LETTER TO THE EDITOR

OPEN ACCESS OPEN ACCESS

THERPA v2: an update of a small molecule database related to prion protein regulation and prion disease progression

Sol Moe Lee ^[]^{a,b}, Sung Soon Kim^a, Heebal Kim^b, and Su Yeon Kim^a

^aDivision of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control & Prevention, Cheongju-si, South Korea; ^bDepartment of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

ARTICLE HISTORY Received 25 October 2019; Accepted 31 October 2019

Prion diseases are rare, rapidly progressive neurodegenerative disorders that affect mammalian species [1,2]. Abnormal accumulation of infectious form of the prion protein in the brain causes prion disease. Various small molecules have been used to inhibit and treat this disease [3,4]. We built a repository of therapeutic molecules associated with prion protein and prion diseases (THERPA) to allow users to easily browse information describing various small molecules in publicly available articles [5]. THERPA is an open-access database containing data regarding small molecules related to prion protein and prion diseases, which is aimed at allowing researchers to easily explore and analyse data of interest. Here, we describe the relocation of the webpage and THERPA database updates. The THERPA repository has been relocated to the Korea National Institute of Health website for stable maintenance (www.nih.go.kr/ therpa). The e-Government Standard Framework (www.egovframe.go.kr) was used to create the

Home	About	Contact u	IS	Data						
THERPA	A Data > Main table									
Home	_	100			S.		1			
About	Show 100 • entri	es expor	t(.xdsx)		_	Sea	rch: Select	*	SE	ARCI
Contact us	Line_no▲ 🏹	THERPA_ID	Name 7	Date	РМІ	D T	Properties T	Type 🏹	Effect_on PrP	1
Data	1	1	4'-iodo-4'-deo	1997.05	91488	07	IDX	binding to PrP	binding to PrP amyloid.	N/
Data	2	1	4'-iodo-4'-deo	1997.05	91488	07	IDX	prolong surviv	N/A	clin
- Main table - Materials of experiments	3	1	4'-iodo-4'-deo	1997.05	91488	07	IDX	PrPSc down-re	inhibit PrPres aggregat.	N/
- Treemap	4	2	POPS	2009.12	204094	171	1-Palmitoyl-2-oleoyl-s	observed spon	N/A	ob
	5	2	POPS	2009.12	20409	171	1-Palmitoyl-2-oleoyl-s	β-sheet forms	increase β-sheet forms.	N/
	6	3	4-amino-7-chl	2010.08	20797	807	an aminoquinoline	PrPSc down-re	inhibit PrPres aggregat.	N/
	7	4	4-hydroxytam	2013.01	23418	355	a metabolite of tamoxi	PrPSc down-re	down-regulate PrPSc	N/
	8	5	acepromazine	2001.08	11504	948	acetylpromazine, aceto	PrPSc down-re	down-regulate PrPSc	N/
	9	6	Alphanate®	2009.05	195634	180	a human factor VIII/V	PrPSc down-re	down-regulate PrPSc	N/
	10	7	amantadine	1971.10	63727	58	an antiparkinsonian ag	prolong surviv	N/A	rec
	11	7	amantadine	1979.04	3900	8	an antiparkinsonian ag	prolong surviv	N/A	rec
	12	7	amantadine	1973.08	45813	46	an antiparkinsonian ag	prolong surviv	N/A	rec
	13	7	amantadine	1973.08	45813	46	an antiparkinsonian ag	prolong surviv	N/A	rec
	14	7	amantadine	1983.09	63518	17	an antiparkinsonian ag	prolong surviv	N/A	rec
									_	4

Figure 1. Snapshot of the updated *Main table*. Detailed information for the 144 small molecules is listed and classified into 14 categories. Red square in the upper right denotes a field for search.

CONTACT Su Yeon Kim, Stenksy@korea.kr Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control & Prevention 28159, South Korea; Heebal Kim Stenes heebal@snu.ac.kr Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

current website, which is compatible with the mobile web environment. THERPA has been expanded to cover 144 small molecules and their 353 relationships. A table template in the Main table in the current version was created using perform **SBGRID** (https://sbgrid.co.kr). То a search, users can specify a category by selecting one search category and entering a search text or keyword, after which the users click on the SEARCH button to execute the search (Figure 1). Users can download EXCEL files by clicking on the green button labelled, 'export (.xlsx)' at the upper left of the table. The *materials* for experiments and treemap pages were also updated followed by additionally curated small molecules and their relations. The manually curated THERPA will be updated regularly with new datasets to provide more valuable resources regarding small molecules and their role in prion protein regulation and in managing prion diseases. The repository would facilitate metaanalysis and would be useful for understanding disease mechanisms and developing therapeutic strategies.

Acknowledgements

This work was supported by the Korea Centers for Disease Control and Prevention (KCDC), Ministry of Health and Welfare (Project Number: 2014-NG52002-00).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Korea Centers for Disease Control and Prevention [2014-NG52002].

ORCID

Sol Moe Lee D http://orcid.org/0000-0002-6935-462X

References

- Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. PubMed PMID: 6801762.
- [2] Prusiner SB. Prion diseases and the BSE crisis. Science. 1997;278(5336):245–251.
- [3] Honda R, Yamaguchi K-I, Elhelaly AE, et al. Poly-L-histidine inhibits prion propagation in a prion-infected cell line. Prion. 2018;12(3-4):226-233.
- [4] Miyazaki Y, Ishikawa T, Kamatari YO, et al. Identification of alprenolol hydrochloride as an anti-prion compound using surface plasmon resonance imaging. Mol Neurobiol. 2019;56(1):367–377.
- [5] Lee SM, Lee W, Lee YS, et al. THERPA: a small molecule database related to prion protein regulation and prion diseases progression. Prion. 2018;12 (2):138–142.