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Abstract: Hydroxyproline-rich glycoproteins (HRGPs) are a superfamily of plant cell wall structural
proteins that function in various aspects of plant growth and development, including pollen tube
growth. We have previously characterized protein sequence signatures for three family members
in the HRGP superfamily: the hyperglycosylated arabinogalactan-proteins (AGPs), the moderately
glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). However, the
mechanism of pollen-specific HRGP gene expression remains unexplored. To this end, we developed
an integrative analysis pipeline combining RNA-seq gene expression and promoter sequences to
identify cis-regulatory motifs responsible for pollen-specific expression of HRGP genes in Arabidopsis
thaliana. Specifically, we mined the public RNA-seq datasets and identified 13 pollen-specific HRGP
genes. Ensemble motif discovery identified 15 conserved promoter elements between A. thaliana and A.
lyrata. Motif scanning revealed two pollen related transcription factors: GATA12 and brassinosteroid
(BR) signaling pathway regulator BZR1. Finally, we performed a regression analysis and demonstrated
that the 15 motifs provided a good model of HRGP gene expression in pollen (R = 0.61). In conclusion,
we performed the first integrative analysis of cis-regulatory motifs in pollen-specific HRGP genes,
revealing important insights into transcriptional regulation in pollen tissue.

Keywords: hydroxyproline-rich glycoproteins; cis-regulatory motifs; pollen-specific; machine
learning; tissue-specific expression

1. Introduction

Tissue-specific gene expression patterns are maintained by the combinatorial binding of
transcription factors (TFs) to DNA motifs in a cooperative and competitive manner. DNA motifs
are specific short DNA sequences, often 8–20 nucleotides in length [1], which are statistically
overrepresented in a given set of sequences. Extensive studies have been done to characterize
regulatory factors and sequences responsible for tissue-specific gene expression in human and in
mouse [2,3]. However, to our knowledge, there is no such study that elucidates transcriptional
regulatory motifs responsible for pollen-specific gene expression, particularly for hydroxyproline-rich
glycoproteins (HRGPs) in Arabidopsis thaliana.

Hydroxyproline-rich glycoproteins (HRGPs) are a superfamily of plant cell wall proteins involved
in various aspects of plant growth and development [4]. The HRGP superfamily consists of three
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family members, the extensins (EXTs), arabinogalactan-proteins (AGPs), and proline-rich proteins
(PRPs). Although all HRGPs contain hydroxyproline, the three family members are distinguished
by their unique amino acid compositions, repeated amino acid motifs, and the degree and type of
glycosylation. For example, AGPs can be identified by their biased amino acid compositions of Pro
(P)/Hyp (O), Ala (A), Ser (S), and Thr (T); their frequent occurrence of AP and PA dipeptide repeats;
and their large arabinose and galactose-rich polysaccharide chains attached to O residues. In contrast,
EXTs tend to be rich in S, P/O, Val (V), Tyr (Y), Lys (K), and SOOOO pentapeptide repeats, and have
multiple short arabinose oligosaccharide side chains attached to their O residues. Finally, PRPs are rich
in P, V, K, Cys (C), and T; often have various P/O-rich amino acid repeat motifs in which not all the P
residues are modified to form O; and are the least glycosylated members of the HRGP superfamily.

Bioinformatic programs analyzing genomic/proteomic data from the model genetic plant,
Arabidopsis thaliana, have identified 166 HRGPs consisting of 85 AGPs, 59 EXTs, 18 PRPs, and 4
AGP/EXT hybrid HRGPs [4]. Most HRGP genes are widely expressed in a variety of plant organs and
tissues, while others demonstrate more limited tissue-specific expression. Additionally, several HRGP
genes are differentially expressed in response to particular biotic and abiotic stress conditions. This
information has provided functional insight into the HRGP superfamily and is used by researchers
to facilitate and guide further research in the field. However, one of the unexplored topics is the
transcriptional regulation of HRGP genes, particularly in mature pollen (e.g., sperm cells).

To address this topic, we analyzed 113 RNA-seq data sets from Araport11 [5] and identified 13
pollen-specific HRGP genes, based on the tissue-specificity index (Tau [6]). Ensemble motif discovery
was performed using Emotif-Alpha [7], resulting in the identification of 15 pollen-specific de novo
motifs. Known motif matching based on PlantTFDB [8] and TOMTOM [9] identified interesting TFs
that have been previously reported in pollen, such as GATA12 and BZR1. Regression analysis between
HRGP gene expression and the identified motifs showed a significant correlation (R = 0.6, p < 0.01). Our
results provide the first discovery of putative cis-regulatory elements in pollen-specific HRGP genes.

2. Results

2.1. Integrative Motif Discovery Pipeline for Pollen-Specific HRGPs

To answer the question of what cis-regulatory motifs control pollen-specific HRGP gene expression,
we developed a systematic bioinformatic pipeline for interactive analysis of pollen-specific HRGP genes
and de novo promoter motifs (Figure 1) based on several published databases and tools, including
the gene expression database Araport11 [5]; the known transcription factor binding sites (TFBSs)
database plantTFDB [8]; and the motif discovery tool Emotif-Alpha [7], which is an ensemble motif
discovery pipeline that integrates 11 motif discovery tools, such as GimmeMotifs [10], DECOD [11],
and DME [12]. We obtained 166 HRGP genes from [4], in which 13 genes were further defined as
pollen-specific and 132 genes were defined as non-pollen (i.e., not expressed in pollen) based on public
RNA-seq datasets. We then performed ensemble motif discovery using Emotif-Alpha and identified a
set of 13 motifs (detected by filter A, a relaxed constraint) and a set of 3 motifs (detected by filter B, a
rigorous constraint); we found one common motif in the two sets. Finally, using the results from filter
A and filter B, we performed a regression analysis using the identified 15 motifs and the expression
values of the 166 HRGP genes. The regression model showed that the identified motifs provided a
good model of HRGP gene expression in pollen tissue (R = 0.61).
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Figure 1. Workflow of an integrative analysis combining hydroxyproline-rich glycoproteins (HRGP)
gene expression and promoter sequences. HRGP genes were split into pollen-specific and non-pollen
(i.e., not expressed in pollen) based on tissue-specific gene expression analysis from Araport11 [5].
Ensemble motif discovery was performed on the aforementioned two sets and a total of 3519 motifs
were identified, which were used by the two filters. Filter A is a more relaxed approach where the
motifs are filtered based on the number of occurrences (>10 in pollen-specific HRGPs and <30 in
non-pollen HRGPs) and conservation criterion. Filter B is a more rigorous approach, involving 99 motifs
whose cognate transcription factors are expressed in pollen based on data obtained from plantTFDB [8].
Known motif similarity found that 1341 de novo motifs out of the total 3519 motifs were highly similar
to the 99 motifs (p-value < 0.001). The set was then filtered by conservation and number of occurrences,
with redundant motifs being removed. In total, filter A and filter B identified 15 motifs (with one
motif being identified by both filter A and filter B) putatively controlling pollen-specific HRGP gene
expression; these motifs were then fit into a regression model that integrated the promoter elements
and HRGP gene expression.

2.2. Identification of Pollen-Specific HRGP Genes

Tissue-specific gene expression analysis was performed using 113 RNA-seq samples in 11 different
tissues from Araport11 [5]. We computed the tissue specificity index (Tau [6]) for each gene. Tau values
vary from 0 to 1, where lower Tau values correspond to more universally expressed genes and higher
Tau values correspond to genes that are expressed in a more tissue-specific manner. A gene is defined
as tissue-specific if its Tau value is greater than 0.85. Thus, an HRGP gene is called pollen-specific if
Tau > 0.85 and the highest expression level of the gene occurs in pollen tissue. Using these criteria, we
have identified 13 pollen-specific HRGPs, including 8 EXTs and 5 AGPs (Table 1). To identify promoter
motifs controlling pollen-specific HRGP gene expression, we further defined a background set of 132
non-pollen HRGP genes for discriminative motif discovery. A gene expression heatmap showed that
the pollen-specific HRGPs were almost exclusively expressed in pollen, and non-pollen HRGPs were
expressed in other tissues but not in pollen (Figure 2). We noticed that 12 pollen-specific HRGPs have
been previously reported to be pollen-specific by an analysis of gene expression microarrays in [4], and
they are known to play important functions in pollen. Specifically, PERK4, PERK5, PERK6, PERK7,
PERK11, and PERK12 are involved in pollen tube growth [13]. FLA3-RNAi transgenic plants show
abnormal pollen grains with less viability [14]. PEX4 is also involved in pollen tube growth [15]. AGP50
(BCP1) is required for male fertility [16]. AGP6 and AGP11 are important to pollen grain development,
and homozygous double mutants lead to abnormal pollen grains [17,18]. AGP23 is predicted to
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play an important role in microspore development and/or pollen tube growth [19]. Interestingly,
AT1G54215 (EXT32) is a newly identified pollen-specific HRGP, discovered by analyzing the public
RNA-seq datasets. Due to cross-hybridization and saturation of signals, microarrays have limited
detection capability and high background noise. RNA-seq, on the other hand, is far more sensitive and
precise [20], thus enabling us to identify one additional pollen-specific HRGP (when compared to [4]).

Table 1. List of pollen-specific HRGP genes.

TAIR ID Gene Name a
Tissue

Specificity
Index b

Expression in
Pollen c

Level of
Expression d Reference e

AT1G10620 * PERK11 0.968 7.003 Extremely high [13]
AT1G49270 * PERK7 0.960 8.711 Extremely high [13]
AT4G34440 * PERK5 0.948 7.039 Extremely high [13]
AT3G18810 * PERK6 0.941 9.343 Extremely high [13]
AT2G24450 * FLA3 0.936 12.284 Extremely high [14]
AT1G23540 * PERK12 0.936 7.141 Extremely high [13]
AT4G33970 * PEX4 0.909 9.893 Extremely high [15]
AT1G54215 EXT32 0.908 5.898 High

AT2G18470 * PERK4 0.880 9.803 Extremely high [13]
AT1G24520 * AGP50 0.879 13.274 Extremely high [16]
AT3G01700 * AGP11 0.872 13.079 Extremely high [17,18]
AT5G14380 * AGP6 0.862 13.008 Extremely high [17,18]
AT3G57690 * AGP23 0.856 14.220 Extremely high [19]

* These genes have been reported to be pollen-specific in [4]. a Gene Name is adopted from [4], where some genes
are renamed by the authors to indicate their protein sequence properties. b Tissue specificity index Tau is calculated
using the formula presented in [6]. c Expression is represented using the median value after log 2 transformation.
d Expression value is compared to number of standard deviations (stds) away from the mean value in all genes’
expression profile in pollen. Extremely high expressed genes are more than 3 *stds away from the mean and
high expressed genes have are than 2 *stds but less than 3 *stds away from the mean. e References for known
pollen-related functions.
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Figure 2. Gene expression heatmap showing pollen-specific HRGP gene expression. Rows represent
the 113 RNA-seq datasets from 11 different tissues. Columns represent the 13 pollen-specific (red) and
132 non-pollen (blue) HRGP genes.

2.3. Integrative Analysis Filter A: A Relaxed Set of Pollen-Specific HRGP Motifs

Next, we performed ensemble motif discovery using Emotif-Alpha [7] on the 13 pollen-specific
HRGP genes against the background of 132 non-pollen HRGP genes. Gene promoters (within 1kb
upstream of the translation start site) were retrieved from Ensembl Biomart [21]. Emotif-Alpha
integrated 11 motif discovery tools and led to the identification of 3519 motifs in total.

Filter A selected motifs present in 11 (85%) or more of the pollen-specific HRGP genes and present
in at most 30 (23%) non-pollen HRGP genes. This yielded 13 motifs, which were also conserved in
Arabidopsis lyrata. Table 2 shows the 13 identified motifs. Interestingly, we found that 4 out of the 13
motifs matched to known motifs based on analysis using TOMTOM [9] (p-value < 0.001).
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Table 2. Motifs identified by Filter A. The foreground coverage indicates the percentage (and number) of
pollen-specific HRGP genes having an identified motif in its promoter region. The background coverage
is the percentage (and number) of the non-pollen HRGP genes having that motif in its promoter region.
The relative frequency is the foreground coverage divided by the background coverage. The matched
transcription factor binding sites (TFBS) p-value is a known transcription factor binding site that relates
to pollen along with the accompanying p-value.

Motif Name Motif Logo Foreground
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Best Matched TFBS
(p-Value)
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It is worth noting that the motif gimme_105_Improbizer AACACACGTTTATTAGATGTTT occurs
in all 13 pollen-specific HRGP genes and this motif is highly similar (p-value = 1.6 × 10−6) to the
known BZR1 (Brassinazole Resistant 1) binding motif. Brassinosteroid (BR) is an important class of
steroid hormones in plants that regulates gene expression and cell development [22–24]. BZR1 is a key
transcription factor in the BR signaling pathway, where the binding of BR to a cell surface receptor
kinase (BRI1) directly regulates the phosphorylation of BZR1, which then binds to the promoters of BR
responsive genes. BR was first discovered in pollen, where it regulates cell elongation. Although it
was later found in all tissues, its highest abundance was in pollen, seeds, and fruit [22]. Indeed, cell
wall modification is reported to be one of the major functions targeted by the BR pathway [22]. The
discovery of BZR1-like binding sites in the promoters of pollen-specific HRGP suggests that these
HRGPs are likely to be regulated by the BR signaling pathway.

2.4. Integrative Analysis Filter B: A Rigorous Set of Pollen-Specific HRGP Motifs

Filter B represents a more rigorous approach than Filter A, where known pollen expressed TFs
(i.e., log2 gene expression ≥1) and their binding motifs were used to filter motifs. First, 99 motifs were
identified, based on the cognate transcription factors expressed (based on Araport11 [5]) in pollen and
obtained from the plantTFDB [8]. Known motif similarity found that 1341 de novo motifs out of the
total 3519 motifs were highly similar to these 99 motifs (p < 0.001). The set of motifs was then filtered
by conservation and number of occurrences, with redundant motifs removed.

Interestingly, two motifs discovered by Filter B (DME_ACDGWGMYA and DME_ARRTCYKVRG)
matched with GATA9 binding sites (Table 3). Since GATA9 is the closest homolog of GATA12; it is likely
that GATA12 also binds to these motifs. Interestingly, previous study has found GATA12 is highly
expressed in mature pollen grains but is diminished in germinated pollen grains and pollen tubes [25],
suggesting that these two motifs might play regulatory roles in pollen-specific gene expression in
Arabidopsis thaliana. Additionally, Filter B found Motif gimme_143_MEME_4_w12, which was also
found by the filter A approach; this motif matches a known binding site for the TED protein.

Table 3. Motifs identified in Filter B. The foreground coverage indicates the percentage (and number)
of pollen-specific HRGP genes having the identified motif in their promoter regions. The background
coverage is the percentage (and number) of the non-pollen HRGP genes having that motif in their
promoter regions. The relative frequency is the foreground coverage divided by the background
coverage. The matched TFBS p-value is a known transcription factor binding site that relates to pollen
along with the accompanying p-value.
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2.5. Modeling HRGP Gene Expression in Pollen

To investigate how well our identified pollen-specific motifs can predict HRGP gene expression in
pollen, we conducted a regression analysis using scikit-learn [26]. The 15 identified motifs were mapped
to the 166 HRGP gene promoters, and FIMO [27] motif mapping p-values (negative log10 transformed)
were used as features. A gradient boosting tree was trained and evaluated using three-fold cross
validation [26]. We obtained a good correlation between true HRGP gene expression and predicted
values (R = 0.61, p = 3.31 × 10−18), indicating that the 15 identified motifs may control HRGP gene
expression in pollen (Figure 3). We then extracted feature importance from the trained model; the
BZR1-like motif, gimme_105_Improbizer, was the third most important motif, suggesting again the
pollen-specific HRGP genes might be regulated by the BR signaling pathway (Figure S1).

3.31 x 10-18

Figure 3. Regression analysis using the identified 15 pollen-specific motifs. Each point is an HRGP
gene. Pollen-specific HRGP genes are highlighted in red. The X-axis is the mean HRGP gene expression
in pollen and the Y axis is the predicted gene expression value. The Pearson correlation coefficient is
0.61 and the p-value is 3.31 × 10−18.

3. Discussion

Elucidating transcriptional regulatory mechanisms and transcription factors are fundamental and
critical to understanding gene expression, which controls the growth and development of all living
things. In this study, we undertook the first analysis to examine and illustrate transcriptional regulatory
mechanisms of pollen-specific HRGP genes in Arabidopsis thaliana, which are important for pollen
growth and development [13–19]. Specifically, we employed the tissue-specificity index to define 13
pollen-specific HRGP genes. Using two different filters, including both relaxed and rigorous criteria,
we identified 15 pollen-specific motifs that were matched to several known motifs, including BZR1 and
GATA12, which are known to be pollen-specific and play key roles in cell wall modification [22,25].
Moreover, regression analysis showed that the identified motifs can be used to predict HRGP gene
expression in pollen. Together, these results shed light on the transcriptional regulatory mechanisms of
pollen-specific HRGP genes.

As more plant genomes have been sequenced, genome annotation and related bioinformatics
analysis pipelines have become critical for researchers to further understand plant biology. This
integrative analysis pipeline for studying cis-regulatory motif effects on tissue-specific genes is
generalizable to other species. HRGP genes have been characterized in many other species, including
Oryza sativa, Brassica rapa, and Populus trichocarpa [28]. However, the extent and mechanisms associated
with the transcriptional regulation of these genes remains virtually unknown. Future studies can focus
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on the cis-regulatory motif analysis of HRGP gene promoters throughout the entire plant kingdom,
which is significant to identify both conserved and divergent regulatory elements.

The HRGP superfamily has a nested classification hierarchy. For example, while HRGPs are
composed of EXTs, AGPs, and PRPs, the EXT family can be further divided into classical EXTs, short
EXTs, leucine-rich repeat extensins (LRXs), and proline-rich extensin-like receptor kinases (PERKs) [28].
Fine-grained HRGP classification systems, such as the protein sequence signatures identified by
Bio OHIO 2.0 [29], suggest different gene transcriptional regulation mechanisms in different HRGP
subfamilies. Future studies can focus on the promoter analysis in different HRGP subfamilies.

Gene expression is controlled by the complex combinatorial binding of transcription factors
and epigenetic regulations of chromatin accessibility, histone modifications, and DNA methylation.
Although our identified pollen-specific motifs have provided a good model for predicting HRGP
gene expression (R = 0.61), this gene expression model is not yet complete. To capture the remaining
unexplained variance in this model, we need to gain deeper understanding of the promoter architectures.
Future studies can incorporate motif distance features and gene networks. Multi-omics data, such as
ATAC-seq and ChIP-seq, will also help to better understand the transcriptional regulatory landscape
in pollen.

4. Materials and Methods

4.1. Characterization of Pollen-Specific HRGP Genes

A list of 33,602 Arabidopsis thaliana genes with TAIR IDs was downloaded from the TAIR
website [30]. For each gene in the list, its expression profile in 113 RNA-seq experiments was retrieved
from Araport11 using the python API intermine.webservice [5]. The description of the RNA-seq dataset
can be found at the Araport11 website [5]. To determine pollen-specific expression, the tissue specificity
index, Tau, was used. In a recent benchmarking comparison, Tau was found to be the most robust and
biologically relevant method [20]. Tau varies from 0 to 1, where lower Tau means more universally
expressed and higher Tau means more tissue specifically expressed. As recommended in [5], genes with
Tau > 0.85 were considered tissue-specific. The tissue type was determined by the largest expressed
tissue. All expression values were log-transformed before calculating Tau; values <1 were set to 0
after log transformation [20]. Using this method, we have characterized tissue-specific expression
patterns for 26,500 genes. For the gene expression heatmap, gene expression z-scores were calculated
by seaborn clustermap [31]; larger values indicate higher expression.

A list of 166 HRGPs was reported by Showalter et al. [4]. Pollen-specific HRGPs are defined as a
list of HRGPs that are pollen-specific expressed. Non-pollen HRGPs are defined as a list of HRGPs
that have no expression (expression value is 0 after log transformation) in pollen.

4.2. Promoter Retrieval and Ensemble Motif Discovery

Promoters of pollen-specific HRGPs and non-pollen HRGPs were retrieved from Ensembl Plant
v35 Biomart [21] web interface using gene stable ID, Flank (Gene) Coding Region, and Upstream flank
1000 bp.

To identify regulatory motifs for pollen-specific HRGPs, Emotif-Alpha [7], an ensemble motif
discovery pipeline, was utilized. The foreground promoter set was the list of 13 pollen-specific HRGPs.
The background promoter set was the list of 132 non-pollen HRGPs. Emotif-alpha has integrated 11
motif discovery tools: GimmeMotifs [10], MEME [32], Weeder [33], BioProspector [34], AMD [35],
Homer [36], GADEM [37], MDmodule [38], Improbizer [39], DECOD [11], and DME [12]. Motif length
was set to be 6–16 nt. FIMO [21] was used for motif scanning. The discriminative power of the motifs
was assessed by a random forest classifier using the scikit-learn package. Motif similarity was assessed
by TOMTOM [9]; two motifs were considered to be similar if their TOMTOM [9] p-value was less than
0.001. For similar motifs, the motif with fewer occurrences in pollen-specific HRGPs was filtered out.
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4.3. Conservation Analysis

Conservation analysis was performed using the method adopted by Roy et al. [40]. Orthologous
information between A. thaliana and A. lyrata were retrieved from Ensembl Plant Biomart v39 [21].
CLUSTALW2 [41] was used to do multiple sequence alignment with gap open penalty of 10 and
extension penalty of 0.1. A motif was defined as conserved if it occurred at the same position in the
orthologous promoter alignment.

4.4. Machine Learning

The 15 identified motifs were scanned on the 166 HRGP promoters using FIMO [27] and the
negative log10 motif scanning p-values were used as machine learning features for regression. The
regression algorithm was implemented using scikit-learn GradientBoostingRegressor with parameters
of subsample = 0.3, criterion = “mae”, min samples_split = 5, max depth = 1 [26]. The evaluation was
performed using 3-fold cross-validation using the KFold function.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/12/1751/s1,
Figure S1: Feature importance bar plot of the 15 pollen-specific motifs. Feature importance was based on the
gradient boosting tree model.
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