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ABSTRACT

Identifying active transcriptional regulators (TRs) as-
sociating with cis-regulatory elements in the genome
to regulate gene expression is a key task in gene
regulation research. TR binding profiles from numer-
ous public ChIP-seq data can be utilized for associa-
tion analysis with query data for TR identification, as
an alternative to DNA sequence motif analysis. How-
ever, integration of the massive ChIP-seq datasets
has been a major challenge in such approaches. Here
we present BARTweb, an interactive web server for
identifying TRs whose genomic binding patterns as-
sociate with input genomic features, by leveraging
over 13 000 public ChIP-seq datasets for human and
mouse. Using an updated binding analysis for reg-
ulation of transcription (BART) algorithm, BARTweb
can identify functional TRs that regulate a gene set,
have a binding profile correlated with a ChIP-seq pro-
file or are enriched in a genomic region set, without
a priori information of the cell type. BARTweb can be
a useful web server for performing functional analy-
sis of gene regulation. BARTweb is freely available at
http://bartweb.org and the source code is available
at https://github.com/zanglab/bart2.

INTRODUCTION

Transcriptional regulators (TRs), including DNA
sequence-specific transcription factors (TFs) and chro-
matin regulators, play an instrumental role in controlling
gene expression by interacting with DNA and chromatin
in the eukaryotic genome (1). An important task in gene
regulation studies is to identify active TRs that function to
regulate genes with differential expression or are enriched

for binding in certain regions in the genome. Chro-
matin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) has become one of the most com-
monly used techniques for genome-wide profiling of TR
binding sites and chromatin marks (2,3). The increasing
amount of publicly available ChIP-seq datasets generated
by individual laboratories worldwide as well as large
collaborating consortia, such as Encyclopedia of DNA
Elements (ENCODE) (4) and Roadmap Epigenomics (5)
is a valuable resource for interrogating genomic profiles for
hundreds of TRs in many human and mouse cell types (6).
As an alternative to DNA-binding sequence motif search,
ChIP-seq data collected from the public domain can be
utilized to perform TR analysis.

To leverage public ChIP-seq data for TR identification,
we previously developed binding analysis for regulation of
transcription (BART), an algorithm to identify TRs from a
large collection of ChIP-seq data that have a genomic bind-
ing pattern highly correlated with an input genomic profile,
using a novel statistical approach integrating multiple lev-
els of statistical tests (7). To infer TRs regulating a query
gene set, BART first applies model-based analysis of reg-
ulation of gene expression (MARGE) (8) to derive a ge-
nomic cis-regulatory profile from the input gene set lever-
aging compendium ChIP-seq data for active enhancer hi-
stone mark H3K27ac, and then generates a ranked list of
factors that have a highly correlated binding profile with
the cis-regulatory profile. While proven to work for identi-
fying functional TRs in many case studies (7,9–14), BART
requires users to download large ChIP-seq data libraries
that can be storage and memory consuming, and sometimes
runs slow primarily due to the stepwise regression compu-
tation in MARGE.

Besides conventional sequence motif-based methods,
such as HOMER (15) and Pscan (16), there are several other
bioinformatics tools that use existing ChIP-seq data for
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TR identification or enrichment analysis, including ChIP-
Atlas (17), TFEA.ChIP (18) and ChEA3 (19). ChIP-Atlas
applies the Fisher’s exact test for TR enrichment near a
gene locus using collected public ChIP-seq data from mul-
tiple resources. TFEA.ChIP applies the Fisher’s exact test
or the gene set enrichment analysis method (20) for TR en-
richment analysis using ChIP-seq data collected from the
ReMap database (21). ChEA3 integrates multiple sources of
TR–target association information including ChIP-seq, co-
expression from RNA-seq and collected crowd-based gene
lists (22) to generate a ranked list of TRs associated with
query gene sets.

To overcome several data-intensive computing burdens
and to improve the performance of the original BART pack-
age, we present BARTweb, a web server application for users
to perform TR analysis from multiple types of query data.
BARTweb is accessible through an interactive web interface,
from which users can submit jobs and obtain results includ-
ing a table of TRs with statistical assessments and several
analysis plots for each factor. BARTweb implements an up-
dated BART algorithm for faster and more robust perfor-
mances. We demonstrate that BARTweb outperforms sev-
eral existing tools in identifying true TRs from collected ex-
perimental data, and can be a useful tool for gene regulation
research.

MATERIALS AND METHODS

BARTweb server infrastructure design

To provide a user-friendly and stable service through web in-
terface, we designed a two-part structure for the BARTweb
server: a front-end web interface to receive users’ job sub-
mission requests and to display job execution information
and results; and a back-end computing service to perform
all computation (Figure 1). We containerized both parts
into Docker and deployed them on a 17-server Distributed
Cloud Operating System cluster for continuous and stable
services.

The front-end web interface was developed and imple-
mented in Flask. To support simultaneous users, we de-
ployed it under Apache 2.4 inside a Docker container. The
back-end service uses our updated BART algorithm imple-
mented in Python3. To ensure continuous deployment of
the website, we serialized both parts into a GitHub repos-
itory and use Travis Continuous Integration to automat-
ically push the code changes into the online environment
running in production.

To connect the front-end and the back-end and to scale
to many users, we employed a robust queue using Amazon’s
Simple Queue Service to temporarily store job keys. Every
time a user submits a new job request through the web in-
terface, the BARTweb front-end pushes a unique message
to that request into the queue. Meanwhile, the BARTweb
back-end routinely checks that queue for incoming requests,
executes as soon as a new job comes in, and removes the re-
quest from the queue.

Updated BART algorithm

In BARTweb, we implemented an updated BART algo-
rithm, in which the inference of the genomic cis-regulatory

profile from the input gene set by integrating compendium
H3K27ac ChIP-seq data was replaced from the origi-
nal MARGE algorithm (8) with the adaptive lasso (23).
MARGE adopts a forward stepwise regression for feature
selection to identify significant predictors, i.e. informative
H3K27ac profiles that carry regulatory potential (RP) in-
formation to better separate the input gene set from other
genes in the genome. However, stepwise regression has fun-
damental limitations including selecting extremely variable
features and frequently trapped into a local optimal solu-
tion. In addition, k-fold cross-validation makes the entire
job execution very slow. The adaptive lasso can solve these
issues for this feature selection process.

Similar to MARGE, we consider the selection of infor-
mative H3K27ac samples as a logistic regression model.
Suppose y = (y1, . . . yn)T be the response vector indicat-
ing whether a gene belongs to a given gene set or not, and
P = [ p1, . . . pm] be the predictor matrix, i.e. the normal-
ized RP matrix derived from H3K27ac profiles (8). We as-
sume that:

E [y|P] = 1/
(
1 + e− (β1 p1+...+βm pm))

where β is the estimated value of each coefficient. We further
assume |{ j : β j �= 0}| = m0 < m, and the model to esti-
mate the input gene set depends only on a sparse represen-
tation of the predictors, i.e., a small subset of samples from
the H3K27ac ChIP-seq data compendium. We use adap-
tive lasso to identify an accurate sparse representation of
the predictors. The generalized logistic adaptive lasso is de-
fined as:
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β
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where w is the adaptive weight used for penalizing each co-
efficient. The adaptive lasso carries the oracle properties,
namely, it can simultaneously achieve consistent variable
selection and optimal prediction rate. Compared to lasso,
which equally penalizes the coefficients in the l1 penalty,
adaptive lasso uses data-dependent adaptive weights to pe-
nalize different coefficients in the l1 penalty. The weight
vector can be selected based on the importance of differ-
ent indicators so that large and important coefficients are
not penalized much and irrelevant variables are penalized
more. By performing a different regularization for each co-
efficient, the adaptive lasso avoids over-penalization of rele-
vant coefficients, reduces the estimation biases and leads to
a consistent model selection (24). Besides, by applying the
LARS algorithm (25) that is implemented in our model, the
adaptive lasso is in the same order of computation of a sin-
gle ordinary least squares fit (23).

If the weights are cleverly chosen, the adaptive lasso per-
forms equally well as if the true underlying model were given
in advance (23). Here, we iteratively construct the data-
dependent adaptive weights. The weights are initiated as an
all-one-vector, and then are iteratively determined by the
coefficient from the logistic lasso in the previous step. The
algorithm is described in Supplementary Algorithm 1.
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Figure 1. BARTweb architecture overview. BARTweb front-end receives user input and displays processed output. BARTweb back-end performs compu-
tation of BART TR identification analysis. Both services are containerized and share a common file system.

After relevant H3K27ac samples are selected, we directly
apply the feature coefficients on the H3K27ac signals and
produce a score for each candidate cis-regulatory element
(CRE). Here we use the union DNase hypersensitive sites
(UDHS) as a collection of all candidate CREs. The higher
the score is, the more likely this CRE is a functional ele-
ment regulating the input gene set. All candidate CREs with
prediction scores compose the genomic cis-regulatory pro-
file, which undergoes the remaining steps in the BART al-
gorithm.

Updated ChIP-seq data library

The amount of available ChIP-seq data keeps growing in
the public domain. We updated the ChIP-seq data library
to cover more TRs in more cell types for both human and
mouse. We downloaded the TR ChIP-seq peak files from
the updated Cistrome Data Browser (26). Under the same
quality control standards used in BART v1.1 (7), we kept
only the datasets that have at least 2000 peaks. The updated
data library contains 7968 ChIP-seq datasets for 918 human
TRs and 5851 ChIP-seq datasets for 565 mouse TRs, a sig-
nificant increase from BART 1.1 (Supplementary Table S1
and Figure S1). We plan to keep updating the data library
regularly.

RESULTS

Submit jobs on BARTweb

The web server interface is shown in Supplementary Fig-
ure S2. When submitting a job through the web interface,
users need to specify the species (hg38 for human or mm10
for mouse) and the input data type (a gene set, a ChIP-seq
dataset or a scored region set) besides providing the input
data. The input data can be either uploaded as a file in an ac-
cepted format, or pasted in the input field. Users can opt to
assign a job name and/or provide an email address. Once a
job is submitted, BARTweb will generate a unique key, and
display a status indicator and a processing log. It usually
takes a few minutes to run a job. Users can leave BARTweb
running in the background, and use the unique key or the
provided email to check the job status and to retrieve the

results with a uniform resource locator (URL). The results
are kept on the server with the unique keys or URLs for a
minimum of 180 days.

BARTweb input

BARTweb accepts three data types as input:

(i) a gene set in official gene symbols (HGNC for human
or MGI for mouse) in text format. BARTweb will iden-
tify TRs that regulate this gene set. BARTweb will in-
tegrate the gene set with H3K27ac ChIP-seq data com-
pendium to derive a genomic cis-regulatory profile. TR
association analysis is performed on this genomic cis-
regulatory profile. At least 100 genes are recommended
in the input.

(ii) a ChIP-seq mapped read dataset in BAM or BED for-
mat. BARTweb will identify TRs whose binding pro-
file correlates with this ChIP-seq profile, e.g. co-factors
of a TF or chromatin regulators associated with a TF
or a histone mark. BARTweb will pile up the ChIP-
seq reads located at the UDHS, and use the read count
at each UDHS site to generate the genomic regulatory
profile and to perform TR association analysis. At least
1 million reads are recommended in the input.

(iii) a scored genomic region set in BED format. BARTweb
will identify TRs with binding sites enriched in these
genomic regions. BARTweb will map the region set to
UDHS, and assign the region score to each UDHS
overlapped with the region to generate the genomic
regulatory profile and to perform TR association anal-
ysis. At least 1000 regions are recommended in the in-
put.

BARTweb output

BARTweb displays the result panel, including a ranked list
of all TRs with quantification scores (Figure 2A) and a
list of all intermediate and final output data files available
for download. For each TR, clicking on the TR name can
open a pop-up window displaying its corresponding analy-
sis plots (Figure 2B and C).
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Figure 2. Example of BARTweb results. (A) Ranked list of identified
TRs with quantification scores. (B) Cumulative distribution of association
scores (AUC) of all ChIP-seq datasets for POU5F1 (red) compared with
that of all other ChIP-seq datasets as background (gray). (C) Scatter plot
of all TRs’ Irwin-Hall P-value score (−log10 P-value) against its rank. Se-
lected TR (POU5F1) was labeled in red.

In the output TR table (Figure 2A), all available TRs (918
for human or 565 for mouse) are displayed accompanied by
six quantification scores in Columns 2–7. The table can be
re-ordered by any score in a descending or ascending way
by clicking the column header.

(i) Wilcoxon test statistic and P-value (Columns 2 and 3):
these two values indicate the level of association of
each TR under the background of all other TRs. For
each TR, we use Wilcoxon rank-sum test to compare
the association scores from all ChIP-seq datasets for
that TR with the association scores from all ChIP-seq
datasets for other TRs.

(ii) Z-score (Column 4): this value is to assess the speci-
ficity of each TR compared with a background model.
We build background models using the Wilcoxon test
statistics obtained from all annotated gene sets from
the Molecular Signatures Database (27) for gene set in-
put or all H3K27ac ChIP-seq datasets from the data
compendium for ChIP-seq read or region set input, re-
spectively.

(iii) Max AUC (Column 5): the maximum association score
among multiple ChIP-seq datasets of that TR.

(iv) Relative rank (Column 6): the average rank of
Wilcoxon test statistic, Z-score and Max AUC for each
TR, divided by the total number of TRs.

(v) Irwin-Hall P-value (Column 7): this P-value indicates
the integrative rank significance, using the Irwin-Hall
distribution as the null distribution for unrelated ranks.
The output TRs are ranked by this P-value by default.

Example results shown in Figure 2 were generated using a
gene set that were down-regulated upon OCT4 (POU5F1)
knocked down in a human embryonic stem cell line. This
input gene set should include target genes of POU5F1. As
expected, POU5F1 was identified as the top ranked regula-
tor, whereas several other stem cell signature TRs, such as
NANOG and SOX2 were also identified.

Each TR in the table has a link to its corresponding anal-
ysis plots, including a cumulative distribution of association
scores (AUC) (Figure 2B) and a rank-dot plot (Figure 2C).
The cumulative distribution of association scores of that TR
comparing to all other factors demonstrates the high associ-
ation scores of many ChIP-seq datasets for that factor. The
rank-dot plot shows Irwin-Hall P-value scores (−log10 P-
value) against absolute ranks of all TRs with the selected
factor highlighted, to demonstrate the overall significance.
Users can hover the mouse on other data points to find out
which TR it is.

BARTweb also provides download links to all interme-
diate data files for further exploration, including selected
H3K27ac samples from the adaptive lasso regression, the
genomic cis-regulatory profile and all TR ChIP-seq asso-
ciation scores. A detailed description of each intermediate
data file can be found on the Help page.

BARTweb outperforms existing tools

To evaluate the performance of BARTweb on identifying
the correct TRs that regulate an input gene set, we per-
formed TR identification analysis using the gene sets de-
rived from knockTF (28), a database of a comprehensive
collection of 570 differential human gene expression pro-
files with knockdown/knockout (KD/KO) of 308 TFs, and
compared the BARTweb results with those generated from
several other tools that provide a command line version for
batch processing, including BART v1.1 (7), TFEA.ChIP
(18), ChEA3 (19), Pscan (16) and HOMER (15) (Supple-
mentary Table S2 and Supplementary Methods). For each
differential gene expression profile under KD/KO of a fac-
tor, we used a fold-change cutoff of 1.5 to select the up-
and down-regulated genes and conduct TR identification
analyses separately. If the actual KD/KO factor was ranked
among the top 10% of all TRs in the output and the corre-
sponding P-value < 0.01 for either up- or down-regulated
gene set, we declared that this tool yielded a true prediction
on this dataset for this factor. Among the 512 differential
expression datasets with at least 100 up- or down-regulated
genes (Supplementary Table S3), 354 have their KD/KO
factor included in the BARTweb TR library, and BARTweb
had true predictions on 104 datasets (29.4%), higher than
the other tools (Figure 3A and Supplementary Table S4). If
we focused on the number of unique factors that each tool
can successfully identify from the konckTF differentially
expressed gene sets, BARTweb yielded true predictions for
61 factors (33.7%), also the highest among the tools tested
(Figure 3B).

As users usually focus on only a few top-ranked TRs for
downstream analysis or validation, we further compared
the true prediction performances of the five tools using top
0.5% and top 1% as cutoffs in addition to top 10%. In each
case, we found that BARTweb still yielded true predictions
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Figure 3. Performance comparison of BARTweb with five other tools on
knockTF datasets. (A) Performance of each tool reflected by the fraction
of knockTF datasets with true prediction (y-axis) against the number of
knockTF datasets whose KD/KO TR were included in the tool (x-axis).
(B) Performance of each tool reflected by the fraction of unique KD/KO
TRs with true prediction (y-axis) against the number of unique KD/KO
TRs included in the tool (x-axis). (C) Number of knockTF datasets with
true prediction under different rank cutoffs for each tool. (D) Number of
unique KD/KO TRs with true prediction under different rank cutoffs for
each tool.

on the highest number of gene expression datasets (Figure
3C and Supplementary Table S4) and the highest number
of unique factors (Figure 3D). In conclusion, we showed
that BARTweb outperforms existing sequence motif-based
and ChIP-seq-based tools in identifying regulatory factors
using target gene sets from experimental data.

DISCUSSION

BARTweb is a web server for performing TR association
analysis using a large collection of public ChIP-seq data
as the sole resource. This approach complements the com-
monly used sequence motif scan methods for TF identifi-
cation, and has the unique advantage of utilizing in vivo
protein–DNA interaction information across the genome
for making biologically meaningful discoveries. In addition
to sequence-specific TFs, BARTweb can also identify chro-
matin regulators and some histone variants such as H2A.Z,
whose genomic profiles can be measured by ChIP-seq and
are included in the data collection.

Utilizing existing ChIP-seq data has become an emerg-
ing trend in bioinformatics methodology development for
TR analysis. Lisa (29), recently published during prepa-
ration of this manuscript, uses a similar integrative mod-
eling approach to build a chromatin model for TR infer-
ence. Meanwhile, users should be aware of several limita-
tions of such ChIP-seq data-based TR identification meth-
ods, including BARTweb. First, as shown in Figure 3, it
is worth noting that most tools can only reach as high as
30% of correct prediction for the knockTF datasets. This
might be attributed to both the heterogeneous nature of

the data in the knockTF database and the TR coverage
of the tools. There is room for further improvement. The
prediction power of BARTweb is limited by the range of
TRs with existing ChIP-seq data and the data quality. While
BARTweb is being maintained and updated, we expect that
the TR coverage will grow, as we anticipate that the pub-
lic ChIP-seq datasets will keep increasing. Second, similar
to other tools, BARTweb does not consider cell-type speci-
ficity in the TR association analysis. In general, this will
not be an issue. Because of the DNA sequence specificity
of TF binding, genomic binding profiles of the same TF in
different tissue/cell types are usually more similar to each
other than binding profiles between different TFs in the
same tissue/cell type (7). As a result, as long as the genomic
cis-regulatory profile correlates with the genomic profile of
a regulator, the BART algorithm is still able to find the cor-
rect factor, even from a different cell type, but is less likely
to identify an irrelevant factor from a relevant cell type.

Last but not least, TR identification process in BARTweb
is based on identified peak information from high-quality
ChIP-seq data. It is known that a considerable portion of
ChIP-seq peaks usually do not contain motif consensus se-
quences in the regions. This may be because the TR either
binds non-canonical motifs or exhibits indirect binding re-
cruited by other factors, or can even be an experimental ar-
tifact. These unexplained patterns in ChIP-seq data might
create false positive in BARTweb predictions. A more com-
prehensive characterization of the collected ChIP-seq data,
including account for motif-present peaks and motif-absent
peaks, might further improve the accuracy of TR analysis.
Nevertheless, with a superior performance than several sim-
ilar tools, BARTweb is an effective and easy-to-use bioin-
formatics web server for TR analysis for different types of
omics data. It can help biologists in gene regulation research
interpret various experimental data and develop hypotheses
for mechanistic studies.

DATA AVAILABILITY

BARTweb is freely available at http://bartweb.org; the
source code for the updated BART algorithm is available
at https://github.com/zanglab/bart2.
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Supplementary Data are available at NARGAB Online.
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