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ABSTRACT

Applying high-throughput sequencing to pathogen discovery is a relatively new field, the
objective of which is to find disease-causing agents when little or no background information
on disease is available. Key steps in the process are the generation of millions of sequence
reads from an infected tissue sample, followed by assembly of these reads into longer,
contiguous stretches of nucleotide sequences, and then identification of the contigs by
matching them to known databases, such as those stored at GenBank or Ensembl. This
technique, that is, de novo metagenomics, is particularly useful when the pathogen is viral
and strong discriminatory power can be achieved. However, recently, we found that striking
differences in results can be achieved when different assemblers were used. In this study, we
test formally the impact of five popular assemblers (MIRA, VELVET, METAVELVET,
SPADES, and OMEGA) on the detection of a novel virus and assembly of its whole genome
in a data set for which we have confirmed the presence of the virus by empirical laboratory
techniques, and compare the overall performance between assemblers. Our results show
that if results from only one assembler are considered, biologically important reads can easily
be overlooked. The impacts of these results on the field of pathogen discovery are considered.

Keywords: algorithms, assemblers, de novo metagenomics, pathogen discovery, test.

INTRODUCTION

V iral infection has a huge impact on human health, wildlife conservation, and agriculture. Finding

novel viruses is notoriously difficult due to difficulty in culturing viruses (Fuhrman and Campbell, 1998)

and the lack of an appropriate phylogenetic marker (Rohwer and Edwards, 2002). The metagenomic ap-

proach, which attempts to obtain sequence information from all genomes present in an environmental sample,
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has gained in popularity due to detection and, in some cases, even the generation of complete genomes of

novel uncultivated viruses. A typical metagenomic process includes the extraction of all nucleic acids from

an environmental sample, the sequencing of all genomes present to create many random reads, and then

followed by the identification of these reads by homology matching to nonredundant nucleotide or protein

sequence databases using appropriate search algorithms such as BLASTN or BLASTX (Camacho et al.,

2009) and RAPSEARCH2 (Zhao et al., 2012), respectively. The first study to use this technique was

published in 2002 and, using cloning and Sanger sequencing, successfully revealed viral communities in sea

water, including the identification of numerous novel viruses (Breitbart et al., 2002).

Since those early days, sequencing technology and bioinformatics capability have advanced significantly.

With the advent of the current suite of sequencing-by-synthesis technologies, the number of randomly gen-

erated reads has moved from thousands to millions, which has led to a huge increase in power and sensitivity

of de novo metagenomics, or the assembly of novel genomes with no reference genome (Mokili et al., 2012;

Hall et al., 2014). This has helped to extend de novo metagenomics to the emerging field of pathogen

discovery, which focuses on the discovery of novel viral etiological agents of diseases for which little or no

background information is available (Cox-Foster et al., 2007; Smits et al., 2013; White et al., 2015).

The new sequencing technologies have also increased drastically the computing and bioinformatics re-

sources required to handle such large data sets. For example, homology searching is an iterative and memory-

exhaustive step, and if the researcher decides to match all the reads from a metagenomic sequencing run to

the entire 185,019,352 sequences stored at GenBank (June, 2015), the computing resources required quickly

becomes nontrivial. It is therefore often necessary to assemble the millions of sequence reads into longer

contiguous stretches of DNA, or contigs. This has the benefits of reducing the number of homology searches

that need to be done, thereby saving time and computing resources, and also increasing taxon assignment

consistency and accuracy (Garcia-Etxebarria et al., 2014; Vazquez-Castellanos et al., 2014).

There is now a suite of assemblers that are used in, or have been designed for, metagenomic studies (Namiki

et al., 2012; Haider et al., 2014; Roux et al., 2014; Guo et al., 2015). These use different assembly algorithms,

such as the overlap–layout–consensus graph (OLC) and the de Bruijn graph (DBG) algorithms (Li et al., 2012).

OLC adheres closely to the Lander–Waterman model of genomic mapping (Lander and Waterman, 1988) and

forms a consensus contig from reads that overlap at a given threshold, for example, NEWBLER (Margulies et al.,

2005), CELERA (Myers et al., 2000), and MINIMO (Treangen et al., 2011). The DBG algorithm, on the

contrary, is a derivation of the Lander–Waterman model, which breaks reads into smaller kmers before over-

lapping to produce a final consensus contig, that is, the ‘‘graph,’’ for example, VELVET (Zerbino and Birney,

2008) and METAVELVET (Namiki et al., 2012). A third lesser used algorithm is the read probabilistic model,

which uses a generative probabilistic model to construct reads, for example, GENOVO (Laserson et al., 2011). It

is known that these algorithms behave differently dependent on the parameters of the sequence data set, such as

sequence read depth, length, and the frequency of repeats (Li et al., 2012; Garcia-Etxebarria et al., 2014).

Despite the impact different assembly algorithms can have on taxa identification, and a known variation in

performance of assemblers dependent on the characteristics of the data set; relatively little has been done to

assess assembler performance on viral metagenomic data sets (Smits et al., 2014; Vazquez-Castellanos et al.,

2014). One recent study, for example, has shown marked differences in assemblers to generate informative

contigs, based on the length of contigs and the construction of problematic chimeric contigs (Vazquez-

Castellanos et al., 2014). While these studies are informative and valuable, they have relied heavily on

simulated data sets or have focused on the complete assembly and annotation of known viral genomes (Smits

et al., 2014). The impact of assemblers on virus detection in an empirical setting, where viruses will be vastly

outnumbered by other organisms present, remains uncertain. In a recent study of our own in which we used

two different assemblers, MIRA and VELVET, we found that while the pipeline using VELVET assembled

an entire virus genome from the metagenomic data set, later confirmed empirically in the laboratory, MIRA

was only able to generate small contigs for which homology search results were buried among other results

(White et al., 2016). For a technique that can rely on ‘‘stand-out’’ results, this has significant consequences.

In this study, we have tested the effectiveness of five assemblers, which are either well established in the

field—VELVET (Zerbino and Birney, 2008), METAVELVET (Namiki et al., 2012), and MIRA (Chevreux

et al., 1999)—or have been more recently developed—SPADES (Bankevich et al., 2012) and OMEGA (Haider

et al., 2014)—to detect a viral genome in a metagenomic data set in which we know it exists. These assemblers

use a strict DBG algorithm (VELVET, METAVELVET) or a DBG variation (SPADES), an OLC graph

(OMEGA) or combined algorithms that use both OLC and greedy algorithms (MIRA). We tested their per-

formance on a data set that we generated previously (White et al., 2016) as part of a study to discover viral
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pathogens in fecal matter of rowi kiwi (Apteryx rowi) that showed signs of minor verminous dermatitis (Gartrell

et al., 2015). In that study, we revealed the presence of a novel virus, rowi kiwi circovirus-like virus (rowi kiwi

CVLV), using a de novo metagenomic pipeline, which we subsequently confirmed using polymerase chain

reaction and Sanger sequencing. In this study, overall performance of the assemblers was assessed using the rowi

kiwi data set by investigating the number of reads that contribute to contigs, the number and length of contigs and,

critically, the percentage of contigs that get taxonomically assigned. In particular, we have answered the question,

can different assemblers be relied upon to detect a target viral genome in a metagenomic data set?

METHODS

The metagenomic data set used for this study originates from the fecal matter of eight rowi kiwi showing

signs of disease and was generated as part of an earlier study (White et al., 2016). The raw metagenome

data set consisted of 16,435,262 250 bp paired-end reads. The quality of reads was checked using FASTQC

v0.10.1 (Babraham Institute, Cambridge) to ensure an average Phred score of 20 or greater, and sequences

<100 bp were removed using the PRINSEQ-LITE v0.19.3 software package (Schmieder and Edwards,

2011). A threshold of 100 bp was chosen to (1) remove short reads, which tend to have an increased error

rate; (2) decrease huge memory requirements imposed by homology searching numerous short, often

uninformative, reads; and (3) improve the consistency of the data set between assemblers, as assemblers

handle short reads differently. The cleaned data set contained 10,265,480 paired-end reads.

The assemblers chosen for this study are VELVET v1.2.10, METAVELVET v1.2.02, MIRA v4.0.2,

SPADES v3.5.0, and OMEGA v1.0.2. A brief summary of the assemblers is given below and the pa-

rameters used for each assembler are summarized in Table 1.

MIRA

MIRA is a multipass DNA sequence assembler that uses the OLC and greedy algorithms to assemble

prokaryote and small eukaryote genomes sequenced on most of the current sequencing technologies, within

the same assembly if required. It can do de novo, hybrid, and true mapping assemblies (Chevreux et al.,

1999). In this study, MIRA was run both excluding and including singletons (reads that pass quality filters

but are not able to assemble into contigs).

VELVET

VELVET was one of the first assemblers to assemble short reads using the de bruin graph algorithm for

de novo assembly in complex organisms, and implements error correction and repeat handling (Zerbino and

Birney, 2008).

METAVELVET

METAVELVET is an extension of VELVET that attempts to control for highly abundant short reads that

are common to metagenomes, which otherwise would be considered to be repeats. It deconstructs the de

Table 1. Assemblers Used and Their Parameters

Assembler Parameters

MIRA job = est,denovo,accurate parameters = COMMON_SETTINGS

-NW:cnfs = no:cmrnl = no -GE:not = 12 SOLEXA_SETTINGS -CL:cpat = no

MIRA (singletons) job = est,denovo,accurate parameters = COMMON_SETTINGS

-NW:cnfs = no:cmrnl = no -GE:not = 12 SOLEXA_SETTINGS

-AS:mrpc = 1-OUT:sssip = yes -CL:cpat = no

VELVET velveth: kmer is 99 and used paired end reads

velvetg: -cov_cutoff auto -exp_cov auto -unused_reads yes

METAVELVET velveth: kmer is 99 and used paired-end reads

velvetg: -cov_cutoff auto exp_cov auto -unused_reads yes

SPADES -k 21,33,55,77,99,127—careful—pe1-1—pe1-2—cov-cutoff auto

OMEGA -pe -l 100

876 WHITE ET AL.



bruin graphs made by VELVET and builds scaffolds on the subgraphs, with the aim of generating longer,

more complete genomes (Namiki et al., 2012).

SPADES

SPADES is a de bruin graph assembler that uses multiple kmers in one run to deal with the problem of

chimeric sequences being generated in the assembly of small prokaryotic genomes. Initially designed for

single-cell bacterial genomes, it has recently been applied to virome analysis (Bankevich et al., 2012).

OMEGA

OMEGA is an OLC graph de novo assembler that uses a user-specified overlap length to assemble

Illumina data into long reads (Haider et al., 2014).

Homology searching to the GenBank nonredundant nucleotide database (downloaded June 29, 2015) was

done using BLASTN with search results restricted to five matches and a minimum E-value threshold of

1 · 10-3 (Camacho et al., 2009). Taxon assignment was visualized in MEGAN v5.10.5 (Huson et al., 2007)

(software available from www-ab.informatik.uni-tuebingen.de/software/megan). All assembly and ho-

mology searches were performed on the Pan computer cluster at NeSI (National eScience Infrastructure),

Auckland, New Zealand, using Intel E5-2680 core processing units, operating at 2.7 to 2.8 GHz on Ivy

Bridge architecture with quad date rate (QDR) InfiniBand interconnect. One hundred eighty gigabytes

RAM was assigned to all assemblies.

RESULTS

All results are summarized in Table 2. Assembly took as long as 1 day, 11 hours, and 6 minutes with

SPADES, and as little as 14 minutes with VELVET. MIRA (singletons) generated the largest metagenome

(consensus genome size 370,456,167 bp) and assembled the most contigs (1,616,750), METAVELVET

generated the second largest on both counts, while OMEGA generated the smallest metagenome

(8,196,640 bp) and assembled the least number of contigs (16,269). The largest contig was made by MIRA

(with singleton option off) at 32,359 bp. while VELVETs largest contig was the smallest of all assemblers

(2418 bp). The largest N50 was in OMEGAs metagenome, while the smallest was in MIRA (singletons).

The most number of contigs that were assigned a taxon was achieved using MIRA (singletons) with

1,353,011 contigs, while METAVELVET achieved the second largest amount (878,000) in accordance

with the total number of contigs assembled. OMEGA achieved the least number of contigs with an assigned

taxon (11,962) and also had the lowest proportion of contigs with assigned species (73.5%). The maximum

number of virus species identified was found using VELVET (44), second was METAVELVET (39), and

the least was with OMEGA (8). The maximum number of viruses identified that were not shared with

another assembler was found with MIRA (singletons) (five—this number increases to six when both MIRA

runs are considered together) and the second largest was with VELVET (3). Interestingly, 16 further viruses

are specific to VELVET and METAVELVET when they are considered together. For all other assemblers,

viruses were found in more than one instance.

As a means of assessing the efficacy of assemblers to construct contigs, we compared BLAST scores

across pipelines for the highest scoring viral contig found across all assemblers. The highest blast score for

a viral contig was 4744.0 achieved using SPADES, for a contig of length 2765 bp and with homology to

Sewage-associated circular DNA virus 27 (GenBank access no. KM821762). All assemblers generated a

contig that matched this virus. VELVET and METAVELVET assembled the shortest contig (2344 bp) and

achieved the weakest (but still very strong) statistical support for a match to KM821762, while MIRA

assembled the longest contig (2855 bp).

Finally, to determine how each assembler performed with sequence we know to be present (rowi kiwi

CVLV), we blasted the complete genome of rowi kiwi CVLV (GenBank access no. KP202150) against

each of the assemblies. Matches were found in all assemblies. The largest region of the rowi kiwi CVLV

genome that matched a contig was found for the assembly generated by VELVET (100% homology over

1952 bp), while the smallest region was found for the assembly generated by METAVELVET (100%

homology over 1580 bp). We also assessed how well contigs matched their closest homologue archived in

GenBank at the time of study, Meles meles circovirus-like virus (GenBank access no. JQ085285). Only
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VELVET (2 contigs), METAVELVET (2 contigs), and MIRA (1 contig) assembled contigs that matched

this virus, with the highest BLAST score (113) returned by the VELVET contigs. SPADES and OMEGA

did not return any contigs with a statistical match to JQ085285.

DISCUSSION

Selecting an assembler to assemble metagenomic data remains one of the critical considerations in the

metagenomic approach of viral pathogen discovery. In this study, we tested the sensitivity and accuracy of

five popular metagenomic assemblers on a biomedical data set, already shown to contain a potentially

pathogenic virus. The performance of assembly varied greatly. The most number of contigs was generated

by MIRA (with singletons, 1,616,750) and the least by OMEGA (16,269), almost a 10-fold difference. The

length of contigs also varied between assemblers with a maximum contig length of 32,359 for MIRA and as

low as 2344 for METAVELVET. N50, a metric that explains the contig length at which 50% or more of

contigs reached, and is less relevant for metagenomic data sets, was as high as 582 with OMEGA and as

low as 273 for MIRA (with singletons). Overall, there was a spectrum of general assembly performance

across algorithms, with VELVET (DBG) and MIRA (OLC with greedy) doing best. The one OLC-only

assembler (OMEGA) performed the worst, although with a sample size of one for this algorithm it is hard

to generalize across all OLC assemblers.

In terms of sensitivity, assembly using VELVET returned the greatest number of virus species, with a

total of 44 virus species. VELVET combined with METAVELVET also returns the most number of virus

species not seen with other assemblers, with a combined total of 19, where the next nearest was MIRA

(singletons) with a substantially lower 5 unique species. Analysis with OMEGA, on the contrary, generated

the least number of contigs that were assigned a taxon, the highest proportion of contigs that were not given

an identifiable taxon (24.9%), and reported the least number of viral taxa. Taken together, VELVET

appears to be the most sensitive for the detection of viral genomes; however, the apparent high virus return

with this assembler may be overestimated. For example, VELVET produced a relatively large (over a

million), but not very long, number of contigs. This is not surprising as VELVET was designed for single-

genome assembly and, as such, it treats highly abundant, short reads as repetitive DNA and excludes such

reads from assembly (Namiki et al., 2012). It is likely that many of the viruses unique to VELVET may

actually result from short contigs giving quite low statistical support from homology searches and are

therefore false positives.

Interestingly, all assemblers generated contigs that had very strong homology matches to Sewage-

associated circular DNA virus 27. Bit scores were above 4000 for all assemblers, which show that all

assemblers have generated accurate contigs for this virus. Interestingly, the relevant contig generated by

VELVET is the shortest at 2344 bp, and consequently, the associated bit score is also the smallest at

4213. OMEGA, which performed relatively poorly on general assembly and sensitivity, returned a high bit

score for this virus. Pipelines using each of the assemblers therefore are able to detect viruses with very

strong signals.

Results from an assessment of the power of each assembler to detect virus sequence were revealing.

Rowi kiwi CVLV sequence was recovered from all metagenomes when searched with the full genome, with

a minimum sequence identity match with METAVELVET and maximum sequence identity match with

VELVET. OMEGA was the only assembler to show a misalignment between its contigs and rowi kiwi

CVLV genome, indicating an inferior assembly. On the contrary, neither SPADES nor OMEGA returned

any significant matches to Meles circovirus-like virus, which was the most homologous organism to rowi

kiwi CVLV archived in GenBank at the time of study, as shown in our earlier work (White et al., 2016).

Taken together, it could be concluded that while each of the five assemblers tested here enables the

detection of virus genomes with strong signals, sensitivity varies between assemblers, with higher sensi-

tivity coming at a cost of higher rate of false negatives.

It is difficult to separate the best performing assemblers used here based on underlying assembly

algorithms. According to the performance measurements we selected, which were chosen to assess ability

to detect often rare and novel viruses in large, complex metagenomic data sets, VELVET, METAVELVET,

and MIRA showed highest sensitivity and greatest power. MIRA uses quite different underlying algo-

rithms to both VELVET and METAVELVET. A major advantage of VELVET over MIRA was the very

low computing time required, which will keep time needed on computer clusters to a minimum, reducing

IMPACT OF DIFFERENT ASSEMBLERS ON VIRUS DISCOVERY 879



overheads. However, the less time used to assemble reads may be somewhat mitigated by the additional

time needed to screen through the large number of relatively less confident homology matches. Of interest,

METAVELVET did not perform better than VELVET in this study. While the performance of these as-

semblers could vary with different kmer sizes, assembly optimization was not part of the scope of this study.

The importance of novel virus discovery using de novo metagenomics becomes apparent in disease-

outbreak scenarios, where little information is known about the cause (Mokili et al., 2012). The devel-

opment of sequencing technologies and software has facilitated a giant leap forward in capability, and will

presumably continue to do so. New software is developed and often tested on data sets that suggest its

superiority (Namiki et al., 2012; Haider et al., 2014; Guo et al., 2015). However, the structure of empirical

data sets can differ significantly and software performance varies (Garcia-Etxebarria et al., 2014; Vazquez-

Castellanos et al., 2014). We have shown here that software developed for metagenomic analyses does not

perform equally well in the specific case of identifying viruses in complex metagenomic data sets, and that

assemblers will be more or less desirable dependent on requirements. Overall, the VELVET software

package had superior performance over most categories.
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