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The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly char-
acterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to,
and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells.
Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically
and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the
crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I
(NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs.We use machine learning to
highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We
validate our predictions by functional analysis of the bHLH TFOLIG2. This TFmakes an important contribution to NS cell
self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes pro-
moting neuronal differentiation and stem cell quiescence.

[Supplemental material is available for this article.]

Neural stem cells (NS cells) are the primary progenitors of both the

developing and the adult central nervous system (CNS). They

possess the cardinal stem cell properties of self-renewal and mul-

tipotency, being able to generate the neurons, astrocytes, and

oligodendrocytes that populate the mature CNS (Temple 2001;

Kriegstein and Alvarez-Buylla 2009; Fuentealba et al. 2012). NS

cells, in the adult brain at least, can also enter a reversible growth-

arrested state called quiescence (Fuentealba et al. 2012). These key

cellular properties are served by a gene regulatory network (GRN)

that must concurrently activate the genes required for self-renewal

and prepare the cells for the timely and appropriate induction of

genes required for differentiation or quiescence.

A crucial layer of control in all GRNs is provided by non-

protein-coding cis-regulatory elements (CREs) that function to

activate or repress target gene transcription or to prime genes for

rapid induction following change of the cellular state. Transcrip-

tion factors (TFs) with the ability to recognize and bind defined

sequence motifs provide an important level of specificity in the

control of CRE function. By binding CREs, frequently in combina-

tion with other TFs, regulatory and chromatin remodeling com-

plexes are recruited toCREs that ultimatelymodulate the expression

level of target genes (Davidson 2010; Spitz and Furlong 2012). A

CRE’s epigenetic profile is thought to closely reflect its activity state

and also its ability to recruit TF complexes (Heintzman et al. 2007,

2009; Lupien et al. 2008; Creyghton et al. 2010; Rada-Iglesias et al.

2010; Hawkins et al. 2011; Li et al. 2011b; Bonn et al. 2012).

Relatively little is known about the repertoire of CREs that

function in NS cells and few of the key regulatory TFs that control

their activity have been described (Visel et al. 2009, 2013). Knowl-

edge of the important TFs and their functionswill be crucial for a full

understanding of NS cells’ differentiation potential and will also

inform the development of NS cell–based cellular therapies for hu-

man CNS disorders.

Here we set out to identify the nature of major TFs that bind

and regulate NS cell CREs and to make specific predictions about

the precise roles of different TFs within the NS cell GRN. We
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identified CREs throughout the genome of a well-characterized

culture model of mouse NS cells (Conti et al. 2005) by identifying

regions of relatively open chromatin that reflect the binding of

transcriptional regulatory complexes (Boyle et al. 2008). We then

used ChIP-seq data for a wide range of histone modifications to

classify CREs according to their epigenetic profiles. We performed

motif analysis in the different classes of CREs to identify the most

important TF regulators, whose binding was confirmed by ChIP-

seq. We then used a machine learning approach to deduce, from

our rich collection of well-annotated CREs, which CREs andwhich

TFs have specific functions in regulating genes required for NS cell

self-renewal, differentiation, andquiescence.Wevalidated ourmodel’s

predictions via the functional analysis of the basic helix-loop-helix

(bHLH) TF OLIG2.

Results

Epigenetic signatures allow the precise classification
of accessible regions of the NS cell genome

DNase I hypersensitive sites (DHSs) represent regions of relatively

open chromatin that are associated with the binding of transcrip-

tional regulatory complexes. DHSs are a hallmark of most known

functional CREs, including promoters, enhancers, insulators, and

silencers (Heintzman et al. 2007, 2009; Boyle et al. 2008; Natarajan

et al. 2012; Thurman et al. 2012). We used DNase-seq (Boyle et al.

2008) to identify 25,770 high-confidence DHSs across the genome

of self-renewing cultured mouse ES cell–derived NS cells (Supple-

mental Fig. S1; Conti et al. 2005; Martynoga et al. 2013). We used

ChIP-seq data for seven well-characterized histone modifications

(Mikkelsen et al. 2007; Meissner et al. 2008; Martynoga et al.

2013) to compartmentalize DHSs into exclusive classes with dis-

tinct chromatin signatures. DNase-seq and histone modification

ChIP-seq are a potent combination in the identification of putative

CREs, since the well-described discriminatory power, but low

spatial resolution, of histone modification ChIP-seq is com-

plemented by the increased spatial resolution of DNase-seq (DHSs

identified here range from 46 to 3344 bp, median = 470 bp) to

allow the precise identification of binding sites of important

regulatory complexes within the broader histone mark-defined

blocks.

We considered transcription start site (TSS) proximal (within

2 kb of a TSS, n = 10,791) and TSS distal (n = 14,979) DHSs sepa-

rately and used both the presence/absence and relative abundance

of ChIP-seq signals for H3K27ac, H3K4me1,me2,me3, H3K27me3,

H3K36me3, and H3K9me3 (Mikkelsen et al. 2007; Meissner et al.

2008; Martynoga et al. 2013) to computationally cluster the DHS

regions.We defined five distinct TSS-proximal clusters and six TSS-

distal clusters of DHSs, which varied widely according to the local

presence and intensity of the seven histone modifications ana-

lyzed (Fig. 1; Supplemental Table S1).

Proximal clusters 1 and 2 both exhibited the key features of

active promoters, being positive for H3K4me3, H3K4me2, and

H3K27ac (Heintzman et al. 2007), and were distinguishable from

one another by a H3K4me1 signal at proximal cluster 1 regions

(Fig. 1B,D). Unexpectedly, proximal cluster 3 regions displayed the

profile of an active distal enhancer (H3K4me1-high, H3K4me3-

low, H3K27ac-high) (Creyghton et al. 2010; Rada-Iglesias et al.

2010) despite being tightly associated with TSSs. As described in

the analysis below, we designate these proximal elements as a class

of ‘‘poised’’ promoters. Proximal cluster 4 showed prominent re-

pression-associatedH3K27me3modification. Finally, proximal cluster

5 elements showed no significant enrichment for the epigenetic

marks analyzed here (Fig. 1B,D). The majority of proximal clusters

1, 2, and 4, but the minority of cluster 3 and 5 promoters, con-

tained CpG islands (Supplemental Fig. S2A).

As expected, most TSS-distal clusters had different profiles

compared to the proximal regions. DHSs in distal clusters 1–5 all

carried a characteristic enhancer signature, being enriched for

H3K4me1 and depleted for the promoter-associated H3K4me3

(Heintzman et al. 2007), while distal cluster 6 sites lacked signifi-

cant enrichment for any of the histonemarks analyzed (Fig. 1C,E).

Of the five putative enhancer clusters, distal clusters 1 and 2 both

showed strong enrichment of the active enhancer-associatedmark

H3K27ac (Creyghton et al. 2010; Rada-Iglesias et al. 2010), with

distal cluster 1 additionally showing a higher signal for H3K4me2

and H3K4me3 than distal cluster 2 (Fig. 1C,E; Supplemental Fig.

S2B,C). Distal cluster 5 regions were the only distal DHSs marked

with H3K27me3. The remaining clusters (distal clusters 3 and

4) possessed a H3K4me1+, H3K27ac-low profile that has previously

been designated as a poised or intermediate enhancer configura-

tion in mouse embryonic stem cells (Fig. 1C,E; Creyghton et al.

2010; Zentner et al. 2011). Here we adopt the poised enhancer

nomenclature for these clusters. All the putative enhancer clusters

demonstrated a distinct ‘‘valley’’ shape, focused on the maximal

point of DNase I hypersensitivity (Heintzman et al. 2007; Bonn

et al. 2012). None of the proximal or distal DHS clusters showed

a consistentpresenceof the repressivemarkH3K9me3or the transcript-

elongation-associated mark H3K36me3.

Patterns of coassociation between different groups of distal
and proximal CREs regulate genes expressed at different levels

We next explored the gene regulatory properties of the different

categories of putative CREs. We associated the expression level,

assayed by RNA-seq, of the closest annotated gene in Ensembl

(Flicek et al. 2013) v61 to each CRE. Both for proximal and distal

elements, the regions with an active epigenetic profile tend to be

associated with genes expressed at higher levels, poised regions

with genes expressed at medium levels, and repressed and un-

marked regions with genes expressed at lower levels (Fig. 2A,B).

We hypothesized that different classes of distal CREs would

preferentially interact with TSS-proximal CREs that were in an

equivalent activity state. We tested this by asking whether the

different distal CREs were associated with genes with distinct

proximal CRE configurations and expression levels (see Methods).

Distal cluster 1 and 2 active enhancers were indeed strongly asso-

ciated with proximal cluster 1 active promoters, particularly those

expressed at medium and high levels (Fig. 2C, green box). Putative

poised enhancers of distal cluster 3 were also strongly associated

with genes with proximal cluster 1 active-promoters, but mainly

those expressed at low tomedium levels (Fig. 2C, orange boxes). In

contrast, poised cluster 4 enhancers were most strongly associated

with silent geneswith unmarked promoters (Fig. 2C, orange box in

proximal cluster 5). On the basis of this and our closest gene

analysis and epigenomic profiling, we designate distal cluster 4

elements as ‘‘poised low’’ and distal cluster 3 elements as ‘‘poised

high’’ enhancers.

There was a strong enrichment of repressed enhancers in the

vicinity of genes with repressed promoters (Fig. 2C, red box), while

unmarked distal elements were strongly associatedwith unmarked

promoters of nonexpressed genes.

When we used CTCF peaks from ChIP-seq data (Phillips-

Cremins et al. 2013) to define gene regulatory domains as intervals
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Figure 1. Clustering analysis reveals multiple classes of epigenetically distinct gene regulatory regions in NS cells. (A) Schematic depicting the classification
and regulatory annotation of DHS regions employed in this study. (B,C) Heatmaps of TSS-proximal (B) and TSS-distal (C ) DHS regions generated by k-means
clustering analysis according to the local ChIP-seq signal for seven histone modifications (x-axis). Five distinct proximal clusters and six distal clusters were
identified. Regulatory designations (y-axis) are given according toour downstreamanalyses, as described in the Results section. (D,E) Aggregate plots of histone
modification signal centered upon the point of maximal DNase-seq enrichment for each proximal (D) and distal (E) putative regulatory element.

The neural stem cell cis-regulatory network
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between two adjacent CTCF binding sites, we observed very similar

trends. With this alternative domain definition, once again there

was a clear tendency for promoters to be associated with distal ele-

ments in an equivalent activity state, without an intervening CTCF

site to act as a putative boundary element (Supplemental Fig. S2D).

We were surprised to observe that the second class of active

proximal elements (proximal cluster 2), which lacked any enrich-

ment of the enhancer mark H3K4me1, was not strongly associated

with any of the distal CREs defined here (Fig. 2C, gray box; Sup-

plemental Fig. S2D), suggesting that the associated genes are

mainly regulated at the proximal promoter level and/or by distal

elements not detected by our strategy.

In an independent test of enhancer function, we cloned and

tested the intrinsic enhancer activity of putative active and poised

enhancers in a luciferase reporter gene assay. As predicted, putative

active enhancer elements (distal cluster 1 or 2) possessed stronger

activation potential in NS cells than those with a poised enhancer

signature (distal clusters 3 and 4) (mean fold change of active en-

hancers 11.5 6 11.8 vs 1.9 6 1.6 for poised enhancers; Welch’s

t-test, P < 0.01) (Fig. 2D).

Taken together, our fine-grained analysis of chromatin pat-

terns, target gene expression analysis, and reporter gene assays

support the existence of multiple distinct classes of distal and

proximal CREs that vary greatly in their ability to influence gene

expression in NS cells.

Different CRE classes associate with genes that are regulated
when NS cells exit self-renewal

Following periods of active self-renewal, NS cells can either dif-

ferentiate to generate glial or neuronal progeny or can enter a cell

cycle-arrested state known as quiescence (Bonaguidi et al. 2011;

Fuentealba et al. 2012). These state changes all involve rapid and

extensive rewiring of the GRN underpinning NS cell self-renewal

(Ohtsuka et al. 2011; Bracko et al. 2012;Martynoga et al. 2013).We

hypothesized that genes whose expression is regulated during

these different fate decisions would be associated with distinct

functional classes of CREs. To address this question, we treated NS

cells with three different growth factor regimes to induce cell cycle

exit and stimulate differentiation or quiescence, and we used

Figure 2. DHS clusters exist in a range of activity states. (A,B) Boxplots of the expression levels (RNA-seq) of the genes associated with proximal (A) and
distal (B) DHS clusters. (C ) Heatmap showing the strength of association between each class of distal DHS cluster (y-axis) and each proximal cluster (x-axis).
Proximal cluster-associated genes have been further subdivided according to their expression level. Enrichment values are row-normalized and represent
the P-values as calculated by GREAT (see Methods). Active distal elements are strongly enriched around expressed genes with active proximal elements
(green box). Poised enhancers associate with less expressed or nonexpressed genes (yellow boxes), and repressed enhancers are most enriched around
repressed promoters of silent genes (red box). Active proximal cluster 2 elements are weakly associated with all distal DHS classes. (D) Increased luciferase
activity is driven by active (distal cluster 1 and 2) compared to poised (distal cluster 3 and 4) enhancers. Values presented are the fold change in normalized
luciferase signal compared to the enhancerless parent vector containing only a minimal promoter.
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microarrays to detect significantly up- and down-regulated genes.

We used BMP4 to induce astrocytic differentiation (Sun et al.

2011a), treatment with B27- and FGF2-containing medium to in-

duce an early neuronal progenitor fate (Spiliotopoulos et al. 2009),

and BMP4 + FGF2 to induce NS cell quiescence (Sun et al. 2011a;

Martynoga et al. 2013). In all three experiments, 1340–2054 genes

were significantly down-regulated and 1442–2054 genes were up-

regulated, showing the extent of transcriptional rewiring. The re-

sponsive genes were independently validated and enriched for

relevant functional categories and known marker genes (Supple-

mental Table S2; Supplemental Figs. S1, S3).

We then computed the statistical significance of the associa-

tions between each class of CRE and the sets of significantly reg-

ulated genes in each array. Repressed and unmarked promoters

were enriched in the set of genes up-regulated in all three array

experiments and showed no association with down-regulated

genes, showing thatmany silent genes with these promoter classes

are activated as NS cells exit self-renewal, as expected (Fig. 3A).

Proximal cluster 3 promoter genes showed the same trend, in-

dicating that this enhancer-like chromatin signature may mark

a class of genes poised for induction during differentiation or qui-

escence. Active proximal cluster 2 elements appear to be strongly

associated with NS cell self-renewal, since the linked genes showed

a strong tendency to be down-regulated in differentiation and

quiescence. Active proximal cluster 1 elements showed more

complex associations andmany linked genes were actually further

up-regulated upon exit from self-renewal. Similar patterns were

observed for the active distal enhancer–associated genes, which

were both up- and down-regulated (Fig. 3B). Thus even genes with

active proximal and distal CREs can be further activated following

changes of cell state. As predicted, genes associated with poised

enhancers were much more likely to be up- than down-regulated

in differentiation or quiescence, as was also seen for repressed

enhancer–associated genes.

CRE-associated genes belong to different functional categories

Based on their association with different groups of expressed and

nonexpressed genes, we predicted that different CREs would be

associated with genes belonging to different functional categories.

We used DAVID (Huang da et al. 2009) to discover enriched gene

ontology (GO) biological processes associated with proximal CREs

(Supplemental Fig. S4A). Both of the active proximal clusters were

strongly enriched in the promoters of cell cycle genes and regula-

tors of transcription, both fundamental cellular processes required

for active NS cell self-renewal. Terms related to phosphate metab-

olism were more enriched in active proximal cluster 1 genes, and

terms related to protein transport and localization were more

enriched in proximal cluster 2 genes. Interestingly, repressed prox-

imal cluster 4 promoters were very strongly enriched for genes as-

sociated with ‘‘neuron differentiation’’ and several related terms,

suggesting that in self-renewingNS cells, this class of elementmarks

and silences genes required for the generation of differentiated

neuronal progeny.

We used GREAT to predict the functions of distal CRE-

regulated genes (McLean et al. 2010). The six distal CRE clusters

showed largely non-overlapping and frequently biologically rele-

vant term enrichments (Supplemental Fig. S4B). For example, the

terms ‘‘stem cell development,’’ ‘‘stem cell maintenance,’’ and

‘‘stem cell differentiation’’ were very highly enriched in active

enhancer clusters 1 and 2 and in the ‘‘poised high’’ distal cluster 3,

but not in less active or repressed enhancers. ‘‘Negative regulation

of gene expression’’ and several related termswere among themost

enriched terms in the repressed enhancer group, while the less ac-

tive poised enhancers were most strongly enriched in cytoskeletal

regulators (e.g., ‘‘actin cytoskeleton organization’’), suggesting that

somegenes associatedwith poised elementsmaydrive the extensive

cellular remodeling associated with the differentiation and migra-

tion of NS cell progeny.

Altogether these analyses indicate that epigenetically defined

CREs in different activity states associate with different functional

classes of genes that are frequently highly responsive to NS cell

state change.We predicted that these different properties would be

driven by differential recruitment of TFs and set out to determine

the most important TF regulators.

Motif enrichment analysis predicts key TFs binding
and regulating the different classes of CRE

We used motif analysis to identify the enriched motifs of the key

TFs binding the different functional classes of CRE. We used de

novo search algorithms MEME (Machanick and Bailey 2011) and

RSAT (Thomas-Chollier et al. 2012) to examine a narrow 400-bp

window centered on the DHS summit, and also used CentriMo

Figure 3. DHS cluster-associated genes have different expression patterns in differentiated and quiescent NS cells. (A,B) The relative strength of
association between proximal (A) and distal (B) CREs and genes regulated when NS cells commit to astrocyte or neuronal differentiation, or enter
quiescence. Wedge height is proportional to the statistical significance, and the associations with gene sets that are up- and down-regulated in each
microarray experiment are presented in opposite wedges.

The neural stem cell cis-regulatory network
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(Bailey and Machanick 2012) to identify previously described

motifs with significant enrichment centered upon DHSs. We an-

alyzed each cluster of DHSs separately and curated a core set of

16 distinct TF motifs that were each significantly enriched in at

least one of the six distal and five proximal clusters of DHSs

(Fig. 4A), and plotted the proportion of DHS sites in each cluster

that showed significant motif matches (Fig. 4B,C).

Among the enhancer clusters 1–5, a motif previously attrib-

uted to the nuclear factor I (NFI) TFs wasmost strongly enriched, as

were two related E-boxmotifs, the predicted target motif for bHLH

TFs. Among the active enhancer clusters 1 and 2, there was also

clear enrichment of a novel motif consisting of two SOX-like

motifs in opposite orientations (Fig. 4A, 2Sox motif). Motifs for

TCFAP2A, SP1, and ZIC4 TFs were found more broadly across all

enhancer classes but were particularly frequent in active enhancer

cluster 1. Unmarked distal regions of cluster 6 and repressed en-

hancers were strongly enriched for the CTCF motif, suggesting

that many of these sites may be bound by the CTCF regulatory

factor.

Proximal CREs exhibited enrichment of a largely distinct set

of TFmotifs, with less representation of the NFI and SOXmotifs. E-

box1, a SMAD-like motif, and the TCFAP2A and ZIC4 motifs were

very strongly enriched in both active and repressed proximal ele-

ments, and the SP1motif was very prevalent in all proximal DHSs.

E2F3 and ETS1 motifs were most specific for active proximal ele-

ments (Fig. 4B).

Motif enrichment is predictive of NFI, bHLH, and SOX TF
binding to CREs

To directly test whether TF motif enrichment is indeed predictive

of TF binding in NS cell CREs, we selected a set of TFs and per-

formed genome-wide location analysis by ChIP-seq. We focused

on enhancer CREs, since thesewere expected to contributemore to

cell type–specific gene expression (Heintzman et al. 2009; Hawkins

et al. 2011; Yu et al. 2013), and selected a set of TFs whose motifs

were enriched in enhancers, which were robustly expressed in self-

renewing NS cells (see FPKM expression values from RNA-seq,

below) and for which we could obtain ChIP-grade antibodies. We

selected an antibody that specifically recognizes all four NFI family

members (NFIA [FPKM = 36], NFIB [FPKM = 28], NFIC [FPKM = 19],

NFIX [FPKM = 28]) (Martynoga et al. 2013).We selected antibodies

for four bHLH factors, each with distinct known and predicted

functions in neural cells. Briefly, TCF3 (FPKM = 81) is a broadly

expressed class I/E-protein bHLH factor (Ross et al. 2003); ASCL1

(FPKM = 16) is a potent inducer of neuronal differentiation that

has recently been implicated in promoting NS cell proliferation

(Castro et al. 2011; Andersen et al. 2014); OLIG2 (FPKM = 268) is

implicated in driving NS cell proliferation and is also involved in

context-dependent functions in oligodendrocyte and motor

neuron specification (Meijer et al. 2012); and MAX (FPKM = 41) is

a binding partner of the oncogenic MYC factors, which makes an

important contribution to ES cell self-renewal (Rahl et al. 2010;

Hishida et al. 2011). We also selected three SOX factors, each from

different SOX factor subfamilies and all candidate regulators of

NS cell fate (Sarkar and Hochedlinger 2013). SOX2 (FPKM = 116) is

a known regulator of various classes of NS cells and non-NS cells

(Liu et al. 2013), and SOX21 (FPKM = 27) is thought to pre-

dominantly act as a repressor that counteracts SOX1-3 function

(Sandberg et al. 2005); SOX9 (FPKM = 54) has been linked to the

establishment and maintenance of NS cell identity (Scott et al.

2010), although, like SOX21, its genomic binding targets have

never been thoroughly described.We also obtained and reanalyzed

published NS cell ChIP-seq data for the multifunctional tran-

scriptional regulators CTCF (FPKM = 54) and SMC1A (FPKM = 64),

a cohesin complex subunit (Phillips-Cremins et al. 2013), and also

for FOXO3 (FPKM = 6), since it is a known regulator of NS cell

homeostasis and therefore is likely to have important input to the

NS cell GRN (Paik et al. 2009; Renault et al. 2009;Webb et al. 2013).

FOXO3 ChIP-seq was conducted in mitogen-inhibited cells in or-

der to induce nuclear localization of this TF.

Weused theMACS2peak caller (Zhang et al. 2008) to generate

genome-wide maps of robust and specific binding sites for each TF

(Supplemental Table S3; Supplemental Fig. S5). At least 80% of all

distal CREs and 60% of all proximal CREs overlapped binding sites

for at least one of our selected TFs (Fig. 5A), and frequentlymultiple

different TF peaks mapped to the same CRE (Fig. 5B). Active en-

hancer regions were particularly densely bound, with an average

co-occupancy of five different TFs and 468 sites showing binding

of nine or more of the 11 TFs studied here. Thus, even the narrow

genomic windows identified by DNase-seq frequently contain

multiple binding sites for TFs belonging to distinct TF families. Of

the distal CREs, the regions lacking histone modifications tended

to be bound by fewer distinct factors (average < 2 TFs) (Fig. 5B).

Proximal CREs were also less frequently bound by the set of TFs

studied here, which was expected since the selection was based on

factors whose motifs were more enriched in distal CREs. The ex-

ception to this was poised proximal cluster 3, which, as well as

exhibiting an enhancer-like chromatin signature, was frequently

bound by more than three of the TFs studied (Fig. 5B).

The different TFs had remarkably different patterns of bind-

ing across the different classes of CRE, indicating that they have

different regulatory functions (Fig. 5C,D). The bHLH factor OLIG2

bound promiscuously across an average of 75% of all distal ele-

ments and nearly 60% of all proximal elements. NFI factors were

also verywidely bound, particularlywithin the five distal enhancer

CRE classes, suggestive of important enhancer-dependent func-

tions of these TFs in NS cells. SOX2, SOX9, TCF3, and FOXO3 all

bound fewer distal CREs overall and were more likely to bind

within the more active classes of distal enhancer (distal clusters

1–3, Fig. 5D). ASCL1, SOX21, and MAX all bound an even smaller

number of distal CREs in total and, when they were present, were

most likely to be within active distal enhancers. Additionally, the

bHLH factorMAXwas the only TF that bound a greater proportion

of proximal than distal elements and was found in ;30% of both

classes of active promoter elements (Fig. 5C). In contrast to the

other factors, CTCF and SMC1A were observed to bind to only

a small proportion of NS cell enhancers overall, as reported pre-

viously (Phillips-Cremins et al. 2013), but to nearly 60% of un-

marked distal elements and nearly 40% of all unmarked proximal

promoters (Fig. 5D). This binding pattern fits with the enrichment

of CTCF motifs and suggests that many such unmarked regions

might function as transcriptional insulators and/or topological

domain boundaries whose chromatin modification patterns have

been poorly characterized (Wang et al. 2012). Less expected was

the observation that around a third of repressed distal enhancers

and nearly 40% of repressed promoters contained CTCF and

SMC1A binding, potentially implicating these factors in the re-

pressive activity of certain CREs in NS cells (Fig. 5C).

To gain insights into the topology of the core network of TFs,

we examined the patterns of cross-regulation among the 11 TFs

analyzed by ChIP-seq. The resulting network graph was highly

interconnected and 7/11 factors appear to auto-regulate, both

features of a robust transcriptional network (Fig. 5E).
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Figure 4. Differential TF motif enrichment within the different CRE classes. (A) The set of 16 TFmotifs found to be enriched in at least one of the different
DHS clusters (see Methods). Motif logos, the name employed in this study, and the motif database source and respective identifier are presented. (B,C)
Heatmap representation of the abundance of the 16 TF motifs in each of the distal (B) and proximal (C ) clusters of DHSs, binned in 10% intervals.

The neural stem cell cis-regulatory network
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Widespread motif-independent binding of TFs in CREs

The frequency of TF binding within CREs (Fig. 5C) often exceeded

the motif frequency within individual DHSs (Fig. 4B,C). Therefore,

we examined the correspondence between each factor’s binding

within distal CREs and the presence of each CRE-enriched motif

(Fig. 5F). CTCF and SMC1A demonstrated a very strong correlation

between TF and CTCF motif presence, suggesting robust motif-

dependent binding of these factors. For the NFI, SOX, and FOX TFs,

the strongest positive factor/motif correlations observed were also

for each TF’s predicted motif (or the 2Sox motif in the case of all

three SOX factors); however, the correlation coefficients tended to

be fairly small, indicating that a substantial proportion of each TF’s

binding is not mediated by that factor’s cognate motif. Apart from

ASCL1, which correlated well with E-boxes 1 and 2, this trend was

even more marked for the bHLH factors. MAX showed little pref-

erence for any of the motifs studied, while TCF3 and OLIG2 were

actually slightly better correlated with the NFI motif than with the

E-box motifs, indicating that in some cases NFI factors may recruit

or stabilize binding of bHLH factors to CREs. Interestingly, all non-

CTCF/cohesin factors were anti-correlated with the CTCF motif,

suggesting strong avoidance of those sequences by this group of TFs.

Expressed TFs whose motifs are enriched in CREs do indeed

exhibit widespread binding in epigenomically defined CREs. How-

ever, there is no precise one-to-one mapping between the presence

of TF motifs and binding sites for the cognate factor; instead, most

factors are recruited to a large portion of their binding sites less di-

rectly, presumably via their contribution to multi-TF, enhancer-

associated complexes, as has been observed in several other cellular

systems (Biggin 2011; Ernst and Kellis 2012; Kvon et al. 2012).

Mathematical modeling highlights the most important genomic
features regulating genes required for NS cell self-renewal,
quiescence, and differentiation

Our characterization of 11 different classes of CRE, each contain-

ing different combinations of TF motifs and each populated by

binding sites for the 11 different TFs, yields a wealth of genomic

Figure 5. TFs whose motifs are enriched in distal enhancers show distinct patterns of CRE-binding. (A) Percentage of DHSs belonging to each cluster
that contains a significant ChIP-seq binding peak for one or more of the 11 TFs studied here. (B) The mean number of different TFs bound to each class of
DHS elements. (C ) Percentage of distal and proximal DHSs that are bound by each TF. (D) Distribution of each factor’s binding peaks within the different
classes of distal DHSs. The majority of TF binding peaks are found in the more active (cluster 1 to 3) regions for all factors, apart from CTCF and SMC1A,
which more frequently bind unmarked distal regions. (E) Network graph showing the predicted regulatory interactions between the key TFs analyzed in
this study. Each arrow represents promoter-proximal binding from our ChIP-seq data. (F) Pairwise matrix showing the Pearson correlation coefficients
between TF peaks (y-axis) and motifs (x-axis) within each distal DHSs.
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features, each of which could potentially be predictive of genes

with different functions in NS cells. We used a machine learning

approach, with the goal to identify, in an unbiased and data-driven

manner, the regulatory features most predictive of genes required

for NS cell self-renewal, differentiation, and quiescence.

To this end, we focused on the sets of genes whose expression is

regulated when we induced glial or neuronal differentiation, or

quiescence (Fig. 3A,B; Supplemental Figs. S1, S3; Supplemental Table

S2). We reasoned that genes down-regulated in any of these three

conditions were more likely required for active self-renewal of

NS cells and that up-regulated genes would have functions

in differentiation and/or quiescence. We then used a logistic re-

gression framework (seeMethods) to buildmodels that we could use

to classify genes asNS cell self-renewal genesversus differentiationor

quiescence genes according to the presence of CREs with distinct TF

occupancy andmotif presence in their regulatory domains (Fig. 6A).

We determined the accuracy of our models using the area

under a receiver-operator curve (AUC) in a cross-validation scheme

(see Methods). For all three of the microarray experiments, our

models showed an accuracy of at least 0.65 at classifying genes as

down-regulated self-renewal genes or up-regulated differentiation/

quiescence genes, representing a 30% improvement over random

classification (Fig. 6C–E). The model coefficients for each of the 65

genomic features considered and their predictive value for up- and

down-regulated gene sets are shown in Figure 6B.

Two features were most predictive of genes associated with

self-renewal and down-regulated in neuronal or glial differentia-

tion or in quiescence. These were the presence of cluster 2 active

promoters and the promoter-proximal binding of the TF MAX

(Fig. 6B–E, green asterisks). Given the association of proximal cluster

2 with cell cycle regulators (Supplemental Fig. S4), this finding was

expected and helps to validate our method. Interestingly, active

proximal cluster 1–associated genes, which are also enriched for

cell cycle regulators (Supplemental Fig. S4), were not predictive of

self-renewal genes down-regulated in differentiation and quies-

cence, again supporting our segregation of these two different

promoter types. The linking of MAX to self-renewal genes suggests

that, as in ES cells (Rahl et al. 2010; Hishida et al. 2011), this TF

promotes active stem cell self-renewal, presumably in collabora-

tion with the MYC factors.

Further validation of our model came from the strong pre-

dictive value of repressed cluster 4 promoters for genes up-regu-

lated in neuronal differentiation (Fig. 6C, purple asterisks), as this

was also revealed by our previous GO analysis (Supplemental

Fig. S4). Less expected was the association of double SOX motifs

and proximal SOX2 binding with neuronal genes. It will be in-

teresting to determine how SOX2 and other SOX factors regulate

this class of neuron-associated genes.

Regarding the model for astrocytic differentiation, repressed

proximal cluster 4–associated genes were also predicted to be up-

regulated, but so too were the poised (proximal cluster 3) and un-

marked (proximal cluster 5) promoters (Fig. 6D, brown asterisks).

These last two groups of promoters were also predictive of genes up-

regulated when NS cells enter quiescence (Fig. 6E). Therefore, genes

with promoters in less active or repressed chromatin states but

which possess significant DHSs in self-renewing NS cells, appear to

be bookmarked for activation upon astrocytic differentiation or

entry to quiescence.

All three models predicted involvement of FOXO TFs, via ei-

ther the binding of FOXO3 itself or the presence of FOXmotifs, in

the activation of genes in neuronal and glial differentiation and in

quiescence (Fig. 6C–E, orange asterisks). While FOXO factors’ role

in promoting NS cell quiescence has been described (Paik et al.

2009; Renault et al. 2009), its precise involvement in glial and

neuronal differentiation has been much less explored (Webb et al.

2013). We were also interested to observe that proximal binding of

OLIG2 contributed to predictions of genes up-regulated in both

quiescence and neuronal lineage commitment. Therefore, despite

the very widespread binding of OLIG2 in NS cell CREs (Fig. 5C),

our modeling strategy predicts specific regulatory functions for a

subset of OLIG2 binding sites in controlling differentiation- and

quiescence-associated genes.

Multiple roles for the TF OLIG2 in the maintenance of NS
cell self-renewal

Due to its very widespread binding across almost all classes of distal

and proximal CREs, and because our mathematical modeling ap-

proach indicated that some OLIG2 binding sites were predictive of

genes associated with neuronal differentiation and quiescence, we

explored the function of this TF in our cultured NS cells more di-

rectly.We derived NS cells from the ventral forebrain of embryonic

day 16 mice homozygous for a conditional mutant allele of Olig2

(Cai et al. 2007). These cells had normal growth parameters and

had a normal NS cell marker gene expression profile (data not

shown). Upon adenoviral delivery of Cre recombinase, we were

able to induce complete depletion ofOlig2 transcripts, total protein,

and DNA-bound protein within 48 h (Fig. 7A,G; Supplemental

Fig. S6). Olig2-deleted cells remained undifferentiated according to

morphological criteria and continued to proliferate, but at a re-

duced rate compared to control virus-transduced cells, as mea-

sured by EdU incorporation (Fig. 7B). We used microarrays to

detect genes transcriptionally regulated by OLIG2 48 h after de-

livery of Cre (Supplemental Table S2). Deletion of Olig2 resulted

in significant down-regulation of 616 genes (Fig. 7C), of which

558, or 90.6%, a highly significant proportion (P = 6 3 10�23,

hypergeometric test), were associated with OLIG2 binding sites

within one or more of the CREs defined in this study, suggesting

that OLIG2 acts as a transcriptional activator for some of its

functions inNS cells. OLIG2-activated genes were strongly enriched

in categories relating to the ‘‘cell cycle,’’ ‘‘chromosome,’’ and ‘‘DNA

replication’’ (Fig. 7D).

Seven hundred sixty genes were up-regulated in the absence

ofOlig2, a substantial and significant 93% of which (707 genes, P =

7 3 10�39) were associated with OLIG2-bound CREs (Fig. 7C),

suggesting that OLIG2 also acts as a transcriptional repressor in NS

cells. OLIG2-repressed genes were strongly enriched for gene on-

tology terms relating to neuronal differentiation (‘‘neuron pro-

jection,’’ ‘‘neurogenesis,’’ ‘‘neuron projection development,’’ and

‘‘synapse organization’’) (Fig. 7E). We were able to validate the

up-regulation of multiple neuronal markers and neurogenic

factors by qPCR (Supplemental Fig. S6). Therefore, part of Olig2’s

function in self-renewing NS cells is to repress premature acti-

vation of the neurogenic gene expression program. This validates

one of the predictions of our mathematical model: that proximal

OLIG2 binding is predictive of genes up-regulated in neuronal

progenitors.

Our model also showed that a subset of OLIG2 binding sites

withinproximalCREswas predictive of genes up-regulated duringNS

cell quiescence (Fig. 6E).We tested this directly by exploring whether

Olig2 was required for NS cells to transition into quiescence or to re-

enter the cell cycle from a quiescent state. Following exposure to

quiescence-inducing medium (BMP4 + FGF2) (Martynoga et al.

2013), Olig2 mutant cells exited the cell cycle at the same rate as the

Genome Research 49
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Figure 7. OLIG2 is a multifunctional regulator of NS cell self-renewal. (A) Immunostaining shows the rapid and complete loss of OLIG2 protein
from Olig2-conditional mutant NS cells following administration of Cre. (B) Reduced proliferation of Olig2-mutant NS cells 48 h after Cre delivery, as
measured by 3 h exposure to EdU (P-value < 0.008 Wilcoxon test). (C ) Venn diagram showing the large and significant (hypergeometric test)
proportion of genes deregulated in Olig2-deleted cells that are associated with OLIG2-bound DHSs. (D,E) GO biological processes enriched among
the genes down- (D) and up-regulated (E) by Olig2-deletion. DAVID P-values are shown. (F) Olig2-mutant cells normally arrest their proliferation
when treated with quiescence-inducing medium, but are less likely to re-enter the cell cycle when returned to self-renewal medium, as measured
by 3 h of EdU exposure (P-value < 0.008, Wilcoxon test). (G) Reduced expression of cell cycle regulators and active NS cell marker EGFR and
inappropriate expression of quiescence-associated genes in mutant cells that have been stimulated to resume proliferation, as measured by
quantitative RT-PCR. (H) Top 15model coefficients predictive of genes up- (blue) or down-regulated (red) in the models predicting genes responsive
to elimination of OLIG2 protein.



controls and up-regulated the quiescent NS cell markerGfap (Fig. 7F;

data not shown). However, when stimulated to resume proliferation,

themutant cells incorporated EdU at amuch lower rate than control

cells (Fig. 7F), failed to up-regulate cell cycle regulators (e.g., Ccne2,

Foxm1, and E2f2) and the activated stem cell marker Egfr, and

failed to repress expression of quiescence-associated genes Anxa2,

Cetn4, Gfap, and Id1 (Fig. 7G). Therefore, as well as activating

proliferation genes, OLIG2 appears to repress quiescence genes.

Consistently, OLIG2 binds and represses a substantial fraction of

quiescence genes in self-renewing NS cells. Nine hundred thirty-

two of 1854 (50.3%, P = 1.2 3 10�107, hypergeometric test) genes

normally induced in quiescent NS cells had anOLIG2-boundCRE

in self-renewing NS cells and 382 of the 760 (50.3%, P = 1.3 3

10�42, hypergeometric test) genes aberrantly up-regulated by

OLIG2 depletion from self-renewing cells were genes normally

only induced in quiescence and therefore were derepressed.

We used our logistic regression paradigm to identify genomic

features that can discriminate between genes activated or repressed

by OLIG2 in self-renewing NS cells (Fig. 7H). Proximal SOX9,

MAX, and SP1 regulationwere associatedwith activating functions

of OLIG2, while repressed CREs and SOX21, SOX2, and FOXO3

binding were most strongly predictive of OLIG2-repressed genes.

Altogether, these experimental data indicate that despite very wide-

spread binding, OLIG2 has very specific functions in self-renewing

NS cells and its deletion results in very specific cellular defects.

Therefore, OLIG2 binding sites in different regulatory contexts can

have very different functions.

Discussion

Identifying the repertoire of CREs controlling NS cell
self-renewal

As an important first step toward identifying the TF regulators of

NS cell self-renewal, we first charted the landscape of TF-accessible

CREs in the NS cell genome.Wemarried the discriminatory power

of combinatorial analysis of histonemodifications with the spatial

resolution of DNase-seq to identifymultiple epigenetically distinct

classes of CRE.

CREs, both proximal and distal to gene TSSs, exist in a spectrum

of different activity states. In particular, we observe distal enhancers

in five distinct epigenetically encoded activity states, which associate

with different functional classes of genes that are expressed at dif-

ferent levels. This is generally in agreement with other recent studies

in other cellular systems (Creyghton et al. 2010; Rada-Iglesias et al.

2010; Zentner et al. 2011). We extend this insight by showing strong

coassociations between distal and proximal elements that are in

matched activity states. Several of the proximal CREs that we define

have the characteristics of super-enhancers (Whyte et al. 2013). These

regions consisted of clusters of DHS sites and overlapped almost ex-

clusively with our active proximal clusters types. We could not find

clear functional distinctions between active regionswith andwithout

super-enhancer features (data not shown).

We also characterize a set of TSS-proximal CREswith a histone

signature more akin to an active distal enhancer than an active

promoter, and propose that this is a novel class of poised promoters.

A similar poised promoter signature has recently been reported at

a subset of promoters in mouse ES cells that becomes active during

cardiomyocyte differentiation (Wamstad et al. 2012), and promoters

with the same H3K4me1+/H3K4me3� signature have recently been

linked to transcriptional repression in a range of cell types (Cheng

et al. 2014). In contrast to ES cells wheremany lineage-specific genes

are marked by a bivalent H3K4me3+/H3K27me3+ (Bernstein et al.

2006), we do not observe a coherent group of promoters with this

pattern in NS cells, suggesting that these cells tend not to use this

mechanism to poise genes for later expression.

The core set of TFs regulating NS cell enhancers

Key to our CRE identification approach was the tight definition of

DHS regions, which directed our motif analysis to the sites of

maximal regulatory complex binding within CREs. Echoing our

previous analysis of a specific class of active enhancers in self-

renewing and quiescent NS cells (Martynoga et al. 2013), we see

clear enrichment of NFI, bHLH, and SOXmotifs within the NS cell

enhancers defined in this study. We now show that these same

motifs are also enriched in poised and repressed enhancers, andwe

add to this set of NS cell enhancer-specific motifs a TCFAP2Amotif

and also a novel motif consisting of a pair of oppositely oriented

SOX motifs. This latter motif has recently been reported to be

enriched in conserved noncoding elements of the humangenome,

suggesting that cobinding of SOX dimers may be an evolutionary

ancient method to achieve binding specificity for these factors,

which as monomers recognize a short motif that appears very

frequently in the genome (Guturu et al. 2013). We were unable to

identify motifs that completely distinguished enhancers with

different activities, suggesting that an overlapping set of TFs reg-

ulates them all and that the sequence rules determining different

activities are subtle and combinatorial and cannot be deciphered

with the approach used here.

Machine learning reveals key regulatory features
of self-renewal, differentiation, and quiescence genes

To begin to reveal the regulatory logic of CREs with defined motif

content and TF binding, we used a modeling approach to learn

which of these genomic features are predictive of genes that are up-

or down-regulated when NS cells exit self-renewal. We found that

a logistic regression classifier performed as well as more complex

approaches, such as support vector machines (SVMs), and yielded

more easily interpretable and biologically meaningful output. Our

approach achieved good classification accuracy and yielded several

important and unexpected predictive regulatory features worthy of

further investigation.

UnderstandingandmodelinghowdifferentCREs influence gene

expression remains one of the biggest challenges in biology. Several

recent studies have used modeling approaches to predict gene ex-

pression levels from genomic features within a single cell type (Karlic

et al. 2010; Cheng et al. 2011;Dong et al. 2012). Some of thesemodels

achieve very high prediction accuracy, although they tend to focus on

promoter proximal CREs, or at least give preference to these elements,

anddonot give fullweight tomore distal elements, aswehave tried to

do here. Other studies have set out to identify the genes expressed in

different cell types or tissues based on CREs (Ouyang et al. 2009;

Cheng et al. 2012; Natarajan et al. 2012; Wilczynski et al. 2012). Our

approach is conceptually similar to these lattermethods; with the key

difference that we explain more subtle changes, namely, the differ-

entiation or quiescence process in one cell type and its descendants,

instead of gross differences between very diverse cell states.

OLIG2 is a multifunctional regulator of NS cell self-renewal

To test key predictions of ourmodeling strategy, we acutely deleted

Olig2 from NS cells and showed that from the huge number of
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OLIG2-bound CREs, this TF has rather specific primary functions

in proliferating NS cells. OLIG2 contributes to the maintenance of

NS cell self-renewal by binding sets of genes associated with neu-

ronal differentiation and quiescence and preventing their un-

timely induction. OLIG2 also appears to directly activate another

set of genes, including several core cell cycle regulators, and by this

means promotes NS cell proliferation. The contribution ofOlig2 to

the proliferation of both normal andmalignant neural progenitors

has been described previously, although this work has focused on

OLIG2’s antagonism of Cdkn1a (also OLIG2-bound here) and the

p53 pathway (Ligon et al. 2007; Mehta et al. 2011; Sun et al.

2011b), rather than the novel functions in directly inducing cell

cycle activators and repressing quiescence genes that we describe

here. It will be interesting to determine how previously described

post-translational mechanisms such as phosphorylation of key

residues of OLIG2 (Li et al. 2011a; Sun et al. 2011b) and interactions

with TRP53 protein (Mehta et al. 2011) combine with chromatin-

level epigenetic and co-factor-mediatedmechanisms described here

to explain how OLIG2 can be directed toward such context-specific

functions to both activate and repress target gene expression.

In summary, our rich new compendium of TF binding data,

motif analysis, and CRE annotations in NS cells represents a big

step toward a full understanding of the structure and dynamics of

the self-renewingNS cell GRN. This workwas conducted in ES cell–

derived NS cell cultures. Equivalent data sets are lacking from NS

cells from other in vivo and in vitro sources, but we are confident

that the detailed regulatory annotations reported and interpreted

here are more broadly applicable. As well as providing a resource

for the research community, we are optimistic that our strategy to

define functional CREs and to home in on the critical TF regulators

in well-defined and disease-relevant cell types such as NS cells will

also have great utility in the development of new therapeutic tools.

For example, high-quality CRE annotation and CRE-regulator iden-

tification are crucial in focusing attention on human genetic variants

that are located in functional regulatory elements and therefore are

more likely to be causally relevant to pathological phenotypes

(Schaub et al. 2012; Weedon et al. 2013).

Methods

NS cell culture
ES cell–derived NS5 NS cells were cultured in Euromed-N medium
(Oxford Biosystems Cadama) with N2, FGF-2, and EGF (both 10
ng/mL) supplements according to standard methods (Conti et al.
2005) with the following minor modification: Cells were plated
onto uncoated tissue culture plastic with the addition of laminin
(Sigma) at 2 mg/mL to the medium. Conditional mutant Olig2 NS
cells were derived from the ventral telencephalon of embryonic
day 16Olig2flox/f loxmice (a kind gift of Richard Lu) (Cai et al. 2007)
as described previously (Conti et al. 2005) and cultured in iden-
tical conditions as NS5 cells. Olig2 was deleted by delivery of Cre
recombinase-expressing adenoviruses at anMOI of 20–40 (Vector
Biolabs). OLIG2 protein was detected by immunostaining with
a rabbit anti-OLIG2 antibody (Millipore, 1:500).

DNase-seq

Nuclei for DNase I treatment were isolated from 20 million cells.
After cell lysis and chromatin purification, chromatin was in-
cubated with 4 units DNase I for 10 min at 37°C.

Pulse field gel electrophoresis was performed to verify that
the nuclei were fragmented to a desired fragment size of < 500 bp.

DNase-seq libraries were generated as previously described (Boyle
et al. 2008; Song and Crawford 2010) with a slight modification
made to the linkers to increase ligation efficiency (Song et al.
2011). Libraries were sequenced on the Genome Analyzer IIx
(Illumina).

Chromatin immunoprecipitation

NS cells were fixed sequentially with di(N-succimidyl) glutarate
and 1% formaldehyde in phosphate-buffered saline and then
lysed, sonicated, and immunoprecipitated as described pre-
viously (Castro et al. 2011) using material from ;5 3 106 cells
per sample. All antibodies used had all been previously used for
ChIP and validated for their specificity. Immunoprecipitations
were with mouse anti-ASCL1 (BD Pharmingen) (Castro et al.
2006), rabbit anti TCF3 (Santa Cruz, sc-349) (Lin et al. 2010),
rabbit anti-OLIG2 (Millipore, AB9610) (Mazzoni et al. 2011),
rabbit anti-MAX (Santa Cruz, sc-197) (Rahl et al. 2010), goat anti-
NFI (Santa Cruz, sc-30918) (Pjanic et al. 2011; Martynoga et al.
2013), goat anti-SOX2 (Santa Cruz sc-17320) (Chen et al. 2008),
rabbit anti-SOX9 (Millipore, AB5535) (Mead et al. 2013), and goat
anti-SOX21 (R&D systems, AF3538) (Matsuda et al. 2012).
Primers used for ChIP-PCR are listed in Supplemental Table S5.
ChIP-seq data generation and analysis are described in the Sup-
plemental Methods.

Computational analysis

We used R (R Core Team 2014) and Bioconductor for all compu-
tational analysis, unless otherwise stated. Full details of all analyses
conducted are provided in the Supplemental Methods.

Motif analysis

To identify motifs overrepresented in the different genomic re-
gions, we used three tools: MEME (Bailey and Elkan 1994) and
RSAT peak-motifs (Thomas-Chollier et al. 2012) with 400 bases as
input centered on the peak summit; and CentriMo (Bailey and
Machanick 2012) with 2000 bases as input centered on the peak
summit. Further details are provided in the Supplemental
Methods.

Generation and analysis of microarray and RNA-seq data

For microarray analysis, total RNA from three biological replicates
per condition was TRIzol extracted (Life Technologies, column
purified [Qiagen] and hybridized to Illumina MouseRef-8 v2.0
expression BeadChips according to the manufacturer’s specifica-
tions). Normalization and statistical analysis were carried out with
GeneSpring software (Agilent). Probes were reannotated (Barbosa-
Morais et al. 2010), collapsed by gene, and considered regulated if
there was $ 1.5-fold differential expression with Benjamini-
Hochberg-corrected P-value < 0.05 (t-test). For RNA-seq, the se-
quencing library was prepared according to the TruSeq RNA
sample preparation v2 protocol (Illumina) and sequenced on an
Illumina HiSeq 2000. We obtained a total of 114 million 80-bp
single end reads. We filtered out the first 9 bases of all reads
using FASTX-toolkit version 0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/). We then mapped the filtered reads to the mm9
mouse genome using TopHat (Trapnell et al. 2012) version 2.0.9
(with Bowtie version 2.1.0). Next we used Cufflinks (Trapnell
et al. 2012) version 2.1.1 to estimate expression level of the
genes defined in Ensembl version 61, specifying in addition the
following parameters: –frag-bias-correct–upper-quartile-norm –multi-
read-correct.
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Logistic regression modeling

For the task of predicting whether a gene will be up- or down-
regulated in our three differentiation microarrays, we considered
different levels of information: histone modifications, as en-
coded by the different types of clusters of DHS; motif matches
within the DHS peaks; and factor peaks overlapping the DHS
peaks. Each of these three types of features was divided into
proximal and distal groups according to the DHS peaks. As
depicted in Figure 6A, for each gene regulated in each array we
tabulated this information, in a binary way, as the presence or
absence of each feature in the regulatory domain of the gene
(Supplemental Table S4). Each gene was labeled as up or down
depending on the direction of regulation on the array, and this
was the target variable for the classification task. For the classi-
fier, we used a logistic regression paradigm from the data mining
suite WEKA version 3.7.7 (Hall et al. 2009), specifically the
implementation called SimpleLogistic. The performance of the
model was measured in a cross-validation scheme with 10 folds
and using the AUC statistic.

Data access
DNase-seq, ChIP-seq, and RNA-seq data generated in this study
have been submitted to the European Nucleotide Archive
(ENA; http://www.ebi.ac.uk/ena) under accession numbers
ERP004671, ERP004644, and ERP004633, respectively. The
data are also available via ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) under accession numbers E-MTAB-2270, E-MTAB-
2228, and E-MTAB-2230. Processed high-throughput sequencing
data can be visualized in our UCSC Genome Browser track hub:
http://genome.ucsc.edu/cgi-bin/hgTracks?db=mm9&hubUrl=http://
www.nimr.mrc.ac.uk/trackhub/cisstemhub/hub.txt.
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