contains amino acids

outside of group A, results in much higher prediction errors,

that is, 4 times higher for tyrosine (YAY) and lysine (KAK), and

11 times higher for tryptophan (WAW), all part of group D.

Creating a model using data from all 6 tripeptides (GAG, AAA,

VAV, YAY, KAK, WAW) lowers group D errors slightly but raises

group A errors significantly (Figure S2 in Supporting Informa-

tion). It is, of course, at the discretion of the force field user as

to how much error is acceptable for their application of the

force field, and this will affect how general their grouping of

amino acids can be. We conclude that smart grouping of ami-

no acids based on their influences as neighboring residues can

lead to transferable models that accurately predict atomic

charges.

Question 3: on minimum peptide size to train kriging

models of polypeptides

In an ideal world, a single amino acid could be representative

of an amino acid in a peptide chain. Unfortunately, the

problem remains that long peptide chains are expensive to

calculate ab initio data for as well as being expensive to train

models for, given their large number of features. It is now per-

tinent to ask the third question of this article: What is the mini-

mum size of a peptide that can be used to train kriging models

for predicting atomic charges in a polypeptide chain?

To better understand how small a fragment can be while

still being representative of a larger chain, Figure 6 compares

the ab initio QTAIM charges of a deca-alanine (310) helix to

those in smaller alanine units (single alanine and trialanine),

where the mean difference across all 2000 geometries is

expressed per atom.

As expected, it is clear from Figure 6 that trialanine has

more common ground with deca-alanine than a single alanine

does (with differences of 0.012 au and 0.026 au, respectively)

but this rule is not as universal as expected. It is important to

note that deca-alanine has important features that are not rep-

resented by the single or trialanine molecules such as the

hydrogen bonding interaction that occurs between distant res-

idues of the helix, and these interactions are likely to have

profound effects on an alanine atom’s multipole moments.

Additional features may be added to the kriging models in

future to account for such important additional interactions.

Given that the single alanine is not as far removed from the

helix as expected, it may be possible to train alanine kriging

models to provide sufficiently accurate predictions for atoms

in deca-alanine, as shown in Figure 7 for a selection of atoms.

The “A to A” predictions use kriging models built using ala-

nine data to predict alanine data. These three models predict

with low error (to the left of the S-curve). However, the three

Figure 5. Comparison of kriging prediction of a central Calpha atom’s charge

for six tripeptides. Tripeptides AAA, VAV, GAG are part of “group A” (Table

1). Tripeptides YAY, KAK, WAW are part of group D. The kriging model was

trained for the tripeptide AAA (trialanine) using geometries that are not

present in the test set. Mean prediction errors for the Calpha charges of

each tripeptide are given in au. [Color figure can be viewed at wileyonline-

library.com]

Table 1. Charges (au) and kinetic energies (kJ mol21) of the central Calpha

in the 20 tripeptides AAX (Data Set 1, Fig. 2), where X is a substituted

residue.

AAX Tripeptide Q00 DQ00 T DT Group

Alanine (A) 0.5506 0 98288.00 0 A

Cysteine (C) 0.5481 0.0024 98302.46 14.46 B

Aspartate (D) 0.5604 0.0098 98309.59 21.59 D

Glutamate (E) 0.5461 0.0045 98306.89 18.89 B

Phenylalanine (F) 0.5556 0.0049 98292.99 4.99 A

Glycine (G) 0.5562 0.0048 98295.42 7.41 A

Histidine (H) 0.5609 0.0103 98303.85 15.85 D

Isoleucine (I) 0.5546 0.0040 98296.09 8.09 A

Lysine (K) 0.5416 0.0090 98299.67 11.66 D

Leucine (L) 0.5456 0.0049 98301.49 13.49 B

Methionine (M) 0.5491 0.0015 98320.71 32.71 B

Asparagine (N) 0.5570 0.0064 98285.68 2.32 C

Proline (P) 0.5450 0.0055 98332.57 44.57 E

Glutamine (Q) 0.5439 0.0067 98293.09 5.08 C

Arginine (R) 0.5429 0.0077 98293.44 5.44 C

Serine (S) 0.5479 0.0027 98312.53 24.53 B

Threonine (T) 0.5500 0.0006 98311.72 23.71 B

Valine (V) 0.5525 0.0019 98297.51 9.51 A

Tryptophan (W) 0.5650 0.0145 98300.29 12.29 D

Tyrosine (Y) 0.5429 0.0077 98312.98 24.98 D

The geometry for each tripeptide is identical with exception to the

substituted residue’s sidechain. AAA is used as a reference molecule to

which the other tripeptides are compared. A breakdown of the charges

for different atoms in each tripeptide is given in Figure S1 in Support-

ing Information.
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“A to H” predictions (alanine models predicting helix charges)

create much higher prediction errors. Despite having similar

mean charges across the set of geometries, alanine Calpha

models do not appear to be innately suited to predicting helix

properties. Fortunately, an alanine model can be further tai-

lored toward deca-alanine predictions by altering its mean

background prediction value. A kriging model maps the out-

put (charge) for a particular geometry as an “error” from a

mean background value (termed l) based on the charges of

all trained geometries. Thus, if l takes a different value for a

single alanine than it does for a deca-alanine, all predictions

will be wrong by that difference. We can, in theory, remedy

this by changing l (a single value) in the kriging model

to convert an alanine model to a “fixed l” alanine model,

which emulates a helix model as seen by the “fix” plots seen

in Figure 7.

The “fixed” models show almost-universally lower errors. In

the most dramatic example, the kriging prediction error for

Namide (blue curves, Fig. 7) is lowered by an order of magni-

tude. At its worst, the l fix does not appear to have a signifi-

cant effect. Note that for such a fix to be possible, one must

have some knowledge of what l should be for their predicted

system, and we achieved this by already having created mod-

els trained on deca-alanine data. Without data for deca-

alanine, correcting the l value could well be a case of trial

and error, or perhaps requiring a machine learning model of

its own. Knowing l means knowing the mean value for the

multipole moment to be predicted and thus a database of

these values would need to be constructed for long-term use.

It is deduced from Figures 6 and 7 that trialanine is a better

base for building kriging models with the intent of predicting

atom properties in the deca-alanine helix. Not only do triala-

nine’s charges lie generally closer to those found in deca-

alanine, but trialanine models can also capture effects from

neighboring residues. The minimum, maximum and mean pre-

diction errors for the atomic charges in deca-alanine, when

predicted by trialanine models, are given in Figure 8.

Each atom has a mean prediction error below 0.006 au and

an error below 1% of the charge range (Figure S3 in Support-

ing Information) that the respective atoms span throughout

the training set. The trialanine models predicting helix charges

yield 0.006 au, 0.006 au, and 0.002 au for atoms Calpha, Namide,

and Camide, respectively, which is a marked improvement over

the corresponding single-alanine models in Figure 7 (0.021 au,

0.027 au, 0.002 au mean error for the same atoms). For many

atoms, maximum errors are far from the mean compared to

minimum errors and are comparatively few in number. This

same trend can be seen in Figure 7 where S-curves have a

sharp tail at the top-right of each curve, indicating very few

examples with unusually high prediction error. Each set of pre-

dictions is still of higher error (approximately double) than if a

kriging model had been trained using deca-alanine helix data.

It should be noted that the time-saving effect of transfer-

able kriging models is a two-fold effect. As with all force fields,

transferability is devised to generalize the force field and allow

predictions of new systems without reparameterization or

Figure 6. The difference in atomic charge between atoms in alanine, triala-

nine and a deca-alanine helix. A solid line shows the overall mean differ-

ence in charges for each series (0.026 au and 0.012 au for alanine and

trialanine, respectively). The mean difference across all 2000 geometries is

expressed per atom. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Kriging models for the Calpha of a single alanine predicting Calpha

charges in alanine (A) and in a deca-alanine helix (H). “l Fix” predictions

show predictions of helix Calpha properties with altered l values in the krig-

ing models. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. Prediction of charges in a deca-alanine helix from models trained

using trialanine data (AAA to H). All charges are expressed in atomic units.

[Color figure can be viewed at wileyonlinelibrary.com]
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without taking parameters from a system that is unfeasibly large

with respect to ab initio calculation. Meanwhile, the transferable

kriging models also have far fewer features than regular mod-

els, which drastically lowers the dimensionality of the training

problem and thus speeds up the training process. Table 2 lists

the number of Particle Swarm Optimisation (PSO) iterations[29]

of the kriging training, and the training times (in seconds) for

creating kriging models trained with “fragment sets” (training

sets with reduced features based on a fragment of a larger

molecule such as that in Fig. 1) and with “regular sets.”

The regular training sets have 120 features whereas transfer-

able sets have only 24, thus reducing the number of features

by 5 times and results in a reduction of training time by

approximately a factor of 10. Training times appear to become

more predictable as the number of features is smaller, which is

perhaps due to a simpler (and perhaps smoother) feature

space that makes model optimization easier. Indeed, the num-

ber of iterations the PSO requires to converge is consistently

smaller for the transferable training sets. In many cases, the

training process for an entire molecule can only be considered

to be as fast as the slowest training of its individual atomic

models and so it is more useful to consider the longest train-

ing time rather than a mean average of the times. Although

the simplification of the kriging model by reducing its number

of features does carry an error penalty in charge prediction,

the large time saving and ability to build transferable models

makes this a justifiable sacrifice.

Conclusion

We have set out to test three related concepts, which we

briefly recap.

First, the residue neighboring an amino acid is significant to

the amino acid’s atomic charges. Amino acids can be grouped

according to their influence as a neighbor and we have sug-

gested five groups, based on the QTAIM properties for atomic

charge and kinetic energy, for the 20 natural amino acids.

Second, a kriging model is capable of predicting amino acid

properties in a peptide chain as long as the neighbors of a

given amino acid belong to the same group. Thus, when train-

ing for the tripeptide AAX (where A is alanine and X is any

natural amino acid), predicting outside one of residue X’s pro-

posed group yields a prediction error up to 11 times larger

than that from a prediction within X’s group.

Third, we have explored the minimum feasible system size

of a training data set for the prediction of larger systems. Giv-

en single alanine and trialanine atomic charges, it was found

that trialanine charges are most similar to deca-alanine atomic

charges, which is likely due to the presence of neighboring

groups. Tripeptide-trained models still return twice the error

compared to models trained using deca-alanine data but the

computational cost is 5 to 20 times lower. Furthermore, kriging

models were more successfully transferred to deca-alanine

when the l value (indicating the “background” charge that a

kriging model expects) was altered to fit mean deca-alanine

charges. Deca-alanine charges, even without altering l, can be

predicted from trialanine data with a mean error of around

0.004 au (an accuracy of> 99%).

In conclusion, the consideration of neighboring residues is

valuable for the accurate portrayal of atomic charges in large

peptide systems. Even a crude inclusion of these neighbor

effects into atom-typing can give much better prediction accu-

racy. Meanwhile, although a small fragment is capable of

describing a charge in a long peptide chain, that fragment

should be trained using tripeptide data rather than single ami-

no acid data. This is because, generally, tripeptide models give

better prediction accuracy and can include neighboring resi-

dues to increase specificity of the model.

By combining the conventional wisdom of atom-typing and

transferability with modern electrostatics and machine learn-

ing, FFLUX represents the groundwork for future improve-

ments in applying force fields to large biological systems. We

reach toward a future of force field development grounded in

accurate, directional electrostatics that are transferable and

well understood.
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