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Abstract: Yersinia pestis is responsible for plague and major pandemics in Asia and Europe. This
bacterium has shown resistance to an array of drugs commonly used for the treatment of plague.
Therefore, effective therapeutics measurements, such as designing a vaccine that can effectively and
safely prevent Y. pestis infection, are of high interest. To fast-track vaccine development against
Yersinia pestis, herein, proteome-wide vaccine target annotation was performed, and structural
vaccinology-assisted epitopes were predicted. Among the total 3909 proteins, only 5 (rstB, YPO2385,
hmuR, flaA1a, and psaB) were shortlisted as essential vaccine targets. These targets were then
subjected to multi-epitope vaccine design using different linkers. EAAK, AAY, and GPGPG as
linkers were used to link CTL, HTL, and B-cell epitopes, and an adjuvant (beta defensin) was also
added at the N-terminal of the MEVC. Physiochemical characterization, such as determination of the
instability index, theoretical pI, half-life, aliphatic index, stability profiling, antigenicity, allergenicity,
and hydropathy of the ensemble, showed that the vaccine is highly stable, antigenic, and non-
allergenic and produces multiple interactions with immune receptors upon docking. In addition,
molecular dynamics simulation confirmed the stable binding and good dynamic properties of the
vaccine–TLR complex. Furthermore, in silico and immune simulation of the developed MEVC for
Y. pestis showed that the vaccine triggered strong immune response after several doses at different
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intervals. Neutralization of the antigen was observed at the third day of injection. Conclusively, the
vaccine designed here for Y. pestis produces an immune response; however, further immunological
testing is needed to unveil its real efficacy.

Keywords: Yersinia pestis; vaccine targets; epitope mining; in silico cloning; immune simulation

1. Introduction

Yersinia pestis is an etiologic agent of plague, which is infamous for three major
pandemics killing millions of people [1]. Of these, the major devastating pandemic occurred
in Europe, affecting a significant portion of the population [2]. The pathogen also has
excellent potential for use in bioterrorism [3]. Y. pestis is a Gram-negative bacterium
that transfers from fleas to humans and rodents [1]. Experimental studies performed on
mice showed that after incubation of Y. pestis in mice, high growth of the pathogen was
evident, leading to death of the mice in a few days [4]. It was noticed that Y. pestis caused
inflammation and affected the function of the immune system [5]. This pathogenicity is the
outcome of contributions from lipopolysaccharides (LPSs) that hold vital importance in
tackling the host immune system [6]. The pathogen has two different plasmids that encode
a number of virulent proteins. One is the pPCP1 plasmid, which encodes an activator of
virulence essential plasminogen (Pla). The second pMT1 plasmid codes for F1 capsular
protein and murine toxin Ymt, which are significant in plague infection transmission. Ymt
encodes murine toxin and is lethal but required for its survival in fleas [6]. Furthermore,
Y. pestis has machinery that inhibits MAPK pathway activation and the release of the
proinflammatory cytokine TNF-α, according to recent findings. The same study also found
that two Y. pestis strains, the fully virulent Kimberley53 and the pgm attenuated EV76
strain, are less capable of inducing macrophage apoptosis, impairing NF-B activation,
and activating caspase pathways than the virulent Y. enterocolitica O:8 strain under varied
infection circumstances. These limitations correlate with inefficient translocation of YopJ
by Y. pestis, which leads to slow accumulation of the effector in the target cells. In addition,
they also found that Y. enterocolitica-derived YopP can provide effective apoptotic potential
to Y. pestis, and they suggested that this can be attributed to the fact that Y. enterocolitica O:8
YopP is better adapted to translocation by the Yersinia TTSS than YopJ [7].

Y. pestis interacts with Toll-like receptor (TLR) immune cells. TLRs are receptors
present on human innate immune cells. TLRs can detect a large number of pathogenic
molecules called PAMPs (pathogen-associated molecular patterns) on the bacterial cell
wall components, LPS (lipopolysaccharide), and nucleic acid [8]. TLRs activate the hosts’
initial line of protection against the pathogen. Besides LcrV, Y. pestis has LPS as a major
component in its outer membrane. This works as a ligand for Toll-like receptor 4 (TLR-4)
and plays a basic role in virulence; this is why we used TLR-4 for our study [9].

In traditional vaccinology, microbes are cultured, followed by pathogenic antigen iden-
tification, characterization, isolation, inactivation, and reinjection into the host to provoke
immune responses [10]. These traditional methods are expensive and time-consuming, and
also not appropriate for pathogens like Y. pestis. Advancements in system biology, DNA
sequencing, genomics, and proteomics have facilitated a better understanding of organism
pathogenicity, contributing multifold to vaccine design. Such techniques have good accu-
racy and cost-effectiveness and have been successfully applied to many pathogens in the
recent past with promising results [11–18]. Several types of vaccines based on the strategy
of epitope predictions have been developed against human pathogens. This includes the
development of a potential epitope (AMA-1) based vaccine candidate against Plasmodium
vivax [19]. Recently, in 2019, a computationally predicted multi-epitope candidate vaccine
was evaluated against Acinetobacter baumannii with potent IgG antibody-specific immune
response in mice [20]. Similarly, the utility of computationally predicted B-cell epitopes was
also confirmed in diagnostics against Trypsonoma vivax [21]. For instance, such approaches
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have been deployed against several human pathogenic viruses, including Ebola virus [22],
Marburg virus [23], Crimean–Congo hemorrhagic fever virus [24], and Mokola Rabies
virus [25]. Moreover, Ziwei et al. predicted T-cell and B-cell epitopes against SARS-CoV-2
and tested them experimentally, which resulted in a highly immunogenic response in ex-
perimental mice [26]. This reflects the potential implications of reverse-vaccinology-based
approaches in vaccine design against human pathogenic viruses.

Keeping in view the importance of subtractive proteomics in vaccine target mining and
reverse-vaccinology-based vaccine design, in the present study, we also aimed to design a
multi-epitope subunit vaccine for Y. pestis by screening the whole proteome. Using subtractive
proteomics followed by a reverse vaccinology pipeline, potential virulent and highly antigenic
proteins from the Y. pestis proteome to design B-cell, HTL, and T-cell epitopes were identified.
These epitopes were used in the design of a vaccine construct, which was then modeled
and docked with TLR-4 immune receptor and subjected to biophysical analysis. Overall,
the results presented in this study are interesting and may be useful to accelerating the
development of an effective vaccine to combat this deadly pathogen.

2. Materials and Methods
2.1. Retrieval of Proteomes

The study was initiated by retrieving Yersinia pestis’ proteome from UniProt, available
under accession number UP000000815 (Consortium, 2014) [27].

2.2. Removal of Homologous Proteins

Yersinia pestis’ proteins that are homologous to the human proteome in structure and
function generate autoimmunity and cross-reactions; thus, they are not desired in vaccine
development. Therefore, all the proteins were used in NCBI’s BLASTp against the human
reference genome by setting the E-value threshold to 0.000001 [28].

2.3. Removal of Paralogous Proteins

The non-homologous proteins were then used in redundancy checks to discard dupli-
cated sequences in the proteome. For this, a CD-HIT server was used, keeping the cut-off
value at 0.8 (80%). The output file containing only non-redundant proteins was analyzed
further in the downward analysis [29].

2.4. Non-Essential Protein Removal

Essential proteins are vital for the survival of an organism, and their disruption leads
to cell death. The Database of Essential Genes (DEG) contains all essential genes of viruses,
bacteria, and fungi [30]. Therefore, the non-redundant set of proteins was checked via
BLASTp against the DEG, and only proteins with hits (E-value 0.000001) were considered
for further analysis. Proteins of small size (<100 amino acids) were manually removed
from the essential proteome as they do not harbor potential epitopes.

2.5. Subcellular Localization of Proteins

Protein subcellular localization was performed to explore the locations of the essential
proteins, as surface proteins of bacterial cells are exposed and easily recognized by the host
immune system. We used the CELLO online server, keeping the class bacteria and the type
Gram-negative [31].

2.6. Prioritizing Potential Vaccine Candidates

We prioritized the cell membrane, peripheral membrane, extracellular, and outer
membrane proteins for subunit-based vaccine design. On the contrary, cytoplasmic proteins
contain hydrophobic pockets for binding to small drug molecules; thus, we removed the
cytoplasmic proteins from the vaccine design perspective [17,18,32].
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2.7. Collection of Virulent Proteins

Virulent proteins have pathogenic characteristics like adherence to the host cells,
invasion, toxin action, and actin-based motility, and they are involved actively in secretion
systems [33]. The Virulence Factor Database (VFD) was used to predict the virulent
propensity of the proteins filtered in the previous step using PSI/PHI BLAST, and those
with >30% identity and >100% bit score were allowed to enter the next phase [34].

2.8. Antigenicity of the Proteins

Antigenicity is the capacity of proteins (epitopes) to bind with immune cells and
generate productive adaptive immune responses [35]. The capacity of a foreign particle
(antigen) to attach to or interact with the products of the final cell-mediated response, such
as B-cell or T-cell receptors, is referred to as “antigenicity”. Antigenicity is the term used
to define whether and how well the substance attaches to immune cells, beginning the
immune response process. Antigenicity may also be described as the ability of an antigen or
a hapten to bind to a B-cell’s or T-cell’s receptors. To trigger an immune response, an antigen
binds to the receptor of an immune cell, such as a B-cell or T-cell. The surface of every
antigen or hapten has a unique biological key called an epitope. It is this epitope that binds
with a corresponding receptor or antibody. When T-cell receptors interact with a major
histocompatibility complex (MHC) molecule, they identify linear amino acid sequences
inside a protein antigen, commonly known as epitopes. Hence, it is important to estimate
the antigenic potential of each protein and their potential epitopes. The antigenicity of
protein was checked via the VaxiJen server at 0.4 threshold [36].

2.9. Prioritization of Proteins

Five proteins (rstB, YPO2385, hmuR, flaA1, and psaB) were prioritized. These proteins
have a length of more than 100 amino acids, are virulent and antigenic in nature, and have
a molecular weight of more than 100 kbs.

2.10. Epitope Prediction

The five selected proteins, rstB, YPO2385, hmuR, flaA1, and psaB, were used for the
prediction of epitopes. Cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL)
epitopes were predicted by using two different servers. For CTL epitope prediction, the
NetCTL 1.2 server was used, and HTL epitopes were predicted by the IEDB MHC II
server [37]. Epitopes from each protein were selected on the basis of the highest combined
score among selected epitopes. The E-value was set to 0.75. Seven alleles were selected
as an HLA reference set. Epitopes of 15mer in size were selected, three from each protein.
The AlgPred server determined the allergenicity of each HTL epitope.

2.11. Vaccine Construct Design

A final vaccine construct was designed by linking the epitopes at a ratio of 2:3 CTL
and HTL, comprising 8 CTL and 12 HTL. Overlapping HTL epitopes were not used in
the construct design. Adjuvant was joined to the CTL epitope peptide at the N-terminal
using the EAAAK linker, whereas CTL epitopes were fused by the AAY linker. The last
CTL epitope was joined to HTL by a GPGPG linker.

Ratio: 2:3
2 × 4 = 8 CTL epitopes
3 × 4 = 12 HTL epitopes

2.12. Allergenicity Prediction

The vaccine construct was further scanned for allergenic sequences by analyzing
it in the AlgPred 2.0 server (https://webs.iiitd.edu.in/raghava/algpred2/, accessed on
30 December 2020) [38]. The AlgPred server uses different algorithms such as SVM +
MAST + ARPs BLAST + IgE epitope to properly evaluate allergenic sequences with up to
85% accuracy.

https://webs.iiitd.edu.in/raghava/algpred2/
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2.13. Antigenicity Evaluation

The antigenic nature of the vaccine is very important and is required to boost the
immune system. The antigenicity of the vaccine construct was evaluated by using a freely
accessible server, VaxiJen v 2.0. The accuracy of this server varies from 70% to 80%.

2.14. Evaluation of Physiochemical Parameters

The final vaccine construct was analyzed further in the ProtParam server to estimate its
instability index, theoretical pI, half-life, aliphatic index, stability profiling, and hydropathy;
the Grand Average and other properties were calculated [39].

2.15. Homology Modeling of the Vaccine Construct

The three-dimensional (3D) model of the constructed vaccine was modeled using
the Robetta (http://robetta.edu/StructurePrediction/predict/ (accessed on 05 January
2021)) webserver. Robetta is good at predicting query protein 3D structures without close
similarity (<30%) of the input sequence [40]. A total of five models were generated, and the
one with the best prediction score was chosen. The vaccine construct secondary structure
was predicted by the PSIPRED 3.0 server [41].

2.16. Tertiary Structure Refinement

The tertiary structure of the vaccine was refined using GalaxyRefine to improve its
local and global structural quality [42].

2.17. Structure Validation

The 3D structure of the vaccine construct was then validated by using three freely
available online servers: RAMPAGE (http://mordred.bioc.cam.ac.uk//~rapper/rampage.
php, accessed on 05 January 2021) [43], ProSA-web, accessed on https://prosa./services.
came.sbg.ac.at/prosa.php, accessed on 05 January 2021) [44], and ERRAT (http://servicesn.
mbi.ucla.edu//ERRAT/, accessed on 05 January 2021) Lengths and Angles [45].

2.18. B-Cell Epitope Prediction

B-cell epitopes trigger humoral immunity to produce antibodies specific to the antigen,
and memory cells are significant in memorizing the pathogen and responding on re-
encounter [46]. Linear and conformational B-cell epitopes were mapped for the subunit
vaccine by using the B-cell epitope prediction server of BCPREDS [47]. Conformational
B-cell epitopes were predicted by IEDB MHC Ellipro [48].

2.19. Molecular Docking of the Vaccine Constructs and TLR-4

Molecular docking was used to predict the binding conformation and interactions of
the vaccine construct with the TLR-4 immune receptor. Docking was performed using a
blind docking approach through the HAWKDOCK server [49]. The server functions by
using a geometry-based molecular docking algorithm that gives the best docked inter-
molecular conformation [49].

2.20. Molecular Dynamics Simulation

A molecular dynamics simulation of the vaccine–TLR complex was performed to
check the stability of the docked complex. The AMBER20 simulation package was used [50].
Two steps of energy minimization followed by heating, equilibration, and production were
performed. A total 100 ns simulation was performed. Default parameters were used as
given in the previous study [11,13,51]. The RMSD and RMSF were calculated to check the
binding stability and flexibility.

RMSD =

√√√√ ∑N
i=0[m i∗(X i ∗ Yi

)2
]

M
(1)

http://robetta.edu/StructurePrediction/predict/
http://mordred.bioc.cam.ac.uk//~rapper/rampage.php
http://mordred.bioc.cam.ac.uk//~rapper/rampage.php
https://prosa./services.came.sbg.ac.at/prosa.php
https://prosa./services.came.sbg.ac.at/prosa.php
http://servicesn.mbi.ucla.edu//ERRAT/
http://servicesn.mbi.ucla.edu//ERRAT/
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Here, N is the number of atoms, mi is the mass of atom i, xi is the coordinate vector for
target atom i, Yi is the coordinate vector for reference atom i, and M is the total mass. If the
RMSD is not mass-weighted, all mi = 1 and M = N.

The RMSF is a measure of the deviation between the position of particle i and some
reference position:

RMSFi =

∣∣∣∣∣∣ 1
T

T

∑
tj=1

∣∣∣ri
(
tj
)
− ri

re f
∣∣∣2
∣∣∣∣∣∣1/2

where T is the time over which one wants to average and riref is the reference position of
particle i. This reference position will be the time-averaged position of the same particle i.

2.21. Codon Optimization and Cloning of the Vaccine Construct

The codon usage of the vaccine construct was adjusted according to the Escherichia
coli system to obtain better expression of the vaccine sequence. For this, Jcat software was
used first to generate a reverse transcript of the input vaccine sequence, with calculation
of the GC content. An appropriate CAI value (needs to be 0.9+) and GC content (45–70%)
are indications of a well-optimized sequence [52]. To carry the vaccine sequence into the
expression system, suitable restriction enzyme sites were created to ease the insertion of
the vaccine into the vector. SnapGene software was used for cloning purposes [53].

2.22. Immune Simulation

In order to understand the dynamics of the human immune system in response to
foreign particles, a server that uses agent-based modeling, C-ImmSim, was used to predict
the relationships between the human immune system and the foreign particle [54]. The
production of cytokines and other substances like interferon and antibodies was estimated
by applying the PSSM method. Moreover, the response for T helper cell 1 and T helper
cell 2 (Th1 and Th2) was also predicted with the server’s default parameter measure of
diversity or Simps Index [55]. The immune simulation uses the following mathematical
model to estimate the interaction of the vaccine and therapeutics.

dT
dt

= rT − kTE

dE
dt

= f (T) + g(E)− dE

The above linear mathematical model was used to model the immune simulation of
the designed vaccine [56].

3. Results
3.1. Retrieval of Proteomes

The pathogen proteome comprises a total of 3909 proteins. These proteins were subse-
quently subjected to the designed vaccine framework to prioritize potential vaccine targets
and design a vaccine ensemble. The whole methodological flow is shown in Figure 1.

3.2. Removal of Homologous Proteins

Y. pestis proteins that were homologous to the human proteome were discarded from the
complete proteome; thus, 1021 proteins were filtered as non-homologous. This set of proteins
was considered for additional analysis as they are not able to elicit any non-specific responses.

3.3. Removal of Paralogous Proteins

In total, 704 proteins were found to be non-redundant and were therefore allowed
into further steps of the vaccine design framework. These proteins are singly represented
in the proteome and are critical to the pathogen’s core functional pathways.
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Figure 1. Workflow of the complete methodology, shown in eight steps. First, the selected proteins’
antigenicity was checked. Secondly, virulence proteins were screened, giving five in number. The
third step was B- and T-cell epitope prediction; the fourth step was the construction of the vaccine;
the fifth step was determining the different physicochemical parameters of the vaccine construct, the
sixth step was molecular docking; the seventh step was in silico cloning; and the eighth and last step
was an immune simulation.

3.4. Removal of Non-Essential Proteins

The essential proteins play a central role in pathogen survival and are good candidates
for vaccine design. A total of 368 essential proteins were found after excluding non-essential
and small-sized proteins.

3.5. Subcellular Localization

Subcellular localization analysis revealed 73 periplasmic, 46 outer membrane, 152
inner membrane, and 11 extracellular proteins. Such proteins come in close contact with
the host during interactions and contain antigenic determinants in vaccine design.

3.6. Collection of Virulent Proteins

Virulent proteins stimulate infectious pathways of the host, allowing an efficient
response from the immune system to the antigenic region of the proteins. The five selected
proteins’ (rstB, YPO2385, hmuR, flaA1a, and psaB) amino acid sequences were retrieved
from the gene bank by using their gene ids (1175141, 1175217, 1173129, 1173578, and
1174146) for the multi-epitope subunit vaccine design (Figure 2).
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Figure 2. The steps of the subtractive proteomics, and the results obtained from each step. (A) represent the whole proteome
of Y. pestis with the total number of proteins, homologous and non-homologous. (B) shows the whole proteome of Y. pestis
with the total number of proteins, paralogous and non- paralogous. (C) whole proteome of Y. pestis with the total number of
proteins, essential and non-essential. (E) final vaccine targets while (D) represent the cellular location of different proteins.

3.7. Antigenicity and Physiochemical Properties of the Selected Vaccine Targets

Antigenic proteins that have the capacity to bind with the immune cells’ receptors
efficiently were predicted from among the virulent proteins. Among the total, only five
highly antigenic proteins were selected, shown in Table 1. The physiochemical properties
of the five selected vaccine targets (rstB, YPO2385, hmuR, flaA1a, and psaB) were then
determined. These physiochemical properties, such as virulence, antigenicity, mass, and
total number of amino acids, are given in Table 1.

Table 1. The genes, protein names, antigenicity scores, virulence scores, molecular masses, and amino acid lengths of the
five shortlisted vaccine targets.

Gene Protein Virulence (Bit Score) Virulence Sequence Identity Antigenicity Mass Length

rstB Sensor kinase
protein 182 bits 33% 0.6925 48,250 Da 425

YPO2385
Putative
exported
protein

61.2 bits 34% 0.7901 32,315 Da 288

hmuR Hemin
receptor 886 bits 68% 0.6496 74,230 Da 676

flaA1 Flagellin 97.4 bits 40% 0.7208 42,701 Da 404

psaB Chaperone
protein PsaB 531 bits 100% 0.6251 30,648 Da 273

3.8. CTL and HTL Epitope Prediction

Epitope prediction is an essential step in vaccine design as the immune system rec-
ognizes and binds to epitopes to activate specific immunity. In total, 72 CTL epitopes
were predicted for the five selected proteins; these can be split into 14 epitopes for sensor
kinase protein, 10 epitopes for putative exported protein, 26 epitopes for hemin receptor,
9 epitopes for flagellin, and 13 epitopes for chaperone protein PsaB. Only 8 CTL epitopes
were selected because of their high MHC binding score and non-allergenic nature. The
selected set of epitopes comprises two epitopes from sensor kinase protein, one from
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putative exported protein, two from hemin receptor, one from flagellin, and two from
chaperone protein PsaB, as tabulated in Table 2.

Table 2. The shortlisted CTL epitopes for each protein with the combined scores predicted by
NetCTL server.

Protein Name Epitopes Sequence Combined Score

Sensor kinase protein CTL RTPLVRLRY 3.1800
CTL MAMLVGLVY 3.1360

Putative exported protein CTL CSGLIYYAY 2.6220

Hemin receptor CTL QSLSANLRY 3.0050
CTL SSSTPQAGY 3.0610

Flagellin CTL ETPKAVNEY 2.6930

Chaperone protein PsaB CTL SADSLTWRY 2.7150
CTL PTPFYMNFY 2.5490

A total of 12 HTL epitopes were selected, giving a 2:3 ratio; three of the HTL epitopes
were selected from sensor kinase protein, two from putative exported protein, three from
hemin receptor, and two each from flagellin and chaperone protein PsaB, as shown in Table 3.

Table 3. Helper T lymphocyte (HTL) epitopes predicted by the IEDB MHC 2 server, along with their percentile ranks, alleles,
peptide sequences, and antigenicity scores predicted by the AlgPred server.

Protein Allele Start–End Peptide Sequence Method Percentile
Rank

Antigenicity
Score

Sensor kinase
protein

HLA-DRB5 *
01:01 142–156 LPVFLWMRPHWKDLL Consensus

(smm/nn/sturniolo) 0.6 0.432

HLA-DRB3 *
02:02 404–418 GGASFRFSWPIKTHL NetMHCIIpan 1.4 1.043

HLA-DRB1 *
03:01 362–376 EPFVRLDPSRDRATG Consensus

(smm/nn/sturniolo) 1.6 0.564

Putative exported
protein

HLA-DRB3 *
02:02 207–221 NEMYHLRDAAPVKRT NetMHCIIpan 5.1 1.042

HLA-DRB5 *
01:01 161–175 AMSKLMKQVGKPYRW Consensus

(smm/nn/sturniolo) 9.7 0.613

Hemin receptor

HLA-DRB1 *
03:01 283–297 RSTIQRDAQLRYNIK Consensus

(smm/nn/sturniolo) 0.14 0.443

HLA-DRB1 *
07:01 340–354 NRTRLFIESPASHLL Consensus

(comb.lib./smm/nn) 0.54 0.480

HLA-DRB1 *
15:01 434–448 TDWLMLFGSYAQAFR Consensus

(smm/nn/sturniolo) 0.86 0.679

Flagellin
HLA-DRB1 *

07:01 25–39 NAKSSQRLSTGFRIN Consensus
(comb.lib./smm/nn) 3.1 0.461

HLA-DRB1 *
15:01 382–392 QSSVMMLKKANAATQ Consensus

(smm/nn/sturniolo) 7.9 −0.444

Chaperone
protein PsaB

HLA-DRB5 *
01:01 89–103 APFIVTPPLFRLDAG Consensus

(smm/nn/sturniolo) 0.77 0.722

HLA-DRB1 *
15:01 181–195 ADSLTWRYKGNYLEV Consensus

(smm/nn/sturniolo) 4.2 0.504

3.9. B-Cell Epitope Prediction

B-cells, upon maturation, produce antibodies and are essential for long-lasting immu-
nity against a particular antigen. In total, 16 linear B-cell epitopes with score >0.6 were
selected. Likewise, the ElliPro suite for the prediction of conformational B-cell epitopes
with a score of 0.7 was used. B-cell epitopes were predicted from the selected five proteins.
A total of 17 epitopes were predicted from Chaperone protein, out of which 4 epitopes were
chosen on the basis of a score above 0.9; a total of 24 epitopes were predicted from Histidine
kinase, out of which 2 epitopes were selected. Twenty-eight epitopes were predicted from
the Hemin receptor, out of which two were selected with a high score. From 24 epitopes
predicted from Flagellin protein, 4 epitopes were chosen, and of 21 epitopes predicted from
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Putative exported protein, 5 epitopes were selected on the basis of a score above 0.9. The
predicted linear B epitopes are given in Table 4.

Table 4. Predicted B-cell epitopes, along with their scores and sequence information.

Protein Sequence Starting Position Score

Chaperone protein PsaB

APFIVTPPLFRLDAGL 89 0.95
CLTGIPPKNGDAWGNT 128 0.94
YPSSSTKGVSVSVANP 54 0.91

SLTWRYKGNYLEVNNP 183 0.90

Histidine kinase
SWPIKTHLPLSADQNV 411 0.94
SGHLDERTHFDPTSSL 167 0.91

YERPE Hemin receptor

PVSILAGTRYDNYSGS 396 0.94
YETVDAADMLQPGQNS 164 0.93
KDYISTRVDMQAMTTT 520 0.92
SRVSSSTPQAGYGVND 612 0.91

NWDLAYNRTRGKNQNT 559 0.91
TRDIGNIRQSNGFNAP 215 0.91
GLTLTNYWVPNPNLKP 469 0.90
PTMGEMYNDSKHFAIP 450 0.90
SGSSDGYADVDADKWS 409 0.90
GWLQDEITLRDLPVSI 384 0.90
ARPQGSAEEGREQTTE 319 0.90

YERPE Flagellin

SDVIDAYGAFRATLGA 321 0.95
GFRINSPADNAAGLQI 35 0.93
LGSIKDTDFADEMKNH 359 0.92
KQEIETPKAVNEYVVK 280 0.92

AESVKTLNAMKKLATQ 359 0.91

Putative exported protein

HVSQASPDDRKKRKAD 41 0.96
GPVSKKTTEPRKTGNN 69 0.93
SGLIYYAYKDVVKIKM 187 0.92

GKFIQSPRTGEEIRIS 249 0.91
TSSIRTAKTPYGRQRN 113 0.9

3.10. Vaccine Construct Design

The vaccine ensemble was generated by joining epitopes at a ratio of 2:3; in total,
8 CTL and 12 HTL epitopes were added using linkers. The overlapping HTL epitopes
were excluded during vaccine design. The adjuvant was joined to CTL epitopes by using
EAAAK linkers at the N terminal, whereas CTL epitopes were joined via AAY linker. The
last CTL epitope was joined with HTL by GPGPG linkers, and GPGPG linkers were also
used among HTL epitopes, as given in Figure 3.
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3.11. D Structure Prediction Using Robetta

By using the Robetta server, 3D structures of the vaccine were constructed. The
modulated structure is shown in Figure 4. A comparative modeling approach was used,
and multiple templates were selected for the 3D structure model design. The confidence
levels of the templates for 3D structure design were all above 97.9%. The 3D structure
predicted by Robetta, as shown, possesses alpha-helices, beta-sheets, and loops. The visual
structure analysis shows that it has proper folding.
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Figure 4. 3D structure of the final vaccine construct. (A) The distribution of different peptides and linkers on the protein
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3.12. Refinement of the Vaccine Tertiary Structure

The results of refinement analysis of the vaccine are tabulated in Table 5. It was
concluded that Model 2 was the best model for docking. Model 2 (Figure 4) had a high GDT-
HA score of 0.9583, and its root mean square deviation value was 0.402. The MolProbity
score was 1.400, the clash score was improved, poor rotamers were 0.6, and the Rama
favored level was calculated to be 98.5%.

Table 5. The tertiary structure of the vaccine was refined using the GalaxyRefine server, and Model 2
was selected due to its good Rama favored score of 98.54 and low mol probity of 1.40.

Model GDT-HA RMSD MolProbity Clash
Score

Poor
Rotamers

Rama
Favored

MODEL 1 0.949 0.42 1.42 7.81 0.62 98.31

MODEL 2 0.958 0.40 1.40 7.31 0.61 98.54

MODEL 3 0.948 0.42 1.46 8.72 0.92 98.32

MODEL 4 0.961 0.39 1.46 8.63 0.64 98.52

MODEL 5 0.943 0.42 1.46 8.61 0.66 98.33

3.13. Vaccine 3D Structure Validation

The 3D structure was validated using three available online servers. The results of
analysis using the Ramachandran and PROSA-web servers are given in Figure 5. Panel (A)
shows the Z-score (−4.78) predicted by PROSA-web, while in panel (B), the Ramachandran
plot shows the amino acid distribution in the favored region as 91.8%, with 7.9% allowed
and 0.3% disallowed. These results suggest that our predicted structure has a properly
folded topology and could be used for further processes.
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disallowed.

3.14. Physiochemical Properties of the Final Vaccine

The vaccine construct is non-allergenic with a score of −1.52; isoelectric point of 9.34;
molecular weight of 49.70 kDa; half-life of >30 h (mammalian reticulocytes, in vitro), >20 h
(yeast, in vivo), or >10 h (E. coli, in vivo); instability index of 35.03; GRAVY score of −0.225;
and aliphatic index of 73.14. All these parameters strongly support the construct as a good
vaccine candidate. From an antigenicity point of view, the vaccine is a good antigen (score
0.7548). The vaccine molecule is also non-allergic (score 1.523).

3.15. Secondary Structure Prediction

The PSIPRED webserver was used to predict the secondary structure of the vaccine
construct shown in Figure 6. The secondary structure of the vaccine revealed 35.7% alpha
helices (including 4% transmembrane helices), 14.3% beta sheets, and 50% coils.
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3.16. Analysis of Vaccine Construct Interaction with TLRs

Solution 2 of vaccine–TLR-4 was selected as the best-docked complex. The selection
was based on FireDock results with global energy of −15.47, attractive van der Waals force
of −11.27, repulsive van der Waals force of −4.39, and atomic contact energy of −3.98. The
interactions given in Figure 7 show that the vaccine candidate is significantly involved in
salt bridges, hydrogen bonding, and disulfide bridges.
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Figure 7. Interaction between the vaccine and TLR. The green represents the TLR, while the blue
color shows the multi-epitope vaccine construct. Specific interactions are given in the right-hand
panel. Salt bridges, disulphide bonds, and hydrogen bonds are shown in different colors.

3.17. Molecular Simulations of TLR–Vaccine Complexes

A molecular dynamics simulation of the vaccine–TLR complex revealed that the
complex is stable with no significant convergence, while the RMSF results show that the
vaccine structure possesses higher flexibility than the TLR. Our results suggest that our
complex remained stable during the 100 ns simulation, and this signifies our vaccine’s
efficiency. The RMSD and RMSF values of the complex are given in Figure 8.
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3.18. Codon Optimization and Cloning of the Vaccine Construct

JCat software was utilized to quantify the expression of vaccine in Escherichia coli
O6: k15:H31 (strain 536/UPEC). The vaccine is 1400 nucleotides long; its CAI is 1.0 with
a GC content of 55.19%. This indicates a better expression level of the vaccine in E. coli
sO6: k15:H31 (strain 536/UPEC). A GC content range of 35% to 70% is reported to be
appropriate for better expression. Restriction sites like EcoR1 and Pas1 were added to the
5′ and 3′ ends of the optimized vaccine sequence and cloned in pET-53-Dast vector as given
in Figure 9.
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Figure 9. The pET-104 vector along with the vaccine construct inserted between the restriction sites
with ECOR1 upstream and NCO1 downstream.

3.19. Immune Simulation

An immune simulation study was performed on web server C-ImmSim 1.0, which
predicts possible dynamics of the host immune system in response to vaccine administration.
The host immune system dynamics are summarized in Figure 10. Panel A shows the humoral
immunity response to the antigen and reported immunoglobulin response: IgG, IgG1, IgG2,
and IgM produced against the vaccine. According to the literature, most plague patients
have been reported with igG1 and IgM. In parts B, C, and D, production of B- and T-cells
in cells per cubic millimeter is shown to be very high in the presence of vaccine; the B-cell
concentration is high and remains so because they produce antibiotics, staying active for a
longer time. The graph for the T-cells shows a downward trend after a few days. Panel E
shows macrophages, and panel F shows the interleukin and cytokine concentration, which
was very high for the vaccine inside immune cells for the first few days.
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4. Discussion

For infectious disease, antibiotic controls are traditionally considered; however, due
to their decreasing effectiveness, the scientific community has begun the search for a new
approach, including vaccines that could replace antibiotics. Vaccinations were initially
used for infectious disease control and played a significant role in this, but recently, due to
our greater dependency on them, scientists have sought more effective, cheap, and safe
techniques for designing vaccines. Because traditional vaccine technology harbors the risk
of virulence reoccurrence and is not very cost-effective, a new technology, called immune-
informatics, has been developed, requiring knowledge of genomics and proteomics to bring
new vaccines to the market. This uses only a particular part of the pathogen (epitope) which
can only boost the immune system. Immune informatics technology uses computational
software, online servers, and databases. It gives good-quality results and is low cost, with
good safety and greater effectiveness. Several types of vaccines based on the strategy of
epitope predictions have been developed against human pathogens. This includes the
development of a potential epitope (AMA-1) based vaccine candidate against Plasmodium
vivax [19]. Recently, in 2019, a computationally predicted multi-epitope candidate vaccine
was evaluated against Acinetobacter baumannii with potent IgG antibody-specific immune
response in mice [20]. Similarly, the utility of computationally predicted B-cell epitopes was
also confirmed in diagnostics against Trypsonoma vivax [21]. For instance, such approaches
have been deployed against several human pathogenic viruses, including Ebola virus [22],
Marburg virus [23], Crimean–Congo hemorrhagic fever virus [24], and Mokola Rabies
virus [25]. Moreover, Ziwei et al. predicted T-cell and B-cell epitopes against SARS-CoV-
2 and tested them experimentally, which resulted in a highly immunogenic response
in experimental mice [26]. This reflects the potential applications of in silico reverse-
vaccinology-based approaches in vaccine design against human pathogenic viruses.

The proteome is the protein factory of an organism and contains the proteins of traits
present in an organism. This is why we exploited the proteome of Yersinia pestis to design a
vaccine. Highly antigenic and immunogenic proteins rstB, YPO2385, hmuR, flaA1, and
psaB were selected using online servers, and the epitopes for adaptive immune cells, B
lymphocytes, and T-cell lymphocytes were predicted. A foreign organism first deals with
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innate immune cells, so we added adjuvants that interact with the TLR of innate immune
cells. Epitopes were predicted through online servers, which showed the binding potency
of the epitopes with MHC-I and MHC-II of T-cells, and predicted B-cell linear epitopes
that interacted with immune B-cells. The designed vaccine’s physiochemical properties
were evaluated. Although the designed vaccine candidate exhibits non-allergenic features,
the “cytokine storm” phenomenon cannot be avoided in infectious diseases, but this is
rare. Based on recent developments in the field, new therapies will likely move away from
targeting single soluble mediators and focus more generally on inflammatory cascades.
However, what signaling cascades are targeted will depend both on the infection and on
the targeted patient population. Current experimental anti-inflammatory strategies being
tested in animal models include COX inhibitors, PAR2 agonists, sphingosine 1 phosphate
modulators, modulation of production/signaling of oxidized phospholipids, Slit-Robo4
pathway modulators, and TLR-4 antagonists. These anti-inflammatory agents can be
supplied as supplementary agents to overcome the problem of cytokine storm [57].

Furthermore, the 2D structure was designed using the PSI PRED server, and the 3D
structure was predicted by the Robetta server and refined by the GALAXY refinement
server. Further corrections were made using Chimera software. Then, more of the in-
teraction with the TLR of innate immune cells was checked by docking analysis using
PatchDock. Stability and fluctuations were achieved by MD simulation.

High levels of expression were needed. Thus, the Jcat server was used as it automatically
performs reverse transcription, CAI calculations, and calculations of GC contents for codon
optimization. E. coli was used as an expression vector. Vaccine stability is required for better
expression in E. coli; therefore, a bisulfate bond was added with the vaccine construct.

Immuno-informatics approaches were used in the present study to give a stable, very
effective, and highly expressible vaccine in the E. coli expression vector. Clinical trials are
required to check its effectiveness in human beings. The designed MEVC construct can be
further used in an experimental setup to evaluate the in vitro and in vivo potency, safety,
and efficacy of the vaccine construct.

5. Conclusions

The plague is one of the deadliest diseases remaining in the present day, and the agent
of this disease is Yersinia pestis. In the study presented herein, we used immune informatics
techniques to design a vaccine from the epitopes of Yersinia pestis for better control. Such
a vaccine is capable of providing immunity for both types of immune systems. Different
techniques were used, such as molecular docking, simulation for thermal stability, and in
silico cloning, to verify its thermal stability inside the human body, its better expression
in vectors for mass production, and its immune response boost inability. The current
study has the only limitation of lacking experimental testing, which can be performed by
experimental scientists to confirm the validity of the designed candidate and its use for
therapeutic purposes.
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