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Background: Numerous studies have indicated that myelination is the result of the
interplay between extracellular signals and an intricate network of transcription factors.
Yet, the identification and characterization of the full repertoire of transcription factors that
modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family
of proteins highly expressed in myelinating cells in the central and peripheral nervous
systems. In addition, the absence of CC2D1B limits myelin formation in vitro. Here we
propose to delineate the function of CC2D1B in myelinating cells during developmental
myelination in vivo in the central and peripheral nervous systems.

Methods: We used a Cc2d1b constitutive knockout mouse model and then performed
morphological analyses on semithin sections of sciatic nerves and electron micrographs
of optic nerves. We also performed immunohistological studies on coronal brain
sections. All analyses were performed at 30 days of age.

Results: In the peripheral nervous system, animals ablated for Cc2d1b did not show
any myelin thickness difference compared to control animals. In the central nervous
system, immunohistological studies did not show any difference in the number of
oligodendrocytes or the level of myelin proteins in the cortex, corpus callosum, and
striatum. However, optic nerves showed a hypomyelination (0.844 ± 0.022) compared
to control animals (0.832 ± 0.016) of large diameter myelinated fibers.

Conclusions: We found that CC2D1B plays a role in developmental myelination in the
central nervous system. These results suggest that CC2D1B could contribute to gene
regulation during oligodendrocytes myelination in optic nerves.

Keywords: myelin, Schwann cell, oligodendrocyte, Cc2d1b, myelination

INTRODUCTION

Oligodendrocytes and Schwann cells are myelinating cells in the central nervous system (CNS)
and peripheral nervous system (PNS), with a similar role in producing myelin to insulate axons
and facilitate fast propagation of action potential. While oligodendrocytes and Schwann cells differ
on many levels, myelin formation in both cell types is the result of the integration of biochemical
signaling pathways and mechanical stimuli coming from the extracellular matrix, and neighboring
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cells—including the axon. These signals regulate an intricate
network of transcription factors and epigenetic programs
that control the proliferation, migration, differentiation,
and maturation of myelinating cells. The identification and
characterization of the complete repertoire of transcription
factors that modulate myelination are still incomplete (Emery
and Lu, 2015; Sock and Wegner, 2019).

Cc2d1b, also named Freud-2 or lethal (2) giant discs-
1, encodes for Coiled-coil and C2 domain containing 1B
protein. CC2D1B and its homolog CC2D1A are thought to
have redundant functions as they contain very similar protein
domains. They contain a C2 domain, which allows binding to
membrane lipids (Gallagher and Knoblich, 2006; Drusenheimer
et al., 2015), and four DM14 domains, which allow interaction
with endosomal sorting complex ESCRT-III (Drusenheimer
et al., 2015; Ventimiglia et al., 2018). In addition, CC2D1A and
CC2D1B have been reported to regulate gene transcription, as
they both can bind a dual repressor element in the HTR1A
promoter and repress the expression of serotonin 1A receptor
in neurons (Hadjighassem et al., 2009, 2011). However, while
Cc2d1a is highly expressed in neurons and has been implicated
in intellectual disability and autism spectrum disorder (Basel-
Vanagaite et al., 2006; Manzini et al., 2014), Cc2d1b has been
associated with myelin formation (Belin et al., 2019). We
and others have previously shown that Cc2d1b is expressed
in mouse sciatic nerves and more specifically in myelinating
and non-myelinating Schwann cells (Belin et al., 2019; Gerber
et al., 2021). In addition, Schwann cell-knockdown of Cc2d1b
in Schwann cell-neuron cocultures impairs myelination in vitro
independently of effects on Schwann cell number, proliferation,
or apoptosis (Belin et al., 2019). Cc2d1b knockout (KO) mice
have been reported and present delayed memory acquisition
and retention (Zamarbide et al., 2018). The growing evidence,
from both animal studies and human neuroimaging suggests
that myelin plays a role in learning (McKenzie et al., 2014;
Sampaio-Baptista and Johansen-Berg, 2017; Bacmeister et al.,
2020), therefore the role of CC2D1B in the CNS must be
considered.

Here we show that inCc2d1bKOmice while CC2D1B appears
dispensable for PNS radial myelination, CC2D1B is required for
proper developmental myelination of large diameters (>1.5 µm)
myelinated fibers in the optic nerves. These results suggest
that CC2D1B could contribute to gene regulation during
oligodendrocytes myelination in the optic nerves.

MATERIALS AND METHODS

Animal Model
All experiments involving animals followed experimental
protocols approved by the Albany Medical College Institutional
Animal Care and Use Committee. Cc2d1b KO mice (Zamarbide
et al., 2018) were derived from a congenic C57BL/6J background
(as described in Poitelon et al., 2016). Genotyping of mutant
mice was performed by PCR on tail genomic DNA [as described
by Zamarbide et al. (2018)]. Animals were housed in cages of
five in 12/12 h light/dark cycles. Mice were all housed with
sex-matched littermates following weaning. All mice were given

ad libitum access to food and water. No animals were excluded
from the study. For this study, heterozygous parents were bred
to obtain both KO and WT mice and both male and female
mice were used. Mutant and control littermates were sacrificed
at the indicated ages, and sciatic, optic nerves, and brains were
collected. This study was carried out by the recommendations of
ARRIVE guidelines and approved by the AlbanyMedical College
Institutional Animal Care and Use Committee (no. 20-08001).

Western Blotting
Right after sampling sciatic nerves were flash-frozen in liquid
nitrogen, pulverized, and resuspended in lysis buffer 95 mM
NaCl, 25 mMTris-HCl pH 7.4 10 mMEDTA, 2% SDS, 1%
Protease Inhibitor Cocktail (Roche Diagnostic), 1% phosphatase
inhibitor cocktail 2 and 3 (Sigma Aldrich, P5726 and P0044).
Protein lysates were centrifuged at 15,000 g for 30 min
at 4◦C. Supernatant protein concentrations were determined
by bicinchoninic acid assay protein assay according to the
manufacturer’s instructions. Equal amounts of homogenates
were diluted 3:1 in 4× Laemmli (250 mm Tris-HCl, pH
6.8, 8% sodium dodecyl sulfate, 8% β-Mercaptoethanol, 40%
Glycerol, 0.02% Bromophenol Blue), denatured 5 min at
100◦C, resolved on SDS-polyacrylamide gel and electro-
blotted onto PVDF membrane. Blots were then blocked with
5% bovine serum albumin in 1× Phosphate-buffered saline
(PBS), 0.05% Tween-20 and incubated overnight with the
following appropriate antibodies: anti-CC2D1A 1/500 (Abcam,
ab68302), anti-CC2D1B 1/500 (Proteintech, 20774-1-AP), and
anti-Calnexin 1/3,000 (Sigma Aldrich, C4731). Calnexin was
used as a standard loading control to normalize protein levels,
as CC2D1B (140 KDa) precluded the utilization of GAPDH,
Actin, or Tubulin (all <55 kDa). Membranes were then rinsed in
1× PBS and incubated for 1 h with HRP-conjugated secondary
antibodies. Blots were developed using ECL or ECL Plus
(GE Healthcare). Western blots were quantified using Image J
software1.

Morphological Analysis
Mutant and control littermates were euthanized at the indicated
ages, and optic nerves and sciatic nerves were dissected. Nerves
were fixed in 2% buffered glutaraldehyde for at least 24 h
before being postfixed in 1% osmium tetroxide. After alcohol
dehydration, samples were embedded in EPON resin. For
semithin sections (1 µm thick), samples were stained with
toluidine blue and examined by light microscopy. For ultrathin
sections (80–85 nm thick), samples were stained with uranile
acetate and lead citrate and examined by electron microscopy.
For g ratio analysis (axon diameter/fiber diameter), images were
acquired with a 100× objective. G ratios were determined for
100 fibers chosen randomly per animal. For all morphological
assessments, at least three animals per genotype were analyzed.
Data were analyzed using ImageJ software1.

Electrophysiological Analyses
Animals were analyzed at 60 days of age as described
previously (Poitelon et al., 2018; Jeanette et al., 2021).

1http://imagej.nih.gov/ij
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Mice were anesthetized with tribromoethanol, 0.4 mg g−1

of body weight, and placed under a heating lamp to avoid
hypothermia. Motor conduction velocity and amplitude of the
sciatic nerve were obtained with subdermal steel monopolar
needle electrodes: a pair of stimulating electrodes was inserted
subcutaneously near the nerve at the ankle, then at the sciatic
notch, and finally at the paraspinal region at the level of
the iliac crest to obtain three distinct sites of stimulation,
proximal and distal, along the nerve. Compound motor action
potentials were recorded with an active electrode inserted
in muscles in the middle of the paw and a reference
needle in the skin between the first and second digits.
Electrophysiological studies comprisingmotor and sensory nerve
conduction studies were conducted using a Viking Quest
electromyography device.

Immunohistochemistry
All animals were anesthetized with 2.5% trimoboethanol
(avertin), injected intraperitoneally, and then perfused with
4% of paraformaldehyde (PFA) in PBS via the left ventricle.
The brains were post-fixed overnight in 4% of PFA at 4◦C.
Coronal brain slices 50 µm thick were prepared using a
cryostat (Leica Biosystems, CM1950). Free-floating sections
were incubated in a blocking solution (5% fetal bovine serum
and 2% Triton X-100 in PBS) for 2 h at room temperature
and incubated with the primary antibody in an incubation
solution (2% fetal bovine serum and 2% Triton X-100 in
PBS) for 2 h at room temperature. The following primary
antibodies were used in this study: anti-MBP 1/1,000 (Biolegend,
808401), anti-PLP-1 1/400 (Abcam, ab284886), anti-MOG
1/500 (Millipore, MAB5680), anti-OLIG2 1/200 (Sigma Aldrich,
AB9610), and anti-KI67 1/300 (Thermofisher, 14-5698-82).
Control conditions including only the secondary antibodies
were used to verify the staining specificity to the primary
antibodies. Sections were then rinsed in PBS and incubated
with Alexa 488 and 555-conjugated secondary antibodies for
2 h at room temperature. The sections were then rinsed with
PBS followed by a counterstain with DAPI. After washing, the
sections were mounted on microscopy slides using coverslips
and a mounting medium (Vector Laboratories, H-1000). Brain
coronal sections images were acquired at a magnification
of ×10 Axio ObserverZ1 (Zeiss) equipped with a standard
digital camera (exposure time: 8 ms for Dapi, 25 ms for
OLIG2, 100 ms for PLP1, 200 ms for MBP, and 250 ms
for MOG). Stitching was processed with ZEN 2.3 (Zeiss).
The staining intensity for myelin proteins as well as the
number of positive cells was assessed in the central area
of the corpus callosum, between the midline and below the
apex of the cingulum (0.6 mm2 area), in the motor cortex
including M1, M2 (0.6 mm2 area) and the dorsal/caudal
striatum, immediately underneath the corpus callosum (0.6 mm2

area). The integrated fluorescence intensity was calculated
as the product of the area and mean pixel intensity using
ImageJ1. All quantification of positive cells and fluorescent
intensity results were determined from at least four brains per
experimental group.

Statistical Analyses
Experiments were not randomized, but data collection and
analysis were performed blind to the conditions of the
experiments. Data are presented as mean ± standard error of the
mean (s.e.m.). No statistical methods were used to predetermine
sample sizes, but our sample sizes are similar to those generally
employed in the field. Two-tailed Student’s t-test was used for
statistical analysis of the differences between groups. Statistical
analyses were performed with Prism 7.0 (GraphPad). Values
of P-value ≤ 0.05 were considered to represent a significant
difference.

RESULTS

We and others have previously shown that Cc2d1b is expressed
by Schwann cells and in sciatic nerves (Belin et al., 2019; Gerber
et al., 2021). Cc2d1b was notably shown to be expressed by both
myelinating and non-myelinating Schwann cells (Gerber et al.,
2021; Figure 1A), as well as increased along with sciatic nerve
development (Gerber et al., 2021; Figure 1B). To analyze the
role of Cc2d1b in Schwann cells in vivo, we used the constitutive
KO for Cc2d1b, generated by the Knockout Mouse Project,
and previously described (Zamarbide et al., 2018). Similarly, to
the previous report, Cc2d1b KO mice are viable, fertile, and
indistinguishable from wildtype (WT) littermates. However, we
did observe a bias in mendelian ratio from the breeding of
heterozygote Cc2d1b KO, with a WT/heterozygote/KO ratio of
18/64/18 instead of the expected 25/50/25 (n = 218, P-value ≤

0.001), for both males and females. We confirmed via Western
blot analysis using sciatic nerve protein lysates at 30 days of age
that CC2D1B was absent in Cc2d1b KO and that CC2D1A was
expressed at normal levels (Figure 1C).

To investigate the role of CC2D1B in myelin formation, the
nerve ultrastructure ofCc2d1bKO sciatic nerves was compared
with control sciatic nerves by semithin sections. Different
developmental stages were analyzed; 10 days of age (P10), when
radial sorting in the peripheral nerves is completed, and all
immature Schwann cells have differentiated into myelinated or
unmyelinated Schwann cells; P20, when myelination is ongoing;
and P60, when myelination is completed. At P10, Cc2d1b KO
axons are properly sorted and the myelin thickness of myelinated
fibers in Cc2d1b KO sciatic nerves (0.664 ± 0.006) was
comparable to control sciatic nerves (0.671 ± 0.005; Figure 1D).
Similarly, at P20, no difference in the myelin thickness of
myelinated fibers inCc2d1bKO sciatic nerves(0.668± 0.012) was
observed when compared to control sciatic nerves (0.67 ± 0.01;
Figure 1D). At P60, myelin maintenance was not affected in
sciatic nerves of Cc2d1b KO animals (0.653 ± 0.005) compared
to control animals (0.677 ± 0.018; Figure 1D). At P60, we also
did not observe any effect on nerve conduction velocity and the
amplitude of compound muscle action potentials in Cc2d1b KO
animals (40.97 m/s± 0.78; 4.62 mV± 0.18) compared to control
animals (42.62 m/s ± 1.09; 4.52 mV ± 0.16; Figures 1E,F).
Overall, these data indicate that CC2D1B is not likely to play a
major role in the regulation of radial myelination in the PNS.

CC2D1B was also shown to be expressed and enriched in
myelinating oligodendrocytes in the central nervous system
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FIGURE 1 | KO of Cc2d1b does not alter developmental myelination in the PNS. (A,B) Single cells RNA-seq–based gene expression values (RPKM) of Cc2d1b in
myelinating Schwann cells (mySC), non-myelinating Schwann cells (nmSC), and all Schwann cells (allSC; Gerber et al., 2021). Schwann cells were isolated from
mouse sciatic nerve embryonic day 13.5 (E13.5), E17.5, P1, P5, P14, P24, P60 (Gerber et al., 2021). (C) Western blot analysis shows that CC2D1B protein levels
are decreased in sciatic nerves of Cc2d1b KO mice at 30 days of age. CC2D1A protein levels are not affected by the absence of CC2D1B. Calnexin was used as a
protein loading control. (D) Myelination in Cc2d1b KO mice. Semithin analysis of control and Cc2d1b KO sciatic nerves at P10, P20, and P60. The thickness of
myelin (g ratio) was measured. n = 3–5 mice for each genotype. (E) Measurements of compound muscle action potential amplitude from Cc2d1b KO animals at
P60. n = 6 nerves for each genotype. (F) Measurements of nerve conduction velocity (NCV) from Cc2d1b KO animals at P60. n = 6 nerves for each genotype. Data
are represented as mean ± s.e.m. Scale bars 10 µm.
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FIGURE 2 | KO of Cc2d1b alters myelination of large diameter fibers in the CNS. (A) RNA-seq-based gene expression values (FPKM) of Cc2d1b in mouse brain
neurons, astrocytes, microglia, oligodendrocyte precursor cells (OPC), and myelinating oligodendrocyte (My.OL; Zhang et al., 2014). (B) Electron microscopy of the
Cc2d1b KO optic nerves. (Up) Electron micrographs of axons in the optic nerves of control and Cc2d1b KO mice, at 30 days of age. Scale bars, 2 µm. (Down)
Scatter plot, and bar graph of g-ratio values of myelinated axons per axon diameter. Mean axonal diameter of myelinated axons. One-hundred fibers per animal were
analyzed. n = 4 mice for each genotype. Data are presented as mean ± s.e.m. Two-sided Student’s t-test: *P-value ≤ 0.05.

(Zhang et al., 2014; Figure 2A). Because Cc2d1b KO mice
present cognitive deficits (Zamarbide et al., 2018), we sought
to clarify the role of CC2D1B in oligodendrocytes during
myelin formation. We first investigated optic nerves, a region
of the CNS rich in oligodendrocytes and myelin. The degree of
myelination of the Cc2d1b KO animals was assessed by electron
microscopy by calculating the g-ratio of myelinated axons in
optic nerves (Figure 2B). Myelinated fibers with a diameter
above 1.5 µm (∼6% of the total myelinated fiber population)
were hypomyelinated in Cc2d1b KO (0.844 ± 0.022) compared

to control animals (0.832 ± 0.016; P-value ≤ 0.05) at P30.
The myelination of the Cc2d1b KO CNS was also evaluated
by immunohistochemistry on brain coronal sections and optic
nerves. We measured the level of myelin markers (MBP, MOG,
and PLP1) in the cortex, corpus callosum, striatum, and optic
nerves, but no significant differences were observed between
Cc2d1b KO and control CNS structures at P30 (Figure 3).
Finally, we also analyzed if the absence of CC2D1B would affect
the number of oligodendrocytes. We counted the number of
OLIG2 positive cells in the cortex, corpus callosum, striatum, and
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FIGURE 3 | Myelin protein level and OLIG2-positive cell number are not affected in Cc2d1b KOCNS. (A) Representative coronal sections of brain tissue
immunostained for MBP and OLIG2 collected from adult Cc2d1b KO animals, at 30 days of age. Scale bar, 200 µm. (B) Integrated fluorescence intensity for MBP,
MOG, and PLP1 and the number of OLIG2-positive cells were quantified in the lateral corpus callosum (CC), the cingulate cortex (CX), and striatum (ST). (C)
Representative cross sections of optic nerve immunostained for OLIG2 and KI67 collected from adult Cc2d1b KO animals, at 30 days of age. Scale bar, 50 µm. (D)
Integrated fluorescence intensity for PLP1, and the number of OLIG2-positive and KI67-positive cells were quantified in the optic nerves. n = 3–4 mice for genotype.
Data are presented as mean± s.e.m.

optic nerves, but did not observe any difference between Cc2d1b
KO and controls CNS structures at P30 (Figure 3). Overall, these
data indicate that CC2D1B may play a role in the regulation of
myelin thickness by oligodendrocytes in optic nerves.

CONCLUSIONS/DISCUSSION

We showed that two transcriptional activators YAP and TAZ
are essential for myelin formation and regulate DNA-binding
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protein, Cc2d1b (Poitelon et al., 2015; Lopez-Anido et al., 2016;
Belin et al., 2019). We also showed that Cc2d1b knockdown in
Schwann cells impairs myelination in vitro (Belin et al., 2019).
Here we proposed to delineate the function of this novel regulator
during myelination in the PNS and the CNS. We found that
while CC2D1B appears to be dispensable for radial myelination
in the PNS, our data suggest that CC2D1B could contribute to the
regulation of oligodendrocyte myelination in optic nerves during
development.

Serotonin receptors are expressed by oligodendrocytes, and
in vitro serotonin exposure leads to impaired oligodendrocyte
differentiation and reduced myelin proteins expression (Fan
et al., 2015). Yet, there has been no analysis of the in vivo
expression of serotonin receptors in oligodendrocytes. CC2D1B
was found to be a repressor of serotonin-1A receptor (encoded
by Htr1a) expression (Hadjighassem et al., 2009, 2011). Our
data suggest that the absence of CC2D1B in large diameter
fibers could cause an increase in serotonin signaling in
oligodendrocytes. Further in vivo genetic analysis focused
on evaluating serotonin receptors in oligodendrocytes should
determine if serotonin is an inhibitor of myelin formation.

In addition, in Drosophila, Cc2d1b/Lgd has been shown to
regulate notch signaling through the modulation of intracellular
trafficking (Childress et al., 2006; Gallagher and Knoblich, 2006;
Jaekel and Klein, 2006). However, in mammals, Cc2d1b does
not affect notch signaling (Drusenheimer et al., 2015). Instead,
Cc2d1b was shown: (i) to be involved in the reformation of
the nuclear envelope following mitosis, and (ii) to regulate
microtubule severance in the mitotic spindle (Ventimiglia
et al., 2018; Baeumers et al., 2020). Molecules of similar
function, i.e., Nde1, BubR1, Tppp, regulating either microtubule
nucleation or the mitotic spindle, have been shown to regulate
oligodendrocyte differentiation and myelination (Choi et al.,
2016; Shimizu et al., 2018; Fu et al., 2019). Thus, it is also
possible that CC2D1B regulates the myelin formation of large
diameter fibers through the regulation of the oligodendrocyte
cytoskeleton.

CC2D1 proteins, which are structurally very similar, were
shown to be both involved in the regulation of MAPK and
Toll-like receptor 4 (Deshar et al., 2016). In addition, CC2D1A
was shown to be involved in the regulation of multiple signaling
pathways, including AKT, NF-κB, protein kinase A (Nakamura
et al., 2008; Zhao et al., 2010; Al-Tawashi et al., 2012), which
are known to be involved in the regulation of myelination (for
review, see Blank and Prinz, 2014; Nave and Werner, 2014).
Thus, is also possible that CC2D1B regulates myelin formation
in optic nerves through the regulation of essential signaling
pathways.

Finally, prior behavioral studies on Cc2d1b KO assessing
visual cues (visual reach test; Zamarbide et al., 2018) did not
detect differences in basic visual function in adult mice. Thus, we
should consider that ablation ofCc2d1bmay delay but not impair
the myelin formation of large diameter fibers in optic nerves. In
addition, while basic motor and sensory function tests (including
visual reach test), object memory, anxiety, and hyperactivity,
showed no difference between Cc2d1b KO males and females,
differences were observed in the Morris Water Maze test, with
Cc2d1b ablation affecting males’ spatial memory formation and
retention but not females (Zamarbide et al., 2018). Thus, it is
also possible that subtle sex-specific differences in myelination
could be observed in specific regions of the CNS that we did not
investigate, such as the hippocampus, which is involved in spatial
memory.
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