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Abstract
Animals quickly learn to approach sources of food. Here, we report on a form of approach in which rats made
volitional orofacial contact with inactive feeders between trials of a self-paced operant task. This extraneous
feeder sampling (EFS) was never reinforced and therefore imposed an opportunity and effort cost. EFS decreased
during initial training but persisted thereafter. The relative rate of EFS to operant responding increased with novel
changes to the operant chamber, reward devaluation by prefeeding, or lesions to the dorsolateral striatum. We
speculate that this may function to increase exploration when the task is uncertain (early in learning or introduction
of novel apparatus components), when the opportunity cost is low, or when the learned sensorimotor solution is
compromised. Moreover, EFS strongly affected subsequent choices by triggering a lose-shift response away from
the sampled feeder, even though it occurred outside of the trial context. This indicates that at least some
behaviors occurring between trials impact future behaviors and should be considered in decision-making studies.
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Introduction
Optimal reward collection requires the ability to adjust

behavior based on past reinforcements and inhibit unpro-

ductive actions (Thorndike, 1927). In reinforcement learn-
ing theory, the decision-maker’s level of knowledge about
the task determines whether an action is productive or not
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Significance Statement

Collecting resources in natural environments is challenging and often requires balancing the utilization of known
sources with the exploration of new ones. Here, we show that at least one behavioral control system in rats
promotes contact with feeders when not performing the task, and that this increases with task novelty. This may
promote exploration of new ways to attain reward. These feeder contacts influence subsequent choices on the
task, apparently by triggering a reward “loss” event affecting other control systems. This interaction among
control systems could produce artifacts in laboratory results if not properly controlled, and taking these into
account may facilitate analysis of decision-making in freely moving animals.
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(Sutton and Barto, 1998). If there is no uncertainty be-
cause the decision-maker has full knowledge, then all
directed actions should exploit the best sources of reward
at a rate dictated by need, cost, and risk. Otherwise, the
decision-maker should intersperse exploitative actions
with some exploratory actions to gain information (Stad-
don and Motheral, 1978; Kakade and Dayan, 2002; Daw
et al., 2006). Exploration allows for discovery of better
reward sources or shortcuts to obtain known sources. In
practice, humans and animals produce a variety of non-
optimal actions in laboratory tasks (Breland and Breland,
1961; Kahneman and Tversky, 1979; Sugrue et al., 2004;
Gruber and Thapa, 2016). Although some can be attrib-
uted toward gaining information, much is attributed to a
neurobiological failure to execute the optimal action
policy or to inhibit underproductive (impulsive) actions
(Moeller et al., 2001; Gruber et al., 2010; Bari and Rob-
bins, 2013).

Impulse control is a composite of processes that span
motor, reward/effort, and choice domains (Evenden,
1999; Aron, 2011; Bari and Robbins, 2013). Impulsive
actions are often underproductive in laboratory tasks be-
cause they lead to suboptimal reward rates, through
smaller reward outcomes (Aparicio, 2001; Reynolds et al.,
2002) or termination of trials (Carli et al., 1983) or because
animals engage in actions that do not lead to reward
(Breland and Breland, 1961). Little attention has been
given to the influence of such actions on subsequent
behavioral choice (Evenden and Robbins, 1984; Williams,

1991). Here we investigate a form of unproductive behav-
ior that we refer to as extraneous feeder sampling (EFS);
this occurs when animals ignore task contingencies and
choose to make contact with feeders rather than begin
the next trial (Fig. 1). This is never reinforced and thus
imposes an opportunity cost by consuming time and
energy that could otherwise have been spent performing
trials to collect reward.

Animals often learn quickly to approach feeders, even
when this is not required for reward delivery, such as the
goal-tracking response in Pavlovian conditioned ap-
proach (Boakes, 1977; Farwell and Ayres, 1979; Robinson
and Flagel, 2009). Goal-tracking is reduced by outcome
devaluation (Lesaint et al., 2015; Morrison et al., 2015),
and the nucleus accumbens core is critical for the expres-
sion of Pavlovian conditioned approach (Parkinson et al.,
1999; Blaiss and Janak, 2009). We would expect compa-
rable properties of our EFS phenomenon if it involves a
Pavlovian component. Moreover, Pavlovian-related learn-
ing and memory systems have long been proposed to
influence instrumental actions and other behavioral out-
put (Estes and Skinner, 1941; Mowrer, 1947; Rescorla and
Solomon, 1967). This likely arises from interactions
among distinct behavioral control systems, which in some
cases appear to function as opponent processes (Solo-
mon and Corbit, 1974; Boakes, 1977). For instance, pi-
geons will peck at a stimulus (a Pavlovian-driven action)
rather than collect reward via instrumental responding
(Williams and Williams, 1969). Moreover, rats approach
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Figure 1. Task apparatus and responding. A, Schematic representation of the behavioral apparatus and examples of operant
sequences on the task. Valid sequences consist of a nose poke in the nose-poke port followed by locomotion to one of the two
feeders. Rats sometimes chose to locomote from one feeder to the other without committing a nose poke; we term this extraneous
feeder sampling (EFS). B, The probability of EFS immediately after reward (win) or reward omission (loss) for each rat (Cohort 1: n �
68 for this and subsequent panels), showing that reinforcement does not affect EFS likelihood. C, The probability of lose-shift
responding following trials with EFS (green) or no EFS (black) parsed into bins of inter-trial-interval. EFS dramatically reduces
lose-shift probability regardless of ITI for the population. D, The within-subject plot of mean lose-shift probability. E, Mean lose-shift
probability for each rat computed from either the first feeder chosen after the nose poke or the last feeder chosen before the
subsequent nose poke. Nearly all rats appeared to generate lose-shift responses from the last feeder chosen as compared to the first
feeder chosen, suggesting that the EFS strongly influences subsequent choice. Error bars indicate SEM, and asterisks (�) indicate
group means that were significantly different from the comparison group (p � 0.000001).
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and engage in operant responding on nearby levers more
than distal ones, even if the nearby levers are associated
with smaller rewards, require more effort, or impose lon-
ger delays to reward (du Hoffmann and Nicola, 2014). This
suggests that the brain systems involved in this kind of
approach do not use information about relative outcome
values and raises the important question of whether ap-
proach events can influence future actions, possibly by
engaging learning in behavioral control systems that do
represent outcomes.

Here, we sought to determine whether EFS affects
choice on subsequent trials and whether EFS is related to
task uncertainty, impulsivity, or Pavlovian control. Our
data suggest that it is related primarily to uncertainty and
can affect choices occurring many seconds later involving
a different brain structure. This cross-talk between disso-
ciated behavioral control systems is likely important for
the study of choice in rodents and possibly other animals.

Materials and Methods
Subjects

This study involved 4 cohorts of Long-Evans (LE) rats
(n � 170 total animals). Cohort 1 consisted of 68 male LE
rats obtained from Charles River weighing 450–600 g
(postnatal day 94–102) at the time of behavioral testing.
All rats were outbred wild-type unless noted otherwise.
Cohort 2 consisted of 30 male LE rats (Charles River)
weighing 350–450 g (postnatal day 88–106) at the begin-
ning of behavioral testing. Cohort 3 consisted of 16 male
and 6 female wild-type LE rats, and 14 male and 15
female LE rats expressing Cre-recombinase under ty-
rosine hydroxylase (TH:cre) born on site and weighing
200–600 g (postnatal day 75–116) at the time of behav-
ioral testing. Cohort 4 consisted of 21 male LE rats ob-
tained from Charles River and weighing 450–600 g
(postnatal day 94) at the time of behavioral testing. Hous-
ing conditions, training, and testing methods were com-
mon to animals from all cohorts. Rats were housed in
pairs in a transparent plastic cage with corncob bedding
and a section of PVC pipe for enrichment. Access to water
was restricted to 1 h per day during behavioral training
and testing but was unrestricted otherwise. The vivarium
was maintained at 21°C and 12-h light/dark cycle (lights
off at 7:30 PM). Experimenters handled the rats daily for 1
wk before the beginning of training. All experimental pro-
cedures were approved by the University Animal Welfare
Committee and adhere to the guidelines of the Canadian
Council on Animal Care.

Competitive choice task
The competitive choice task (CCT) was used in all

experiments. Behavioral training and testing took place in
6 identical custom-built aluminum boxes (26 � 26 cm).
Each box contained two cue lights mounted proximally
above the nose-poke port and two liquid delivery feeders
on either side (Fig. 1A). Infrared emitters and sensors in
the feeders and central port detected animal entry. After
the illumination of the cue lights, the rats poked their
snout into the central port to initiate a trial and then
responded by locomoting to one of the two feeders. A

13-cm-long aluminum barrier orthogonal to the wall sep-
arated each feeder from the central port. This added a
choice cost and reduced choice bias originating from
body orientation. Control of the behavioral task was au-
tomated with a microcontroller (Arduino Mega) receiving
commands via serial communication from custom soft-
ware on a host computer. We reduced acoustic startle
from sounds outside of the testing chamber by presenting
constant background audio stimuli (local radio station).

All animals were trained on the CCT by gradually shap-
ing components of the task. Initially, there were no barri-
ers between the central port and feeders. Each trial of the
task began with the illumination of the two cue lights. At
this stage, the animals discovered that every nose-poke
port entry and a subsequent entry to either feeder within
15 s resulted in a reward of 60 �L of 10% sucrose
solution. Once rats performed 150 trials (typically in the
first session), the session was terminated. In the following
session, feeder entry was rewarded with a probability of
0.5. Subsequent sessions used the competitive algorithm
described below. A barrier separating the nose-poke port
and feeders was increased in discrete lengths (4, 8, and
13 cm) over several sessions (typically 4–5). The training
was complete when the animals performed at least 150
trials with the 13-cm barrier within the 45-min session
over two consecutive days (typically 7–10 training ses-
sions in total).

A computer program served as an opponent for the rats
and was implemented as in previous studies (Algorithm 2;
Barraclough et al., 2004; Lee et al., 2004; Skelin et al.,
2014; Gruber and Thapa, 2016). The algorithm attempts
to predict the rat’s next choice by comparing the pattern
of choice sequences in the preceding trials (1–4 back)
with the choice history of the current session. If any the
pattern occurred more likely than chance (computed by
the binomial test), the algorithm baited the least likely
feeder to be selected on the current trial. If no pattern was
detected, the rewarded side was picked randomly. The
optimal response policy of the rat is to choose randomly
on each trial and disregard reinforcements. The statistical
power of the algorithm to detect patterns is initially very
weak, and so the rewarded feeder is selected randomly
for the first several trials.

Devaluation
Rats were trained on the CCT and divided into three

groups. After all subjects met the training criterion, indi-
viduals of each group received free access to a limited
amount of the reward (sucrose solution) 20 min before the
start of the CCT. The amount of prefeeding was counter-
balanced among rats so that an approximately equal
number of rats received each of the three prefeeding
volumes (0, 5, 10 mL) each testing day. The volume given
to each group rotated each of three consecutive days so
that each rat had received one of the three levels before
behavioral testing.

Excitotoxic lesions
Surgeries were performed after training was complete

in a new group of rats (cohort 4). Rats were then randomly
assigned to one of three lesion groups: dorsolateral stria-
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tum (DLS, n � 7); nucleus accumbens core (NACc, n � 7);
or control (n � 7). All rats received buprenorphine (Alstoe)
to mitigate pain 30 min before incision. The animals were
anesthetized using 4% isoflurane gas (Benson Medical
Industries) in oxygen flowing at 1.0 L/min, and the surgical
plane was maintained with 2% isoflurane throughout the
surgery. The animals were mounted on a stereotaxic
frame (Kopf Instruments), and a midline incision was
made to expose the skull. Burr holes were drilled through
the skull to allow lowering of infusion cannulas at the
following coordinates from bregma [in mm (AP, ML, DV)]:
LS (1.6, 3.0, –6.2), (0.8, 3.7, –6.6), (–0.5, 4.5, –6.6); NACc
(1.2, 2.1, –7.8). Bilateral lesions of LS and NACc were
achieved by microinfusion of quinolinic acid (30 mg/ml in
dimethyl sulfoxide, Sigma-Aldrich Canada). A total vol-
ume of 0.25 �l quinolinic acid was infused at the rate of
0.175 �l/min in each site using a 30-gauge injection can-
nula attached to a 10-�l Hamilton syringe via polyethylene
tubing (PE-50). The injection cannula was left in place for
2 min after the injection to allow diffusion of the drug. The
scalp incision was then closed with sutures. Rats were
given subcutaneous injections (0.02 mg/kg) of meloxicam
(Boehringer Ingelheim) and monitored for 24 h before
returning them to the vivarium. The animals recovered in
their home cages (pair housed) for 1 wk before resuming
behavioral testing.

At the end of behavioral testing, all subjects received
lethal injections of sodium pentobarbital (100 mg/kg i.p.)
and were perfused with physiologic saline and 4% para-
formaldehyde. The brains were postfixed for 24 h in PFA
and then transferred and stored in 30% sucrose in PBS
with sodium azide (0.02%) for a minimum of 48 h before
sectioning. The brains were sectioned in the coronal plane
at 40-�m thickness using an SM2010R freezing mi-
crotome (–19°C, Leica). Every second section through the
region of interest was wet-mounted on glass microscope
slides and later stained with cresyl violet. Images of sec-
tions were digitized using a NanoZoomer (Hamamatsu)
and evaluated for lesion quality.

Behavioral analysis
We quantified several behavioral measures in the CCT.

EFS was defined as the trials where the animals sampled
both feeders after making an entry into the nose-poke
port (Fig. 1A). The probability of lose-shift was calculated
as the probability that the rat would shift feeder choice in
the consecutive trial after reward omission. Likewise, the
probability of win-stay was calculated as the probability
that the rat would repeat the selection of the same feeder
on trials immediately after rewarded trials. The number of
trials represents the total number of completed trials
within a session. Only sessions with �100 trials were
included in the analysis, which affected only the analysis
of behavior in the rats with lesions to the DLS (1 session
of 37 was excluded). The calculation of the percentage of
rewarded trials (wins) represents the percentage of all
complete trials in which the rat was reinforced with su-
crose. Response time measures the time taken to reach
the feeder after the exit of nose-poke port, and intertrial
interval (ITI) is defined as the time between the first exit of

the reward feeder and the next entry into the nose-poke
port. Infrared beam break detectors in the feeders were
used to detect the number of anticipatory licks during the
short hardware-determined delay (typically 200–600 ms)
before reward delivery.

Data were analyzed with Matlab (version R2013a; Math-
Works) and SPSS (version 21.0; IBM). ANOVA, repeated-
measures (RM) analysis of variance ANOVA, and mixed
ANOVA were used to assess the significance of lesion on
behavioral measures (p � 0.05). Where the main effects
were statistically significant, a post hoc Tukey or Bonfer-
roni test was used to determine which marginal means
differed significantly.

Results
Rats were required to perform a very brief (100-ms)

nose poke and then locomote to one of the two adjacent
reward feeders for the possibility of receiving sucrose
solution as a reward (Fig. 1A). The optimal behavioral
sequence for maximizing the number of rewards on the
task is to commit a nose poke in a centrally located port,
enter one randomly chosen feeder, and then begin the
next trial by committing a nose poke in the port. Loco-
moting to the alternate feeder (i.e., EFS) without commit-
ting the nose poke is never reinforced and has both effort
and opportunity costs. We initially suspected that animals
would be more likely to approach the alternate feeder
after reward omission, compared with reward delivery.
However, we found no significant difference in the
probability of EFS after a win versus after a loss in
well-trained animals in cohort 1 (paired t test; t67 �
0.96, p � 0.34; Fig. 1B).

We next sought to discern whether EFS affected ani-
mals’ choices on subsequent trials. A computer chose the
well to be baited on each trial according to each rat’s past
actions and reinforcements such that the optimal choice
strategy by the rat is a random selection. Nonetheless,
most rats tend to engage in the nonoptimal strategy of
lose-shift responding above chance levels (i.e., �50% of
trials). Previous work has shown that there are several
variables that can affect choice on this task. Importantly,
the probability of lose-shift responding strongly decays
with increasing ITI between the time of reward omission
and the start of the next trial on this task (Gruber and
Thapa, 2016). This relationship is also present in the
current data (black dots in Fig. 1C). The EFS behavior
increases the ITI because of the additional time it takes to
locomote to the alternate feeder before the subsequent
nose poke. The ITI distributions for trials after EFS (EFS�)
is therefore shifted from that of trials not after EFS (EFS–).
We therefore limited the subsequent analysis of lose-shift
responding in this cohort to trials with ITI in the range of
3–8 s to ensure sampling from both EFS� and EFS– trial
types throughout the ITI range. The probability of lose-
shift is strongly decreased after trials with EFS for all ITI in
the test range (green circles in Fig. 1C). We hypothesized
that this could result from the animals using a lose-shift
response from the last feeder sampled in the trial (rather
than the first to be sampled). This is strongly supported by
two analyses. First, the mean probability of lose-shift for
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each rat is significantly higher when computed after re-
moving trials following EFS (i.e., mean for the EFS– type)
than for the mean computed with all (EFS� and EFS–)
trials (t67 � 9.1, p � 1.00 � 10–6 or less; Fig. 1D). If the
EFS had no effect on subsequent choice, then removing
these trials should have had no effect on the mean. Sec-
ond, the mean lose-shift responding for each rat com-
puted over all trials (EFS� and EFS–) based on the last
feeder visited is much higher than the mean computed
from the first feeder visited (t67 � 10.1, p � 1.00 � 10–6 or
less; Fig. 1E). In other words, animals based their lose-
shift strategy on the last feeder visited, regardless of
whether it was during a trial or not. This suggests that the
neural systems involved in this decision-making process
mistakenly expected a reward at the second feeder and is
consistent with the characterization of lose-shift respond-
ing as a “choice reflex” (Gruber and Thapa, 2016). The

large effect of EFS on choice motivated us to further
investigate its properties and neural basis.

Rats engaged in EFS on nearly 50% of trials in the first
few sessions, but this significantly decreased with training
(RM-ANOVA, main effects of the session: F7,30 � 48.95,
p � 1.00 � 10–6; Fig. 2A). However, the EFS responses
persisted at substantial levels (mean � 0.230 � 0.106)
even after extended training (8 sessions after training
was complete). We next sought correlational evidence
whether the neural systems promoting EFS are associ-
ated with those promoting either win-stay or lose-shift
responding, which have distinct properties and neural
dependencies (Skelin et al., 2014; Gruber and Thapa,
2016). We excluded all trials after EFS in the subsequent
analysis of win-stay and lose-shift responding to avoid the
immediate effect of EFS on choice. We examined the
session-averaged responses of each rat on the last day of
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testing (8th session). The rats showed a probability of
lose-shift (mean � 0.692 � 0.020) that was higher than
chance levels (p � 0.50), consistent with previous reports
(Gruber and Thapa, 2016). Lose-shift did not decrease
over the training/testing sessions (RM-ANOVA: F1, 36 �
0.531, p � 0.471; Fig. 2B). Conversely, the animals
showed a lower-than-chance probability of win-stay on
the last day of testing (mean � 0.395 � 0.013), and this
again is stable across the training/testing sessions (RM-
ANOVA: F7,30 � 0.427, p � 0.877; Fig. 2C). We next tested
for relationships among these behavioral measures. EFS
showed no significant linear correlation with win-stay
(F1,67 � 1.5, p � 0.220; r2 � 0.02; Fig. 2D) or lose-shift
(F1,67 � 3.5, p � 0.067; r2 � 0.05; Fig. 2E) responding, but
win-stay was negatively correlated with lose-shift re-
sponding (F1,67 � 34.4, p � 1.00 � 10–6; r2 � 0.34; Fig.
2F). This suggests that win-stay and lose-shift are oppo-
nent processes or have distinct temporal sensitivities,
whereas EFS prevalence is independent of both under
normal conditions.

We next wanted to assess whether EFS or the other
response variables varied within sessions. EFS responses
significantly decreased during the session (F4,64 � 37.46,
p � 1.00 � 10–6 or less; Fig. 2G). In contrast, neither
lose-shift nor win-stay responding varied within session
(lose-shift: F1,4 � 7.3, p � 0.07; win-stay: F1,4 � 1.9, p �
0.26; Fig. 2H). The dissociation of these within-session
variances further indicates that EFS is distinct from the
neural mechanisms of lose-shift or win-stay responding.
The reduction of EFS during the session could be due to
changes in either motivation (e.g., thirst) or task uncer-
tainty, which are both expected to decrease as the ses-

sion progresses. These, however, should diverge with
training such that uncertainty should decrease as experi-
ence accumulates across sessions, whereas motivation
for reward should be relatively invariant among sessions.
We therefore examined how EFS decreased within the
session as a function of experience (training sessions) in a
new group of male LE rats with extended training (cohort
2; n � 30). There was a main effect of the training session
(F3,84 � 45.6, p � 1.00 � 10–6 or less) and of trial in the
session (F9,252 � 27.635, p � 1.00 � 10–6 or less), as well
as a significant trial � session interaction (F27,756 � 3.34,
p � 0.001). The within-session decrease became smaller
with increased training (Fig. 2I) but was still significant at
the 18th session (F9,261 � 4.018, p � 1.00 � 10–6 or less).
These correlational data support the hypothesis that it is
task familiarity rather than motivation that drives EFS. We
next sought direct evidence for this hypothesis.

To discern whether the EFS is promoted by the moti-
vation for the reward, as would be expected by phenom-
ena driven by Pavlovian systems, we conducted a
devaluation experiment in cohort 2 after 12 sessions of
training. Animals were allowed to drink a fixed amount of
liquid sucrose before the task, in a counterbalanced de-
sign. This factor should decrease EFS if it is promoted by
the motivation for the outcome. Prefeeding decreased the
number of trials completed in a volume-dependent man-
ner (RM-ANOVA, main effect: F2,46 � 35, p � 1.00 �
10–10; Fig. 3A) but had no effect on the number of trials
with EFS (F2,46 � 2.4, p � 0.10; Fig. 3B). Thus, the relative
rate of EFS to operant responses increased with devalu-
ation (RM-ANOVA with Greenhouse–Geisser correction:
F1.9,43 � 6.7, p � 0.003; Fig. 3C). This was unexpected,
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Figure 3. Effect of devaluation on task performance. A, Mean cumulative sum of operant responses (nose poke to feeder) in bins of
time within a session (Cohort 2: n � 30 rats in A–C). Pre-feeding rats 20 min before the task reduced the number of trials performed.
B, The mean cumulative sum of EFS events in the same sessions, which was not reduced by pre-feeding. C, The mean relative rate
of EFS/trials for each pre-feeding level, showing an increase with devaluation. D–F, Same plots as above for a new heterogeneous
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indicate SEM, and asterisks (�) indicate group means that were significantly different from the comparison group (p � 0.003).
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and we wanted to test whether this could be an artifact of
an unplanned factor within our control. We, therefore,
replicated the experiment under conditions of increased
variance of originally unplanned factors. The replication
was conducted by new investigators (female instead of
male), at a different time of year, and with a new hetero-
geneous group of rats (cohort 3; n � 52) that included
male LE (n � 16), female LE (n � 6), transgenic female LE
(n � 15), and transgenic male LE (n � 14) with an inert
transgene (see Methods). This cohort was bred in our
facility, whereas cohort 2 was shipped from a commercial
breeder. Despite these changes, the results were remark-
ably similar to the first devaluation experiment. Devalua-
tion again decreased trial completion (F1.6,43.8 � 51.0, p �
1.00 � 10–6; Fig. 3D) but not EFS (F2,50 � 1.0, p � 0.36;
Fig. 3E), yielding an increased relative rate of EFS
(F1.64,41.0 � 8.0, p � 0.002; Fig. 3F). Note that the rate of
EFS is higher in this group (cohort 3) compared with
cohort 2 because they had fewer training sessions before
the devaluation. These data provide strong evidence that
EFS is a robust phenomenon independent of outcome
valuation.

We next tested whether uncertainty would affect the
relative EFS rate. We allowed rats (n � 16 male LE wild-
type from cohort 3) to perform the task for 100 trials with
their customary 13-cm barrier separating the nose-poke
port from the feeders. We then took the rats out of the box
and replaced the barrier with either a longer one, a shorter
one, or one of the same length. Rats were then placed
back in the box and allowed to perform an additional 100
trials. The relative EFS rate increased for either novel
barrier length compared with the familiar one (RM-
ANOVA, time � barrier: F14,294 � 3.34, p � 1.00 � 10–5;
Fig. 4). These data indicate that EFS is not related to the
effort of circumnavigating the barriers, because we would
then expect a monotonic length–EFS relationship rather
than a parabolic one. These results indicate that a change
in the apparatus is sufficient to transiently increase EFS,
suggesting that EFS is promoted by uncertainty about the
task or apparatus.

The previous data indicate that EFS is not sensitive to
outcome devaluation and therefore not likely directly af-
fected by Pavlovian associations. EFS could instead arise
from the inability to suppress motor responses leading to
the feeders. Such impulsive actions are typically associ-
ated with processing in the sensorimotor regions of the
rodent caudate-putamen in the dorsolateral striatum
(Graybiel, 1998), which do not show devaluation effects
(Balleine et al., 2007). If so, then damage to this region
would be expected to reduce the rate of EFS. We tested
this by producing bilateral excitotoxic lesions of either the
dorsolateral striatum (DLS; n � 7) or the nucleus accum-
bens core (NACc; n � 7) and comparing the resultant CCT
behavior to control animals (n � 7) from the same cohort.
The location and extent of the lesions (Fig. 5A,B) are
similar to previous reports from our group and others (Hall
et al., 2001; Skelin et al., 2014).

The DLS-lesioned rats had higher response times than
controls (F2,16 � 19.4, p � 1.00 � 10–6; Fig. 5C) but
equivalent percentages of rewarded trials compared with
controls (F2,16 � 1.0, p � 0.4; Fig. 5D). They showed
above-normal amounts of licking in the feeder, suggesting
no motivational deficit (Fig. 5E). The DLS rats had a much
lower rate of trial completion than controls (ANOVA main
effect: F2,15 � 16.4, p � 2.00 � 10–4; Tukey post hoc
shown in Fig. 5F). Their rate of EFS was not statistically
different from that of controls, but tended to be higher
(F2,15 � 2.8, p � 0.09; Fig. 5G). The relative rate of EFS to
operant responses was therefore significantly higher in
DLS-lesioned animals than controls (F2,15 � 22.9, p �
5.00 � 10–5; Fig. 5H). The NACc-lesioned rats were not
different from controls in either trial completion or EFS
(post hoc shown in Fig. 5F–H). These data indicate that
EFS does not depend critically on either striatal region,
and further suggests that EFS is not a product of impul-
sive engagement of habits dependent on the DLS, be-
cause DLS lesion did not reduce EFS, and even tended to
increase it (Fig. 5G).

Further evidence that EFS is independent of these stri-
atal regions comes from the dissociation of lesion effects
on EFS from win-stay or lose-shift responding. Consistent
with our previous finding (Skelin et al., 2014), the DLS
lesion group made significantly fewer lose-shift responses
than the control or NACc-lesion groups (F2,16 � 15.83,
p � 1.00 � 10–6; Fig. 6A), and this reduction was irre-
spective of the ITI (Fig. 6B). The DLS-lesioned group had
a lose-shift response probability at chance levels for all ITI
values. The NACc lesion group, in contrast, showed a
higher probability of lose-shift than controls across the
range of the ITI (Fig. 6B). Furthermore, the large reduction
in lose shift in DLS-lesioned animals (compared with con-
trols) is also evident when including EFS� trials and
computing lose-shift from the last feeder sampled (con-
trols � 0.65 � 0.01; DLS-lesioned � 0.40 � 0.01; t10 �
4.0, p � 0.003). The effects of lesion location on win-stay
responding had an inverse relationship; the NACc-
lesioned group showed a marginally significant reduction
in win-stay compared with the other groups (ANOVA main
effect: F2,16 � 3.782, p � 0.045; Fig. 6C), whereas DLS
lesions had no reduction in win-stay (post hoc Tukey,
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p � 0.996). This reduction occurred over the range of the
ITI (Fig. 6D), suggesting that it normally plays a role in
suppressing such actions, whereas the NACc lesion
group showed a nonsignificant trend for increased EFS
compared with controls (post hoc Tukey, p � 0.061). In
sum, lose-shift responding depends on the integrity of the
DLS, whereas win-stay depends on the NACc. The num-
ber of EFS events was not reduced by either lesion and, in
fact, showed a nonsignificant trend to increase in lesioned
animals, whereas the ratio of EFS to operant task perfor-
mance was much higher in DLS-lesioned animals than
controls.

Discussion
Decision-making is a complex process influenced not

only by the drive to maximize cumulative reward but also
by proximate influences such as the drive to approach
feeders, outcome-related cues, and choice reflex tenden-
cies such as lose-shift and win-stay responses. These
influences likely involve interactions among multiple brain
circuits with unique information-processing capacities
(Daw et al., 2005; Balleine and O’Doherty, 2010; Gruber
and McDonald, 2012). Here, we have revealed dissocia-
tions among regions of the striatum in win-stay, lose-shift,
and the suppression of approach to the feeders outside of
the normal task sequence (e.g. context). This latter be-
havior (EFS) was insensitive to reinforcements, but it
strongly affected subsequent choice in the task; rats lose-
shifted away from the last feeder sampled before the
subsequent nose poke, regardless of whether feeder en-
try was from a choice within the operant task or a conse-
quence of EFS. This is a novel mechanism by which
reinforcement-driven task performance could be modu-
lated indirectly by manipulations that affect approach be-
haviors outside of the task context.

The EFS behavior never fully diminished despite the
lack of any positive reinforcement (Fig. 2I). EFS occurred
in control animals on about a quarter of their trials even
after extended training. A similar phenomenon was ob-
served by Boakes (1977) in his study of goal tracking and
sign tracking behaviors when reward omission conditions
were introduced. The omission contingencies in Boakes
(1977) were effective in reducing the frequency of the
goal-tracking response, although it rarely eliminated
them. Boakes interpreted the failure to diminish re-
sponses with reward omission as an indication that the
goal-tracking and sign-tracking responses are in compe-
tition for behavioral control. We speculate that similar
opponent influences result in the persistence of EFS in the
CCT. One of these processes drives the instrumental
responding and involves the DLS, as evidenced by the
reduction in trial completion after lesion of this structure.
We have no evidence to suggest what process promotes
EFS in the present task.

Although there are no explicit discriminative stimuli pre-
dicting reward delivery in our task, we cannot rule out the
formation of associative learning involving implicit stimuli.
These could involve stimulus-outcome (S-O) or response-
outcome (R-O) contingencies when the rat is reinforced at
the feeder. Indeed, the use of multiple outcomes and lack

of discriminative stimuli promote R-O and/or S-O control
(Holland, 2004). It is possible that rats break the operant
response into multiple components. If one of these rep-
resents entry of the lane to the feeder, it is possible that
the R-O of this portion gains strength during training.
However, this suggests that the EFS should increase with
training, whereas the data reveal that it decreases. Alter-
nately, the feeder could have gained incentive salience
because it is the most proximal conditioned stimuli (CS) to
the unconditioned stimuli (UCS, i.e., sucrose). Rats, there-
fore, may be motivated to make an EFS response due to
Pavlovian (S-O) attraction to stimuli proximal to the UCS.
The main problem with such an interpretation is that the
absolute rate of EFS trials was not reduced by the deval-
uation of the outcome via prefeeding in either of two
distinct cohorts. This contrasts the reduction in feeder
approach (goal-tracking) by devaluation in other tasks
(Lesaint et al., 2015; Morrison et al., 2015), suggesting
that these may be distinct phenomena. There is some
precedence for this, as rates of magazine entry in some
training paradigms are likewise insensitive to devaluation
(Killcross and Coutureau, 2003). Note that the EFS behav-
ior requires rats to locomote around a barrier to an unseen
feeder, which is not a feature common to past work on
this topic. These data suggest that EFS is driven by
associations other than R-O or S-O. An alternative mech-
anism could be stimulus-response (S-R) responding,
which is largely unaffected by devaluation and is thought
to involve DLS (Graybiel, 1998; Yin and Knowlton, 2004;
Yin et al., 2004; Dolan and Dayan, 2013). However, the
rate of EFS was not reduced by lesions of the DLS in the
present study, suggesting the involvement of some other
brain region. An obvious candidate is NACc. Dopamine
depletion in this structure drastically reduces engagement
in instrumental responding (Nicola, 2010), and NACc neu-
rons encode nearby manipulanda and presumably sup-
port approach (Morrison et al., 2015). Moreover, infusion
of amphetamine into NACc increased EFS (Wong et al.,
2017a), consistent with reports that this manipulation in-
creases Pavlovian conditioned approach (Parkinson et al.,
1999; du Hoffmann and Nicola, 2014). It was thus surpris-
ing that lesions of NACc in this study did not decrease
EFS. Perhaps the extent of lesions was insufficient, or
some other brain region can quickly take over the NACc’s
contribution to EFS. Nonetheless, this is consistent with
proposals that multiple reinforcement learning and mem-
ory systems can compete for control of behavior (Dayan
et al., 2006).

Is the shuttling between feeders (EFS) simply an error
reflecting incomplete mastery of the task contingencies,
or does it reveal something about ingrained foraging be-
haviors in rats? We argue that it is the latter. EFS does not
fully extinguish after extensive training and appears to
increase at times of less certainty of the task: initial train-
ing, the beginning of sessions, and after a switch of the
barriers. Its insensitivity to both devaluation and reward
outcome (wins/losses) indicates that EFS is not driven by
motivation, frustration, or outcome expectation. We there-
fore speculate that EFS may serve a role in ethological
contexts to increase explorative actions. Reinforcement
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theory indicates that this is a good policy in environments
with uncertainty (Sutton and Barto, 1998; Kakade and
Dayan, 2002; Sugrue et al., 2004; Daw et al., 2006). We
argue that the natural environment involves sufficient vari-
ability in such a large state space that animals will always
face some level of uncertainty about features pertinent to
survival. We speculate that the rodent brain may, there-
fore, have evolved a system that promotes exploration for
foraging, particularly at times of uncertainty or when op-
portunity costs are low. Moreover, the neural systems
promoting exploration may be inhibited as those that
promote exploitative actions gain associative strength.
This would account for the reduction of EFS with training,
and its tendency to increase after striatal lesions in well-
trained animals. The within-session decrease in EFS is
remarkably similar to the profile of outcome uncertainty in
a recent computational model (Daw et al., 2005), thus
supporting our interpretation of EFS as being promoted
by uncertainty. A postulate of this model is that such
uncertainty mediates behavioral control among two rein-
forcement learning systems – one involving the prefrontal
cortex that can use an explicit (model-based) representa-
tion of outcome values to predict action outcomes, and
another involving the DLS that uses “cached” values
(model-free). The rate of responding by the former system
is sensitive to devaluation, whereas the latter is not. This
model would therefore infer the nose-poke component to
be mediated by the model-based system and EFS behav-
ior by the model-free system. We found, however, that
lesions of the DLS increased EFS, which conflicts with the
model’s prediction. In sum, the dissociation of devalua-
tion effects on the nose-poke and feeder approach ele-
ments of task performance suggests that they are
mediated by dissociated brain systems.

A striking and unexpected feature of the data is that the
feeder approach during the ITI strongly affected subse-
quent choices on task. We observed that EFS triggered
the lose-shift response, suggesting that the reward error
signal conveyed to this system treats EFS similar to the
operant approach during the task. This lack of context
may be explained by the properties of the DLS. We have
shown previously (Skelin et al., 2014) and here (Fig. 6A,B)
that lose-shift depends on the lateral striatum, and the
dorsal region of this structure is generally not contextually
sensitive (McDonald and White, 1993). The ability of EFS
to trigger lose-shift responding reveals cross-talk be-
tween behavioral control systems that, to our knowledge,
has not been previously described. This could be related
to proposals that reward prediction error signals in the
striatum are “factored” to account for complexity in the
world and go on to impact multiple reinforcement learning
systems (Lesaint et al., 2014). Furthermore, our results are
consistent with the proposal that, in goal-tracking ani-
mals, the constant presence of feeders in the testing
chamber (often in an inactive state) causes a downward
revision in their value, which is then subsequently revised
upward on reward delivery during the task (Patitucci et al.,
2016). Our finding that EFS engages lose-shift responding
supports the postulate of the engagement of a negative
reward prediction error on approach outside of the task.

This may depend on features of the task. For instance,
goal-tracking is linked to the palatability of the reinforcer
and sensory associations, suggesting it is not an immu-
table property of temperament (Lesaint et al., 2015). It
remains to be determined whether EFS will similarly de-
pend on reinforcement qualities or sensory stimuli.

EFS is modulated by drugs such as D-amphetamine
(Wong et al., 2017a), but not others such as �-9-
tetrahydrocannabinol (Wong et al., 2017b). Moreover, it
appears to be sexually dimorphic in rats and may be
subject to modulation by stress, inflammation, or other
factors (unpublished observations). Such effects on EFS,
and the effect of EFS on subsequent choice, highlight the
need to consider actions before trial initialization when
analyzing the effects of treatments on decision-making.
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