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Metagenome-Assembled Genome Sequence of Dolichospermum
circinale Strain Clear-D4, Assembled from a Harmful

Cyanobacterial Bloom Enrichment Culture

Kyra M. Florea,® '’ J. Cameron Thrash,? ) Eric A. Webb?
aDepartment of Biological Sciences, University of Southern California, Los Angeles, California, USA

ABSTRACT Dolichospermum circinale (formerly Anabaena circinale) is a significant
harmful algal bloom species. We report the draft metagenome-assembled genome
(MAG) for a strain of D. circinale (Clear-D4) obtained from an enrichment culture.
The genome sequence comprises 5,029,933 bp in 560 contigs with a GC content of
37%.

yanobacterial harmful algal blooms (cyanoHABs) pose environmental, ecological,

and economic threats to freshwaters. Species of Dolichospermum, a diazotrophic,
bloom-forming, heterocystous, cyanobacterial genus, have the potential to produce cya-
notoxins, including microcystin, anatoxin, and saxitoxin (1-3). Increasing Dolichospermum
bloom frequency in recent decades necessitates an improved understanding of this
prolific cyanoHAB genus (4). Clear Lake, CA, is 303d-listed for nutrients and experi-
ences annual cyanoHABs (5). To better understand the microbial communities
involved in Dolichospermum cyanoHABs, we performed metagenomic sequencing
on a Dolichospermum enrichment culture, resulting in a new metagenome-assembled ge-
nome (MAG) for Dolichospermum circinale.

Bucket tow surface water samples were collected from Clear Lake (lat 38.973166,
long 122.72809) in August 2019. Free Dolichospermum trichomes, visualized with a dis-
secting scope, were pipettor hand-picked and enriched in 50% BG-11, medium at 25°C
with 100 umol Q/m?/s light on a 12:12-h light/dark cycle. Additions of 50% BG-11,
were introduced every other week to maintain growth. Prior to sequencing, we identi-
fied the genus Dolichospermum morphologically in the above enrichments with a Zeiss
AxioStar epifluorescence microscope (Oberkochen, Germany) (6). A single enrichment
culture (Clear-D4) was chosen for metagenomic sequencing. Cell material from the
Clear-D4 enrichment (50 ml) was filtered onto 8-um polycarbonate filters and rinsed into
2-ml bead-beating tubes using lysing solution from the Qiagen DNeasy PowerBiofilm kit
(Hilden, Germany). The cells were lysed using 5 liquid N, freeze-thaw cycles, followed by
the addition of proteinase K and incubation at 55°C overnight. Genomic DNA was then
extracted using the aforementioned Qiagen kit protocol. The quality of isolated DNA
was verified using Tris-borate-EDTA (TBE) gel electrophoresis and quantified via
NanoDrop UV-visible (UV-Vis) spectroscopy and Qubit spectrofluorimetry (Thermo
Fisher Scientific, Waltham, MA). Library preparation (i.e., NEBNext DNA library prep kit via
the manufacturer’'s recommendations) and 1 Gbp of lllumina paired-end (PE) 2 x 150-bp
sequencing were conducted by Novogene (Nanjing, China) with 300-bp size-selected
inserts, generating 19,844,532 reads. KBase and modules therein were used for de novo as-
sembly with default settings unless otherwise noted (7). Prior to de novo assembly, the
quality of the paired-end reads was checked with FastQC v0.11.5 (8), and the reads were
trimmed to enhance quality using Trimmomatic v0.36 (9). De novo genome assembly was
done using metaSPAdes v3.13.0 (10). Binning was completed using MaxBin2 v2.2.4 (11),
with refinement using anvi-refine in Anvi'o (12). Genome annotation was completed using
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PGAP with default settings (13). Initial bin taxonomy was determined using GTDB-tk in the
PhyloSanity wrapper (14).
Clear-D4 consisted of 560 contigs, 5,029,933 bp, a GC content of 37%, and an N,
value of 52,616 bp. A total of 4,813 coding genes were identified (12). CheckM v1.0.18
(15) (with default settings) estimated this initial MAG to be 91.85% complete with 6.47%
contamination. The refined genome was phylogenetically confirmed as Dolichospermum
circinale using GTDB-tk v1.1.1 db_r95 using “classify_wf.” The predicted metabolism of
Clear-D4 was analyzed using the FuncSanity module of MetaSanity (14) with default set-
tings, which projected that this organism is a diazotrophic, oxygenic photoautotroph
that can reduce arsenate and produce sulfolipids. Screening for secondary metabolites
with antiSMASH revealed the predicted presence of geosmins; however, no cyanobacte-
rial toxins were detected by this analysis (16).
Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number JACVZX000000000. The version described in
this paper is the first version, JACVZX010000000. The BioProject number is PRINA657201,
and the reads are available at the SRA under accession number SRX8961729.
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