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Abstract

Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy
volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most
previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these
weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using
multiple parametric distributions it was found that the weighted node degree of our networks is best described by the
normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-
processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The
clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula
used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a
regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The
combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but
whose weighted node degrees are comparable.
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Introduction

Diffusion MRI, the measurement of the extent and direction of

water diffusion, makes possible a minute interrogation of extant

white matter fiber architecture of the brain. Subsequent tracto-

graphy, the inferring of fiber tract populations, has enabled us to

visualize structural connections in the brain. Recently, whole brain

connectivity information has been extracted from tractography. In

combination, these techniques make it possible to extract the

whole brain connectivity information of the structural brain

network.

It was shown by various authors [1–6] that brain networks

appear to satisfy so-called small-world and/or scale-free proper-

ties, for a good review see [7]. It was further reported [1] that a

structural core of highly connected nodes exists in the brain,

comprised of parieto-frontal and medial structures. Many other

reports of network properties of the brain have now been

published. While these studies provide fascinating glimpses into

the world of brain networks, their lack of statistical rigor might well

render claims of small-world or scale-free properties, and indeed

presence of hubs in the brain, premature.

Diffusion MRI data suffer from instrumentation noise and

limited spatial and angular resolution. Tractography algorithms

used to infer nervous fiber trajectories through white matter

inherit these problems. They become even more unreliable at

voxels where fibers cross each other, merge, kiss or diverge, see [8]

and references therein. These factors combine to produce highly

noisy networks, any of whose links might be unreliable. At high

connection weights this may not be a big problem, but noise can

easily obliterate or hallucinate weak links, thus altering the

topology of the network. Therefore network measures based on

topology, including small world indices, might become unreliable.

Another major problem is that most reported studies rely, at

some stage or another of their analysis, on unweighted networks

obtained by converting real-valued connectivity weights into

binary zero-one connections. Although previous studies have

recognized this problem and have addressed it by showing results

at several weight thresholds, the issue of statistical rigor remains.

Finally, the significance of previous results is affected by the fact

that critical network properties like degree distribution, clustering,

etc., were reported without statistical significance and hypothesis

testing. Indeed, claims regarding the shape of degree distribution,

whether power-law, truncated power-law or some other distribu-

tion, were made without testing these hypotheses against each

other.

In this paper we seek to address these omissions by proposing a

statistically robust pruning approach to deal with noisy networks.

We first show that our robust networks are qualitatively similar to
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those reported earlier, and appear to show good agreement in the

spatial distribution of various local network quantities like degree,

clustering, centrality and efficiency. However, our subsequent

analysis exhibits significant points of departure from previous

studies. We show that the degree distribution of brain networks,

far from being scale-free or having any sort of heavy tail, in fact

most closely resembles an ordinary normal distribution. Goodness-

of-fit measures for various hypothesized distributions revealed no

justification for admitting alternative hypotheses away from the

normal distribution. Further analysis reveals that the brain on the

medium spatial scale, far from having an unpredictable or random

network structure, is in fact hierarchically organized as a regular

tree of base two. Finally, we found that the connectivity properties

of the brain at various levels of the hierarchical tree are

uncommonly regular, implying that all brain cortical regions of

sufficient size are largely equivalent. In the Discussion section we

elaborate on the extent to which these observations are supported

by prior brain research.

Materials and Methods

Subjects, MR Imaging and Network Extraction
T1-weighted structural MR and High Angular Resolution

Diffusion Imaging (HARDI) data were collected on 14 healthy

adults on a 3 Tesla GE Signa EXCITE scanner (GE Healthcare,

Waukesha, WI, USA). HARDI data were acquired using 55

isotropically distributed diffusion-encoding directions at

b = 1000 s/mm2 and one at b = 0 s/mm2, acquired at 72 1.8-

mm thick interleaved slices with no gap between slices and

1286128 matrix size that was zero-filled during reconstruction to

2566256 with a field of view (FOV) of 230 mm. The structural

scan was an axial 3D inversion recovery fast spoiled gradient

recalled echo (FSPGR) T1 weighted images (TE = 1.5 ms,TR

= 6.3 ms, TI = 400 ms, flip angle of 15u) with 230 mm FOV and

156 1.0-mm contiguous partitions at a 2566256 matrix.

The structural and diffusion MR volumes were co-registered

using the Individual Brain Atlases using Statistical Parametric

Mapping (IBASPM) [9] and Statistical Parametric Mapping

(SPM5) [10] software packages in MATLAB. The structural

volumes were then parcellated into cortical structures, using

IBASPM/SPM5 software and the brain atlas created in

standardized Montreal Neurological Institute (MNI) space [11]

provided in the Automatic Anatomical Labeling (AAL) software

package [12]. The surfaces of the resulting 116 parcellated

cortical structures from the T1 volume were used to seed

corresponding regions in the diffusion volume, and probabilistic

tractography was performed using existing software [8]. We

opted to use this established, well-known brain parcellation

based on anatomically and functionally cohesive units instead of

parcellation in structures that would have equal number of

voxels, because constructing a brand new brain segmentation

would open a whole set of questions on how were regions

chosen, what is an appropriate number of voxels in a region,

etc. Taking extremely small regions as nodes is unreliable due

to noise and problems in tractography.

The amount of white matter connectivity between any two gray

matter structures was measured using the tractography informa-

tion, and this quantity, defined between any two nodes r and p,

was taken to be the weight of the edge in the connectivity graph. In

this case, the weight was taken to be the Anatomical Connection

Strength (ACS), as described in [8], which represents the potential

information flow between the nodes. This ACS measure is related

to the amount of nervous fibers connecting surfaces of the cortical

structures in question, and is estimated by counting the number of

nodes on the surfaces of the structures involved in the connection

according to its maximum probability of being connected with the

nodes in the surface of the second structure. The choice of ACS as

a measure of connectivity is somewhat arbitrary, and almost

certainly not ideal. We opted to use it as comparatively most

appropriate, considering that there is normalization in the

clustering and the definition of the cluster distance.

Only the cerebrum is of interest in this study, so the 26

cerebellar structures and their connections are removed, leaving a

cortical connectivity graph with 90 nodes. The list of the ROIs is

in Supporting Text S3. The weights of the edges are used to

construct a connectivity matrix W of size 90690, whose entries,

denoted by wpq, give the non-directed connectivity of nodes p and

q. This matrix is symmetric by construction, i.e. wpq~wqp, and the

self-connections are considered to be zero, i.e. wpq~0 for p~q.

Entries of the matrices W (i) corresponding to the n individual

subjects are denoted by w(i)
pq where i~1::n.

Ethics Statement
Written informed consent was obtained in accordance with

guidelines set forth by the Weill Cornell Medical College

Institutional Review Board. This research has been conducted

according to the Declaration of Helsinki and approved by the

Weill Cornell Medical College Institutional Review Board.

A Robust Technique for Network Pruning
Prior studies rely on thresholding the real-valued connectivity

values in order to convert them to unweighted links, e.g. [4]. Since

the topology of the network is liable to depend strongly on the

threshold used, previous studies have advocated reporting network

measures over a large range of thresholds. The threshold used is

sometimes called a cost because it is deemed that the number of

resulting connections must be proportional to the metabolic cost of

sustaining such a network. Although this approach is better than

using a single threshold, it does not guarantee survival of viable

connections if overly high thresholds are used. Conversely, if the

threshold is too small it might admit too many weak connections

which might simply be noise. For a good discussion on the need for

a conservative statistical criterion see [4]. To obtain a statistically

principled thresholding regime which can decide whether a

connection is statistically significant, we propose the following

scheme, a variant of Holm-Bonferroni method [13], based on

hypothesis testing.

1. Calculate joint variance s of all non-zero entries in the upper

triangular part of the W (i){W matrices, for all i~1::n:

2. Perform z-test on sample consisting of entries w(i)
pq, i~1::n, with

zero mean, variance s and significance value p (which is an

input parameter). The purpose of this test is to determine if the

hypothesis that the distribution for w(i)
pq is centered at zero can

be refuted. If it can, we keep all the w(i)
pq, and if it cannot, we set

all w(i)
pq~0 in the modified matrices W

(i)
mod .

3. Repeat steps 1. and 2. with matrices W
(i)
mod : This is done until

average matrix Wmod does not change anymore.

Note that connectivity matrices modified in this way are still

weighted and all the analysis performed in this paper is on

weighted connectivity matrices.

Weighted Brain Networks
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Fitting Parametric Distributions to Weighted Node
Degree

In a weighted graph the weighted degree of a node is defined as:

s(r)~
X

e[E(r)

w(e) ð1Þ

where r is an ROI and E(r) is set of all edges emanating from r.

To analyze small-world and scale-free properties of brain

networks we made histograms of connectivities from the 90 ROI’s

of all the 14 subjects individually for both the original unmodified

ACS matrix as well as for the modified matrices. Therefore the

overall number of measurements (many of them being zero) in a

histogram was 14|90|89=2~27,720.

Maximum likelihood estimation was used for curve fitting. We

considered normal, gamma, exponential and power-law distribu-

tions. Normal and gamma distributions were fitted for all the data,

while exponential and power distributions were fitted only for the

portion of the data to the right of the histogram mode. It is

important to stress that maximum likelihood estimation was

performed on the original data, not the histograms. For the power-

law distribution fitting we used method from [14], which returns

xmin -the left bound on power-law behavior. The distribution is

assumed to follow power-law (Pareto) distribution for values

xwxmin.

We used Kolmogorov-Smirnov distance as a quantitative

goodness-of-fit test on distributions, defined as

D~ max
x

DP(x){Q(x)D

where P(x) and Q(x) are cumulative distribution functions.

Hierarchical Clustering
We performed hierarchical clustering of the connectivity graph

using normalized cuts [15,16]. Our work is mostly based on [17]

because of the clearly defined metric for estimating number of

clusters, eq. (2), but we also compared results with those obtained

following [18] -an algorithm also based on normalized cuts, that

has a different procedure for eigenvector discretization. The basic

algorithm is as follows.

1. For a given connectivity matrix W of size n|n, take D to be a

diagonal matrix with Dii~
Pn

j~1 wij and calculate Laplacian

L~D{1=2WD{1=2.

2. Find the C largest eigenvectors x1, . . . ,xC of L and form the

matrix X~½x1, . . . ,xC �[<n|C , where C is the largest possible

group number.

3. Find the rotation R which best aligns X ’s columns with the

canonical coordinate system using the incremental gradient

descent scheme based on Givens rotations [17].

4. Take Z~XR and calculate the cost of the alignment for each

group number, up to C, according to cost function

J~
Xn

i~1

XC

J~1

Z2
ij

M2
i

ð2Þ

where Mi~maxjZij . The cost function is constructed to favor

rotations R that result in only one non-zero entry per row of

the matrix Z. Based on J, a quality metrics on interval (0,1�
(one being the best) can be defined:

N

Q~1{
1

C

J

n
{1

� �
ð3Þ

5. Set the final group number Cbest to be the largest group

number with maximal quality (minimal alignment cost).

1. Take the alignment result Z of the top Cbest eigenvectors

and assign the ROI ri to cluster c if and only if maxj(Z
2
ij)~Z2

ic.

To perform hierarchical clustering we repeat the above

procedure on the submatrices induced by the clustering at the

previous level.

Connectivity between Clusters
The connectivity between clusters at each level of hierarchy was

analyzed in the following way. All of the connectivities emanating

from ROIs belonging to cluster ci and terminating in cluster cj

were added and then normalized by total weight of edges

emanating from cluster ci, i.e.,

d ci,cj

� �
~

X
p[ciq[cj

wpq

C(ci)
ð4Þ

where

C(ci)~
X
p[ci

wpq ð5Þ

Note that it is possible to have i~j, therefore defining ‘‘self

connectivity’’ d ci,cið Þ.
In order to show the dependence of connectivity between nodes

as a function of the tree distance between them (based on the

hierarchical tree above), values d ci,cj

� �
were itemized and

averaged over the total number of clusters on that tree distance.

The connectivity was plotted against tree distance.

Path Length, Clustering Coefficient and Small-world
Index

Traditional network summary measures like path length,

clustering coefficient, etc. were obtained using conventional

formulas adapted for the case of weighted graphs.

The small-world index is defined as

s~
c

l
~

C=Crand

L=Lrand

ð6Þ

where C is average clustering coefficients of all the nodes, L is the

average of shortest path lengths and Crand and Lrand correspond to

a random network. Parameters c and l are usually referred to as

the normalized clustering coefficient and normalized path length, see, for

example, [5]. The network is said to have a small-world property if

the network’s clustering coefficient is much greater than that of a

corresponding random network, while their path lengths are

comparable [19]. Consequently, the network has a small-world

property if sww1:
The clustering coefficient usually pertains to an unweighted graph;

however, several extensions exist for weighted graphs [20]. In this

work we have considered two possibilities, one by [21]:

6.

Weighted Brain Networks
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CO(r)~
1

kr(kr{1)

X
p,q[N(r)

(ŵwpqŵwprŵwrq)1=3, ð7Þ

and the other by Grindrod-Zhang-Horvath, see [22]:

CGZH (r)~

P
p,q

ŵwpqŵwrpŵwrq

P
p=q

ŵwrpŵwrq

for ŵwrp,ŵwrq=0, ð8Þ

where kr is the degree of the r-th node (ROI), N(r) is the set of

nodes neighboring r and ŵwpq is the weight of the connection from

p to q normalized by dividing by the largest edge-weight in the

network ŵwpq = wpq=max(w). The difference between the two

formulas is that eq. (8) depends only on connection weights,

whereas eq. (7) depends on node degree also -a difference will be

analyzed in the Results section. Either definition is preferable over

those in previous brain studies, e.g. [5], because here triangles

having one weak link are given an appropriately small contribu-

tion. For further discussion on these and other generalizations of

the clustering coefficient for weighted graphs see [20,22].

Connectivity weights wrp were transformed to distances using

dpq~1=wpq: Shortest paths were found by the implementation of

Johnson’s algorithm [23] in the software package MatlabBGL

[24].

The equivalent random network considered was one with the

same overall connectivity histogram as our extracted network. We

constructed symmetric matrices with the same entries as the

original matrix, only the entries were randomly distributed over

the ROI’s. Mathematically speaking, for Vwpq[W there

Aw(r)
rs [Wrand such that wpq~w(r)

rs ~w(r)
sr . All summary network

measures were plotted as histograms, and all local network

Figure 1. Connectivity weight distribution for the complete ACS matrix (top) and the modified ACS matrix with p~0:001 (bottom).
doi:10.1371/journal.pone.0035029.g001

Weighted Brain Networks
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measures were plotted in pseudocolor on the brain cortical surface

in order to assess their spatial distribution.
Results

As already explained, in this study we considered connectivity

between 90 Regions of Interest (ROIs) in the cerebrum (the list

of ROIs is in Supporting Text S3). The weighted connections

were obtained from diffusion MRI data from 14 healthy

volunteers by using Anatomical Connection Strength (ACS)

[8]. The original ACS results were modified by a network

pruning method as described in the section on Materials and

Methods.

The modified connectivity matrix, after significance threshold-

ing at level p~0:001, has 233 non-zero entries out of a possible
90|89

2
~4,005 above the main diagonal (the matrix is symmet-

ric). The unmodified matrix has 412 non-zero entries in the same

region. The modified connectivity matrix and the difference

Figure 2. Curve fitting to weighted degree distribution for the modified ACS matrices with p~0:001 (top) and p~10{9 (bottom).
doi:10.1371/journal.pone.0035029.g002

Table 1. Kolmogorov-Smirnov distance.

Distribution p = 1029 p = 1025 p = 0.001 p = 1

Normal 0.0464 0.0418 0.0302 0.0313

Gamma 0.0789 0.0730 0.0718 0.0679

Exponential 0.1289 0.1231 0.1185 0.1144

Power 0.0303 0.0449 0.1077 0.0846

doi:10.1371/journal.pone.0035029.t001

Weighted Brain Networks
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between these two matrices, i.e. entries that are statistically

unreliable, are presented in Supporting Text S1.

In figure 1 we present the distribution of the connectivity

weights (entries of the matrix) for both the complete ACS

matrix and the modified ACS matrix with a threshold of

p~0:001: Both distributions are best fitted by an exponential

curve.

Fitting Parametric Distributions to Weighted Node
Degree

The histograms of thresholded weighted degree distributions

from the 90 ROI’s of all the 14 individuals are shown in figure 2.

It is evident from figure 2 and table 1 that the normal

distribution best fits the histograms at low significance thresholds,

but goodness-of-fit tests reveal important trends related to network

pruning. Higher levels of pruning correspond to a worse normal fit

Figure 3. Path length, clustering coefficient and small-world index.
doi:10.1371/journal.pone.0035029.g003

Weighted Brain Networks
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and a better power-law fit. At the pruning level of p~0:001 both

fits appear similar. This is with a caveat that the power distribution

is valid only after a certain threshold xmin, whereas the normal

distribution is fitted to the complete data sample. Similar

improvements could be seen with the exponential distribution if

it was fitted not from the mode, but from certain a xmin higher

than the mode.

To further illustrate the effect of network pruning, in

Supporting Text S2 we present quantiles of weighted degree

distributions for various levels of p, compared to the normal

distribution.

These results may be summarized by the observation that the

normal distribution appears to be the most likely distribution for

the observed data, over the whole weight spectrum and over a

large range of pruning levels. Alternative hypotheses, for instance

power-law or exponential distributions, are generally inferior to

the normal distribution, except in cases of very high pruning.

These cases preferentially accept high connections and reject

small ones, thus forcing the values to diverge from Gaussian.

Further, the latter hypotheses apply only to a small portion of the

histogram well to the right of the mode, whereas the normal

distribution easily fits the whole histogram. We must conclude

therefore that our data does not support moving away from the

Gaussian hypothesis to either the power-law or exponential

distribution.

Figure 4. Fitting parametric distributions to clustering coefficients by Onnela (top) and Grindrod-Zhang-Horvath (bottom).
doi:10.1371/journal.pone.0035029.g004

Weighted Brain Networks
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Path Length, Clustering Coefficient and Small-world
Index

In the bottom part of the figure 3 we present the small-world

index at varying significance levels p. The significance level of

p~1 corresponds to the unmodified connectivity matrix. The

parameters Crand and Lrand are averages over 100,000 samples of

random network realizations. We varied the number of samples

from 104 to 106 and the results are essentially the same (with

differences at the third decimal point).

It can be seen that the small world index decreases as p
increases, illustrating again that as less reliable connections are

eliminated, the connectivity matrix diverges from the random

counterpart. In particular, the effect of matrix modification is

apparent: by using the definition from [21], which uses node

degree, eq. (7), the small world index rises after the matrix

modification. On the other hand, the Grindrod-Zhang-Horvath

clustering coefficient, which uses only connectivity weight, eq. (8),

even decreases slightly after eliminating weak connections.

Overall, the small world index is high independently of p,

confirming that the connectivity matrix has the small world

property.

In the top part of figure 3 we plot clustering coefficients, average

path lengths and small world indices for different cut-off levels p.

As expected, the decrease in small world index is due to a decrease

in clustering coefficient, whereas the change in average path length

is negligible.

Fitting Parametric Distributions to Clustering Coefficients: Figure 4 (top)

reveals that the histogram of the clustering coefficient according to

[21] is best fitted by the gamma distribution, followed by the

power-law distribution (after xmin~0:14). Figure 4 (bottom) shows

that the Grindrod-Zhang-Horvath clustering coefficient histogram

appears best fitted by power-law distribution, followed by the

gamma distribution. We offer an intuitive explanation for this

difference in the Discussion section.

Figure 5. Quality of clustering into different number of parts.
doi:10.1371/journal.pone.0035029.g005

Figure 6. Hierarchical clustering into four parts (left), eight parts (middle) and direct clustering into 8 parts (right).
doi:10.1371/journal.pone.0035029.g006

Weighted Brain Networks
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Hierarchical Clustering
The hierarchical clustering method we constructed for this study

is based on normalized cuts method, which was originally

successfully applied in image segmentation. Please see the section

on Materials and Methods for further details. The results

presented in this subsection are, unless stated otherwise, based

on pruned networks with significance level p~0:001.

The quality metric of clustering into a different number of parts

is plotted in figure 5; there are separate curves for each tier of the

hierarchy. Clearly, for each tier up to the third (the last presented),

the algorithm favored division into two parts. It can be seen that,

after two parts, divisions into four and eight parts are the best,

reinforcing base two partitioning. Clusters on the third tier have a

different optimal number of parts. We choose to omit this level

from further consideration due to several factors. 1) On this level

the clusters are small and consequently more affected by noise and

natural anatomical variations. 2) Network nodes come from a

cortical parcellation algorithm using a prior anatomic atlas and

these procedures are quite noisy. 3) Nodes represent anatomic

surface gyrification rather than actual connectivity; the gyri come

in various shapes and sizes. On the whole there is no firm basis for

considering these ROIs as real nodes in the network. Therefore,

we expect that at the level of individual nodes, the hierarchical

clustering results should no longer be reliable indicators of the true

hierarchy. The base-two hierarchy is pictorially depicted in the

figure 6. Notice the clean separation into anatomically sensible

regions: first into the two hemispheres (2 clusters), then into

anterior and posterior regions (4 clusters), then finally into frontal,

parieto-occipital, temporal and medial cingulate regions (8

clusters). Recall that nowhere in the clustering process was any

Figure 7. Hierarchical clustering of the modified matrix with
p~0:001.
doi:10.1371/journal.pone.0035029.g007

Figure 8. Hierarchical clustering of the complete ACS matrix.
doi:10.1371/journal.pone.0035029.g008

Weighted Brain Networks
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information provided regarding the location or anatomy of any

node. The fact that a purely graph-based clustering procedure

reproduced the expected anatomically contiguous and plausible

partitions in the brain is a somewhat surprising and satisfying

result.

In order to further test the stability of these results, we

implemented hierarchical clustering using a different normalized

cuts algorithm from [18] which, instead of eigenvector rotations

based on the cost function given by eq. (2), uses an iterative

procedure to suppress all the (row wise) non-maximum entries in

Z (setting Zij~0 if Zij=Mi). It then uses singular value

decomposition to find the rotation that aligns columns of X with

columns of Z. The resulting hierarchical clustering on our data

was exactly the same as presented in figure 6 (see also figure 7 for

the list of regions), indicating robustness in the clustering

procedure.

At different significance thresholds optimal division of some

clusters on the second tier does not always result in two parts. For

example, the first cluster in the second tier in figure 8 has optimal

division into eight parts. However, comparing clusterings in

figure 7 and figure 8, which differ only in a very small number of

ROIs, and taking into account that the algorithm from [18] gives

yet another, slightly different clustering for the same connectivity

matrix, we are inclined to attribute these discrepancies to noise.

We tried clustering into eight parts directly (figure 6) and in this

case the cluster division into left and right cerebral hemisphere is

not present anymore. The medial regions from both hemispheres,

dominated by the cingulums and precuneus, cluster together.

These regions are similar to those reported in [1] where clustering

into six parts was found to be optimal by using method from [25].

We comment on this in the Discussion section. We also tested how

the quality metric for the brain segmentation compares to quality

metrics for similar random networks, results of which are in

Supporting Text S5.

Connectivity Between Clusters: Connectivity between clusters as a

function of tree distance is shown in figure 9 (with error bars on

top and log scale on bottom) and it decays exponentially in tree

distance. This result was consistent independent of the significance

level p. In particular, it appears that the connectivity of a node pair

depends on the level of hierarchy to which they belong; two nodes

at the same level of hierarchy are on average 3.8 times more

strongly connected than two nodes differing by 1 level of the

hierarchy. This ratio appears largely independent of the particular

level of hierarchy chosen.

Discussion

Statistically Robust Network Pruning: We proposed a new signifi-

cance thresholding approach based on hypothesis testing to

remove statistically questionable edges and argued that this is

preferable to previous studies which have computed network

metrics a at varying number (or cost) of edges in the network.

Although the resulting networks are more stable over a range of

significance thresholds, some variability remains. The fact that the

original network has a degree distribution closer to the normal

distribution than the pruned networks suggests that thresholding

can alter conclusions regarding degree and other statistics. The

small-world index was also found to vary at different significance

thresholds, but continued to be in the small-world range for all

cases.

Similarity of Spatial Distribution of Network Statistics to Previous Studies:

Our results regarding the spatial distribution of network efficiency,

small-world properties, betweenness centrality (see Supporting

Text S4), etc. largely agreed with previous studies [1–4]. Therefore

Figure 9. Average connectivity between clusters for p~0:001 in
normal axis scale and log scale (bottom).
doi:10.1371/journal.pone.0035029.g009
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we believe that subsequent discrepancies between previous reports

and ours (discussed below) must not be due to differences in data

sets, tractography or other post-processing minutiae.

Evidence for Gaussian degree and gamma clustering coefficient: Paramet-

ric distribution fitting results indicate that the weighted degree of

cortical nodes is normally distributed. The most straightforward

explanation would seem to be that all brain regions possess

roughly similar connectivity strength given by the mean of the

Gaussian. Note here that while weighted degree is normally

distributed, individual connection weights between nodes are not -

in fact, the latter appear exponential, see figure 1. The exponential

distribution of structional connections has been reported before,

see for example [26].

How does the observation that weighted node degrees are

relatively similar to each other compare against previous studies?

Reports from structural networks extracted from diffusion MRI

data [1,2,4] definitely suggest the presence of hubs as well as high

clustering tendencies. Our results do not support the presence of

hubs or heavy tailed distributions at the resolution level of 90

ROIs. Evidence from fiber tracing experiments [4,27] also suggest

small-world properties, but these results are from highly sparse and

unweighted graphs, and mostly come from animal studies. Finally,

there is overwhelming evidence in favor of small-world and scale-

free functional brain networks extracted from resting state fMRI

experiments [28]. Our results cannot be directly compared to

functional networks since the latter are known to possess different

network properties. Indeed, two regions in the brain might be

functionally connected even if they are not structurally connected.

Many attempts have been made in correlating structural and

functional networks, with limited success [26,29]. Therefore we

conclude that presented results do not, on their own, either

contradict or support the presence of hubs in functional networks.

The observation that cortical regions have similar weighted

degrees agrees with a basic observation from decades of detailed

neuroscientific and histological examinations [30]. Although there

are subtle regional differences in thickness and microstructural

properties within the human cortex, these differences are not as

great as would be expected from any scale-free or even heavy-

tailed network. Indeed, for specialized hubs to exist in the brain,

the cortex in the hub regions would necessarily have to be

qualitatively different, perhaps a thicker cortical sheet, higher

density of neurons, etc. The fact that these differences are not

observed to the required extent provides a counterpoint which

must be reconciled with the hub theory. As already discussed [3,4],

networks with huge hubs are more vulnerable to targeted attacks.

Normally distributed weighted degrees, reported in this study,

both indicate the absence of huge hubs and fit the experimental

data well without resorting to multiparametric distribution

families. We also note that appearance of Gaussian distribution

in structural connectivity has been speculated in [26].

Recently some more exotic heavy-tailed distributions, like

truncated Pareto distribution [31] and power-law with exponential

[3,14], have been proposed for the brain. As pointed out in [14], it

is always possible to find a family of distributions with sufficient

number of parameters to fit the data arbitrarily well. Although

they are quite intriguing and insightful, these exotic distributions

with additional parameters are not easily justifiable in the absence

of a rigorous and objective comparison with other (simpler)

hypotheses. Additionally, they do not appear to fit available

experimental data near the tails, for instance see figure 5 in [3] and

figure 7a in [4].

Fitting of parametric distributions to the histogram of clustering

coefficients according to [21] (figure 4) reveals the gamma

distribution to be the best fit, followed by the power-law. The

latter fit was again performed over a highly restricted part of the

histogram, making it (even) less attractive than gamma as a

candidate distribution. Interestingly, there exists a reasonable

intuition behind the gamma model of clustering coefficient. From

figure 1, edge weights can be roughly characterized by an

exponential distribution and a sum of exponentially distributed

random variables is gamma distributed. Hence it follows that C(r)
should be gamma distributed, as it is a sum of the geometric mean

of 3 approximately exponentially distributed edge weights, eq. (7).

To our knowledge this is the first time a gamma model of

clustering coefficient has been proposed for brain networks.

Moreover, the distribution of the Grindrod-Zhang-Horvath

clustering coefficient is best fitted by the power-law, followed by

the gamma distribution, which is not a surprise considering this

clustering coefficient definition eq. (8).

The Brain Is Organized Into a Regular Base-2 Tree Hierarchy: Based on

comparison of two different clustering techniques, the base-2

hierarchy of the brain appears to be a consistent and robust result.

Note that the base-two hierarchy was not an algorithmic choice - it

falls into place automatically after evaluating the quality metric Q

described in the Materials and Methods section. The resulting

partitions appear anatomically consistent and plausible, providing

them further credence. We must admit however, that these results

are at variance with the important prior study by [1], where a

direct clustering into six parts was found to be optimal by using the

method from [25]. The metric in figure 5 indicates that partitions

involving powers of 2 are preferred. Two important differences

between [1] and our methods might help explain this discrepancy.

First, our data include sub-cortical structures of the brain which

are not present in [1]. Second, the clustering method used in [1],

i.e. [25], relies only on one eigenvector, whereas our approach uses

more eigenvectors, which is considered more accurate for

computing multi-way partitions [16,32].

Brain Networks are Ordered Within The Base-2 Tree Hierarchy: Figure 9

provides striking evidence that the connectivity between brain

regions at various levels of the hierarchical tree display an

uncommonly strong exponential attribute, implying a highly

specific and ordered hierarchical arrangement of brain connec-

tions. This means that while brain networks form a small-world,

they do so not in the random fashion of social networks but in a

hierarchically ordered manner. Here we found small-worlds

arising from a highly ordered hierarchical network with Gaussian

degree distribution.

Evidence of a highly ordered hierarchical organization might

find support from theoretical neuroscience, for instance in models

for inference and learning in the brain [33] and large scale

associative memories [34]. Indeed, given the preponderance of

hierarchical models in theoretical neuroscience, it would seem

unusual that no evidence of such a hierarchy has been observed in

structural brain networks; this paper might be a first step towards

such evidence.

In conclusion, we presented a statistically robust approach to

brain network analysis. Our results do not support the existence of

hubs or cores in the brain. Instead they support the possibility that

brain networks have largely uniform node attributes and highly

ordered hierarchical topologies with little evidence for the level of

randomness hitherto assumed in brain networks. We also show

that different thresholding of the connectivities can result in

different conclusions about weighted degree distribution. The

existence of small-world properties was confirmed at all thresh-

olding levels. Barring a definite refutation, we must at least

entertain the ordered network model as a possibility in this

evolving field of research.
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