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Background: To date, the relationship between diverse time use behaviors and
depression status among emerging adults have not been disentangled in the literature.
Therefore, if and how the time displacement mechanism activates depressive symptoms
among emerging adults remains unclear.

Methods: To fill this gap in the literature, we employed a network analysis to make
estimations. The emerging adult sample (N = 1,811) was collected by the Guizhou
Population Health Cohort Study. Time use behaviors were measured by an adaption
of the self-administered International Physical Activity Questionnaire, and depressive
symptoms were assessed using the 9-item Patient Health Questionnaire (PHQ-9).

Results: The results revealed that the time displacement mechanism of emerging
adults differed from that of adolescents. Sleep duration was not crowded out by other
activities, while the time spent on computer use was found to be negatively related to
time spent on heavy work activities. Moreover, computer use behavior triggered three
depressive symptoms (“Anhedonia,” “Guilt,” and “Motor”), but inhibited “Suicide.” The
results of the directed acyclic graph revealed that females and heavy drinkers were at
risk of depression.

Limitations: The study sample was confined to only one province, which may
limit its generalizability. The cross-sectional design impeded the ability to draw
causal inferences.

Conclusion: Our results enhance the current understanding of the internal mechanism
of how time use behaviors influence depressive symptoms among emerging adults.
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INTRODUCTION

Existing literature have established the effects of physical
activity (1, 2), screen time (3, 4), and sleep duration (5,
6) on the depression status of both, adolescent and adult
populations. Moreover, previous studies revealed that unhealthy
time use activities (e.g., excessive sedentary time, inadequate
sleep duration) were risk predictors of physiological diseases,
including cardiovascular diseases (7–9), hypertension (10, 11),
and cancers (12–14). Based on plentiful existing evidence, the
World Health Organization (WHO) and other health institutes
proposed updated time use guidelines to direct people’s daily
activities for substantial health benefits (15–18). For example,
WHO recommended that adults (aged 18–64 years) should do
at least 150–300 min of moderate-intensity aerobic physical
activities; or at least 75–150 min of vigorous-intensity aerobic
physical activities; or an equivalent combination of moderate-
and vigorous-intensity activities throughout the week (15). The
Canadian Society for Exercise Physiology recommended that
adults (aged 18–64 years) should do at least 150 min of moderate
to vigorous aerobic physical activities per week, and get 7–9 h of
good-quality sleep (17).

However, the existing research pool still has two significant
gaps. First, the number of studies focusing on emerging adults,
who are undergoing a unique stage of psychological development,
and present different mental health features than adolescents
and adults older than thirty, are relatively few. Second, previous
studies that adopted a regression analysis approach were unable
to disentangle the underlying linkages among diverse time use
behaviors and depressive symptoms.

Emerging adults are those individuals who are leaving
adolescence behind to experience young adulthood, a definition
originally proposed by Arnett (19). The concept of emerging
adulthood describes a period of development during which an
individual has already passed through adolescence, but has not
entirely taken on adult responsibility and independent decision
making (19, 20). The emerging adulthood stage was initially
defined as the age group 18–25 years (19); this was later revised
to the age group 18–29 (20). During emerging adulthood,
individuals are already biologically mature, but most have not
yet established a stable structure in diverse domains of life (e.g.,
intimate relationships, work, and fertility). These individuals are
not identified as socially mature, and thus, they present different
behaviors and psychological patterns than either adolescents or
adults in their thirties. Previous studies have expounded on the
unique patterns observed in emerging adults in several areas,
such as substance use (21), Internet addition (22), technology
adoption (23), and social integration (24). Previous research
revealed that peak alcohol consumption and drug abuse occur
during emerging adulthood (25, 26), and some instances of
excessive substance use appear to be normative behavior for
emerging adults (25, 27). Moreover, one recent study reported
that emerging adults present the highest online social network
usage among all age groups (28). They have a significantly
higher likelihood of adopting pathological social network use
behaviors, which further decreases self-regulation, escalates the
depression status, and magnifies the likelihood of involvement

in cyberbullying (29, 30). However, it remains unclear as to how
diverse time use behaviors affect depressive symptoms among
emerging adults.

Studies focusing on adolescents provide potential theoretical
mechanisms to understand the relationship between time use and
depressive symptoms in emerging adults. Previous research has
identified that screen time is a crucial predictor of depression
(4, 31, 32). Based on this point, Boers et al. (33) put forth
three explanations: time displacement, social comparison, and
reinforcing spiral. Time displacement refers to the time required
for healthy activities (e.g., physical activity and sleep) that may
be displaced by excessive sedentary activities, such as screen
time (34), causing potential depressive reactions (31, 35). Social
comparison states that one’s self-esteem may be damaged by
focusing on favorable objects (e.g., having an “ideal body shape”
or a “luxury lifestyle”), which triggers relative deprivation, a
significant predictor of individual psychological wellbeing (36,
37). A reinforcing spiral implies a selective exposure scenario
that is reinforced by both individual intention and algorithmic
recommendation of specific media content. Individuals are
thereby repeatedly exposed to certain types of content, and
depressive reactions might be triggered if individuals view
excessive volumes of content that may lead to depression
(33). Among these three theories, the social comparison and
reinforcing spiral mechanisms were mostly used to understand
the negative effects of media on children and adolescents (38–41).
Given that emerging adults present a more mature decision-
making pattern during daily activities (19), they are relatively
less sensitive toward media contents compared with children and
adolescents. Thus, we believe that time displacement mechanism
is an optimal approach for interpreting the relationship between
time use and depression in emerging adults.

Moreover, life course theorists have indicated that behaviors
or experiences during one’s early adult life may have potential
effects on one’s later life, and such effects tend to accumulate
(42, 43). For example, adverse experiences during childhood
were found to be crucial risk factors in experiencing psychotic
symptoms and health burden (44, 45). However, one recent
study demonstrated that individuals who experienced traumatic
events during emerging adulthood reported worse health
status compared with individuals who only experienced
traumatic events during adolescence (46). Such cumulatively
disadvantageous phenomena were reported in diverse age groups
(47–49). But the cause of the disadvantages was rarely discussed.
Therefore, understanding the time displacement mechanism in
terms of diverse time use behaviors, and its impact on depressive
symptoms during emerging adulthood also has enormous
potential for predicting long-term health outcomes.

Existing studies also have several limitations as they have been
unable to clarify the detailed patterns of relationship between
diverse time use behaviors and depressive symptoms. First,
both psychiatric and psychological studies usually presuppose
one specific disorder as a latent structure model, with several
symptoms as observed variables (50). The latent structure
model implies that related symptoms are mutually independent;
however, this approach ignores the inter-trigger mechanism
among these symptoms (51, 52). Moreover, studies that adopt
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the traditional regression approach often use the sum score
or mean score of a group of symptoms to represent a
certain disorder (50). Although this operation is effective in
screening for the prevalence of a certain disorder, it neglects the
occurrence of specific symptoms in non-disordered individuals.
Additionally, most time use studies that adopt a regression
approach can only consider one dependent variable in one model,
which also presents limitations in simultaneously revealing the
interrelationships among diverse time use behaviors.

The network analysis approach was employed in this study to
address the methodological gap described above. This approach
presupposes that a mental disorder is a complex system, in
which the relationships and network properties of different
symptoms are identified in detail (51, 53). Both the inter-trigger
mechanisms among different symptoms, and the relationships
between external shocks and psychiatric reactions can be
modeled when using the network analysis approach (54–56).
Recent studies have also adopted network analyses to identify
the central domains of a specific psychological construct (57),
and the central symptoms within a certain mental disorder (58,
59). Moreover, the network analysis approach provides novel
insights in understanding the predictability of a certain symptom
within a complex network (60, 61), and further identifying the
potential interventions of clinical practices (60). Additionally,
the network analysis approach was also employed to investigate
the issue of comorbidity among different disorders (62). It has
the methodological advantage of distinguishing between the
bridge symptom and shared symptom among diverse mental
disorders (63).

In the current study, both time use behavior and depressive
symptoms were complex systems. We employed the network
approach in three ways: First, it was difficult to highlight the
intercorrelation pattern of diverse time use behavior—namely,
the time displacement, using the traditional linear regression
approach. Whereas, network analysis has the merit to illustrate
the intercorrelation pattern. Second, diverse time use behaviors
were conceptually external shocks that may trigger depressive
symptoms via different paths which should be calculated via
the network analysis. Third, one type of network method—the
Bayesian network, provides a novel approach to algorithmically
characterize cross-sectional data as a causal system (64). We
thus used the Bayesian network to present the potential causal
predictors of depression among emerging adults.

Considering the two literature gaps described, the current
study employed network analysis to answer the following two
questions: (1) Does the time displacement mechanism explain the
inter-correlations among diverse time use behaviors in emerging
adults? (2) Does the time displacement mechanism explain
the connections between time use behaviors and depressive
symptoms in emerging adults?

MATERIALS AND METHODS

Participants
The data used in this study were obtained from the
Guizhou Population Health Cohort Study, a prospective

community-based cohort in Guizhou Province, China. Based
on a multistage proportional stratified cluster sampling method,
a total of 9,280 adult residents of 48 townships in 12 districts
in Guizhou Province were included. The original study took
place from 2010 to 2012. The inclusion criteria were: (1) age
18 years or above; (2) living in the study region, and having no
plan to move; (3) completing the survey questionnaire and blood
sampling; and (4) providing written informed consent. For the
current study, we exclude 7,408 participants who were 30 years
old or older. Further 38 participants with missing depressive
symptom variables, 21 participants with outlier responses on
time use variables, and two participants with missing height or
weight information were excluded. Finally, the remaining 1,811
participants were eligible for our analysis.

This study was carried out in accordance with the stipulations
of the Declaration of Helsinki and approved by the Institutional
Review Board of Guizhou Provincial Center for Disease Control
and Prevention (No. S2017-02). All participants provided written
informed consent at enrollment. The information was collected
by trained investigators using a structured questionnaire via face-
to-face interviews.

Assessment Measures
Depressive Symptoms
We used the 9-item Patient Health Questionnaire (PHQ-9) to
measure participants’ depressive symptoms (65). Participants
were asked to rate how frequently they experienced nine specific
depressive symptoms during the previous 2 weeks on a 4-
point Likert scale, ranging from 0 = not at all to 3 = nearly
every day. A higher score for a certain item indicates that
participants were experiencing severe symptoms, while a higher
total score indicates that participants overall had a severe
depressive status. The PHQ-9 used in the current study presented
excellent reliability (Cronbach’s alpha = 0.828). The one-factor
construct was also supported by the confirmatory factor analyses
(CFI = 0.980, TLI = 0.964, RMSEA = 0.057, SRMR = 0.030).

Time Use
We measured nine time use behaviors in participants across three
domains: physical activities (five items), screen activities (three
items), and sleep duration (one item). Time use behaviors were
measured by adapting the long version of the self-administered
International Physical Activity Questionnaire (IPAQ-L) (66).
Measures of time use on physical activities included weekly
minutes spent on heavy work activities (vigorous-intensity
physical activities during work, farming, and housework),
moderate work activities (moderate-intensity physical activities
during work, farming, and housework), traffic time (walking or
cycling for transport), heavy leisure activities (vigorous-intensity
leisure activities such as long-distance running, swimming, and
playing football), and moderate leisure activities (moderate-
intensity leisure activities such as quick walking and performing
Tai Chi). Measures of time use for screen activities included
weekly minutes spent on watching TV, using computer, and
playing video games. Sleep duration was measured in weekly
minutes. We employed confirmatory factor analyses to assess
the psychometric properties of the measurement. Results
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revealed that the one-factor construct had adequate fit indices
(CFI = 0.955, TLI = 0.919, RMSEA = 0.035, SRMR = 0.027).

Control Variables
We took sex, age, body mass index (BMI), drinking behavior, and
smoking behavior as control variables. Age and BMI were treated
as continuous variables. Sex, drinking behavior, and smoking
behavior were treated as binary variables. Sex was coded as female
or not, drinking behavior was coded as heavy drinker (drinking
frequency of 3–4 days a week or more) or not, and smoking
behavior was coded as daily smoker (who reported smoking
every day) or not.

Statistical Analysis
Descriptive Analysis
We first used a descriptive analysis to present the outline of
the participants’ data. We employed a cutoff point of five to
calculate the prevalence of mild depression among the current
study sample (65). Moreover, we conducted a correlation matrix
among nine items of time use behavior and the PHQ-9 score
to present the basic patterns of potential time displacements,
and possible correlations between diverse time use behaviors and
depressive status.

Network Estimation
When using a network analysis approach, all variables are treated
as nodes, and edges among the nodes can be interpreted as
partial correlation coefficients among these variables (67). Given
that we included both continuous and binary variables in the
analysis, we employed a mixed graphic model approach via R
package mgm software (an algorithm of regularized generalized
regression) to estimate the networks (68), and we used the
extended Bayesian information criterion with tuning parameter
γ = 0.5 to make the estimates.

We first estimated a network that only includes time use
and symptom items to present the inter-correlations among the
diverse items. The second network included time use items,
symptom items, and all control variables; which were estimated
to verify if the findings in the first network were stable. Networks
were visualized using the R package qgraph software (69).
Additionally, to assess the accuracy of the edges in the two
networks, we constructed a 95% bootstrapped confidence interval
around the edges (67). The accuracy estimation was conducted
using the R package bootnet, and 1,000 resamples were used for
the bootstrapping technique. Moreover, the correlation stability
coefficient (CS-coefficient) was used to assess the edge stabilities
of two estimated networks.

Directed Acyclic Graph
To identify potential causal directions among the diverse time
use behaviors, depression status, and controlling variables, we
adopted the Incremental Association Markov Blanket (IAMB)
algorithm, a constraint-based structure Bayesian network
learning algorithm implemented in the R package bnlearn (70),
to estimate the directed acyclic graph (DAG).

Following suggestions from an existing study (71), the total
score of the PHQ-9 was included in the DAG estimation. We set

no whitelist to elaborate on the efficacy of the IAMB algorithm
to calculate the edges within the network. Meanwhile, as sex and
age were not influenced by other variables, and we also assumed
that depression status cannot influence time use behaviors, the
following edges were blacklisted: (1) all edges toward sex and
age; (2) edges from the total score of PHQ-9 toward nine time
use behaviors. Moreover, we performed 1,000 non-parametric
bootstraps to check the stability of the DAG results. Based on
the bootstrapping results, edges (both directed and undirected)
related to the total score of PHQ-9 and crucial time use behavior
were re-calculated via t-test or correlation test to reveal the causal
triggers of depression. All R packages were carried out using
version 4.1.2 of R software.

RESULTS

Descriptive Results
Table 1 provides a description of all the variables used in the
current study. Of the sample, 49.70% (n = 900) participants were
female, 22.25% (n = 403) were daily smokers, and 5.52% (n = 100)
were heavy drinkers. The mean age of participants was 24 years
(mean = 23.88, SD = 2.309). Participants reported an average
healthy BMI (mean = 21.905; SD = ±3.038). The total PHQ-9
score for the sample was fairly low (mean = 0.701; SD = ±1.856),
and the percentage of participants with mild depression was
5.02% (n = 91). These results indicate that the participants
in the current study did not experience significant depressive
symptoms. The participants’ mean weekly sleep duration was
3,415.71 min, which meets the recommended sleep time for
adults as suggested in previous studies (72). However, the
time spent on both heavy leisure activities (mean = 18.771,
SD = ±92.525) and moderate leisure activities (mean = 21.526,
SD = ± 111.559) was significantly lower than the WHO’s
recommendations, which states that adults should get 150–
300 min of physical activity per week (15). The mean weekly
duration of participants’ heavy and moderate work activities were
270 and 444 min, respectively. On average, they spent 227 min
in traffic per week. Their mean weekly duration of watching TV
was 883 min, using computer was 347 min, and playing video
games was 43 min.

Table 2 presents the correlation matrix of relationship between
time use and the total score of the PHQ-9. To present comparable
results, all time use behaviors were standardized. The results
revealed that participants who spent more time on moderate
work activities reported a lower PHQ-9 score, while participants
who spent more time using computer reported a higher PHQ-
9 score. The positive relationship between computer usage and
PHQ-9 score implies that computer use may function as a
direct trigger of depression, and therefore, we should focus
on the time displacement mechanism around computer use.
Computer use time was negatively correlated with both heavy
work activities and moderate work activities; however, it was
positively correlated with heavy leisure activities and moderate
leisure activities. Additionally, the results revealed that sleep
duration was negatively correlated with traffic time and duration
of playing video games.
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TABLE 1 | Descriptive statistics (N = 1,811).

Variables Mean (Std. dev.) N (%) Min Max

Depression status

Sum score of PHQ-9 0.701 (1.856) – 0 23

Mild depression (1 = yes) – 91 (5.02%) 0 1

Time use behaviors (minutes per week)

Heavy work activities 270.413 (574.878) – 0 3360

Moderate work activities 444.445 (630.311) – 0 3570

Traffic time 226.596 (326.428) – 0 2400

Heavy leisure activities 18.771 (92.525) – 0 1200

Moderate leisure activities 21.526 (111.559) – 0 1800

TV watching 882.808 (576.518) – 0 5040

Computer use 347.368 (666.677) – 0 5040

Video game 42.591 (195.817) – 0 3360

Sleep duration 3415.71 (452.301) – 0 5040

Control variables

Female (1 = yes) – 900 (49.70%) 0 1

Age 23.88 (3.309) – 18 29.98

BMI 21.905 (3.038) – 14.479 37.188

Smoking (1 = daily smoker) – 403 (22.25%) 0 1

Drinker (1 = heavy drinker) – 100 (5.52%) 0 1

TABLE 2 | Correlation matrix of relationships among time use and the total score of PHQ-9.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Heavy work activities 1.000

(2) Moderate work activities 0.099
(0.000)

1.000

(3) Traffic time 0.145
(0.000)

0.203
(0.000)

1.000

(4) Heavy leisure activities −0.005
(0.824)

−0.039
(0.098)

0.162
(0.000)

1.000

(5) Moderate leisure activities −0.041
(0.084)

−0.021
(0.378)

0.076
(0.001)

0.462
(0.000)

1.000

(6) TV watching −0.026
(0.276)

0.045
(0.054)

0.016
(0.500)

−0.042
(0.075)

−0.009
(0.700)

1.000

(7) Computer use −0.170
(0.000)

−0.161
(0.000)

−0.036
(0.127)

0.176
(0.000)

0.091
(0.000)

−0.044
(0.061)

1.000

(8) Video game −0.036
(0.128)

−0.063
(0.008)

0.025
(0.288)

0.165
(0.000)

0.088
(0.000)

0.072
(0.002)

0.319
(0.000)

1.000

(9) Sleep duration −0.038
(0.101)

0.001
(0.952)

−0.049
(0.037)

−0.037
(0.118)

0.030
(0.203)

0.017
(0.460)

−0.028
(0.230)

−0.059
(0.011)

1.000

(10) Sum score of PHQ-9 0.025
(0.283)

−0.065
(0.005)

−0.013
(0.595)

−0.017
(0.469)

−0.007
(0.766)

0.023
(0.321)

0.086
(0.000)

0.010
(0.657)

−0.017
(0.460)

1.000

All time use behaviors were standardized; P-values were presented in parentheses.

Results of the Network Estimation
The estimated network results are shown in Figure 1. Figure 1A
displays the internal linkages among diverse time use behaviors
and the nine depressive symptoms. Figure 1B displays the results
of the network with the control variables. The reference names
of items used for the assessment of time use and depressive
symptoms are listed in Supplementary Table 1. Detailed edge
weights are listed in Supplementary Tables 2, 3, and the
bootstrapped accuracy plots are displayed in Supplementary
Figures 1, 2. Moreover, two networks have high edge stabilities
(all CS-coefficients = 0.75).

After controlling for all time use behaviors and depressive
symptoms, Figure 1A shows that the negative relationships

between sleep duration and traffic time, and between
sleep duration and video games time were not significant.
Computer use time is positively correlated with time spent
on video games and heavy leisure activities, but negatively
correlated with TV watching time, heavy work activities,
and moderate work activities. The direct linkages between
leisure activities (both heavy and moderate) and work
activities (both heavy and moderate) were not significant;
however, Figure 1A reveals that negative relationships
between leisure activities and work activities were mediated
by computer use. Figure 1B presents consistent results
after controlling for age, sex, BMI, smoking behavior, and
drinking behavior.
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FIGURE 1 | Results of kestimated network models. The blue edges denote the positive relationships, and the red edges denote the negative relationships. The
direct linked nodes among time use behaviors and depressive symptoms were highlighted with larger circles. (A) Results of the estimated network without control
variables. (B) Results of the estimated network with control variables.

According to Figure 1A, computer use was the only trigger
for depressive symptoms. Computer use significantly triggered
three depressive symptoms: “Anhedonia,” “Guilt,” and “Motor.”
These results imply that participants who spend more time using
computers will have little interest or pleasure in doing other
things in their daily life, may feel bad about themselves, and
may have slow behavioral reactions. However, computer use was
found to be an inhibitor of “Suicide.” The linkages between
computer use and these four depressive symptoms were found
to be robust when controlling for age, sex, BMI, and smoking and
drinking behaviors (see Figure 1B).

Results of the Directed Acyclic Graph
Figure 2 presents the results of the DAG. Figure 2A presents
the initial estimated DAG results, where computer use has
direct effects on heavy work activities, heavy leisure activities,
video games time, and the total score of PHQ-9. The total
score of PHQ-9 was directly affected by computer use, sex, and
drinking behavior.

Figure 2B presents the bootstrapped inclusion proportions
of each directed and undirected linkage among the variables.
Compared with the results in Figure 2A, predictors of the total
score of the PHQ-9 were consistent: female sex (diff = 0.267,
t = 3.067, p < 0.01), being a heavy drinker (diff = 0.242, t = 1.268,
p = 0.205), and computer use (r = 0.086, p < 0.001) were
predictors for the risk of depression.

The direct linkages related to computer use that are presented
in Figure 2B were slightly different from the results in Figure 2A:
first, the linkage between computer use and heavy work activities
was undirected in Figure 2B; second, the linkage between
computer use and moderate work activities was directed from
computer use to moderate work activities in Figure 2B; third,
age was found to directly affect computer use (Figure 2B). Using

a t-test and correlation test, the DAG results in Figure 2B
revealed that older participants reported decreased time spent
on computer use (r = −0.085, p < 0.001). The time spent on
computer use was negatively correlated with the time spent
on heavy work activities (r = −0.170, p < 0.001). Moreover,
computer use was found to directly decrease the time spent
on moderate leisure activities (r = −0.161, p < 0.001) and
increase the time spent on both heavy leisure activities (r = 0.176,
p < 0.001), and on video games (r = 0.319, p < 0.001).

DISCUSSION

To the best of our knowledge, this is the first study to adopt a
network analysis to disentangle the underlying linkages among
diverse time use behaviors and depressive symptoms in emerging
adults. While the prevalence of mild depression among emerging
adults in the Guizhou Population Health Cohort Study was quite
low, this study contributes novel insights to understanding the
potential mechanism of triggering depressive symptoms.

First, the time displacement mechanism explains the
underlying connections among diverse time use behaviors among
emerging adults. Previous studies focusing on adolescents’ time
use behaviors revealed a pattern in which higher screen time
led to a decreased sleep duration (32, 73). However, our
results demonstrated that emerging adults maintain adequate
sleep duration, and that it is not influenced by other time use
behaviors when controlling for all concerned variables. Poor
sleep quality usually leads to significant psychiatric reactions,
including inattention and fatigue (74–77). The different patterns
of the time displacement mechanism regarding sleep between
adolescents and emerging adults could be explained in two
ways: First, the crucial stressors that lead to unhealthy sleep
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FIGURE 2 | Results of directed acyclic graph (DAG). (A) The initial estimated results of the DAG. (B) The results based on 1,000 bootstrap replications. Numbers on
each edge indicate the non-zero proportions.

among adolescents and emerging adults were different. In China,
stressors related to academic work served as crucial risk factors
in determining adolescents’ sleep quality (78, 79), while the
work environment stressors were key predictors of emerging
adults’ sleep quality (80–82). For adolescents, screen time
significantly replaces sleep duration (83). However, emerging
adult participants in the current study were living in Guizhou—a
developing province during the survey time, and they may not
have faced significant stressors from the work environment.
Second, emerging adults present more mature social interactions
and activities compared with adolescents. The time spent on
certain behaviors was not compulsory. Thus, as the results
revealed that, time spent on computer use was found to be
negatively associated with the time spent on work activities.
These results indicate that individuals who were undergoing
emerging adulthood—a unique developmental stage with initial
social independence–replaced their working time with time
spent on computer use. The decreased work time is the behavior
compensation for excessive screen time.

Second, the time displacement mechanism also explains
the connections between time use behaviors and depressive
symptoms. The time spent on using computer was significantly
correlated with four depressive symptoms. It triggered
“Anhedonia,” “Guilt,” and “Motor;” but inhibited “Suicide.”
As the connections between time spent on using computers,
playing video games, and leisure activities were positive, the
negative connection between time spent on computer use
and “Suicide” could be explained by the fact that emerging
adults usually use computers for recreational purposes, which

distracts them from depressive and suicidal content. Given that
participants who spent more time on computer use usually
spent less time on working activities, the positive connections
between computer use and the symptoms “Anhedonia,” “Guilt,”
and “Motor” could be because computer use is a potential
disengagement coping strategy for emerging adults, to distract
them when they have to take on social responsibilities in
scenarios they never experienced during their adolescence (84).
The disengagement coping strategy granted emerging adults an
escape from dealing with the stressors they faced, thus leading
to worse depressive status. “Anhedonia” was triggered since
emerging adults who used computers excessively may have
an inadequate locus of control toward the rewards from the
work-related activities, spend more time in online activity (85),
and have a high possibility of problematic Internet use (86, 87).
Moreover, the activated symptom—“Guilt” could be explained
as excessive computer use worsens emerging adults’ social
connections (88), and decreased social provisions are typically
related to low self-esteem and severe depression status (89).
Additionally, the activated “Motor” implies that excessive time
spent on computers has potentially negative effects on emerging
adults’ physical and cognitive development (90, 91).

Third, the results from the DAG revealed that depression
was also linked to two other factors. Sex (specifically, being
female) and drinking behavior were risk predictors of depression.
While the t-test result was insignificant (diff = 0.242, t = 1.268,
p = 0.205), the DAG indicated that being a heavy drinker
increases emerging adults’ depression, which is consistent with
most previous studies (92–94). This result could be explained
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by shared genetic and environmental determinant theories (95,
96). Previous twin and adoption studies revealed the presence
of genetic influence on alcohol dependence, depression, and
the comorbidity of alcohol dependence and depression (95,
97–99). Moreover, such effects were also moderated by social
environments, including peer effect (100, 101), living regions
(102), and marital status (103, 104). Given that most of the
emerging adults have not yet assumed full family responsibilities,
the genetic association between heavy drinking behavior and
depression status among emerging adults may be intensified by
their drinking peers and unmarried status. Additionally, females
reported more severe depressive status (diff = 0.267, t = 3.067,
p < 0.01). One previous study indicated that stressors related to
pregnancy and postpartum experiences increased the incidence
of depression in the female population (105). While not all
emerging adult females had experienced pregnancy, fertility-
related issues in traditional Chinese family situations may affect
females persistently, and lead to further depressive episodes.

Fourth, our results also provide beneficial practical
implications to cope with the COVID-19 pandemic. Given the
lockdown measure and social distancing recommendations were
most adopted policies during the repeated outbreak periods,
most of the offline activities have to be taken online. Several
depression risk factors, including problematic Internet use
(86, 106) and cyberbullying involvement (30, 107, 108) were
intensified. Governments and public institutes should promote
timely psychological support campaigns to guide individuals’
online behavior, and relieve the stress generated via intensified
online activities.

This study has several limitations. First, while the DAG
approach provides potential causal directions among the
variables, the causal mechanism is obtained by the algorithm,
rather than the longitudinal design. The data that were analyzed
were cross-sectional, which leads to limitations in causal
inference. Second, it remains unknown if the time displacement
mechanism has long-term effects on individuals’ depression
status. Further studies should collect longitudinal data to address
these issues. Third, the sample was recruited from only one
province in China. Therefore, caution should be exercised when
generalizing the findings to other populations. We hope that
scholars, in future, will employ network analysis to test the
linkages between time use behaviors and depressive symptoms
for other populations. Further meta-analyses of these potential

network studies are required. Finally, we only verified the effect
of the time displacement mechanism in depression. If and
how the other two mechanisms, namely social comparison and
reinforcing spiral (33), could explain the depression pathogenesis
among emerging adults remains unclear. Further studies are
needed to verify how these potential mechanisms influence
emerging adults’ mental outcomes.
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