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Abstract
Observation of dispersion in field situations has left three issues that may be better understood by applying advective transport

phenomena. (1) In some experiments, the longitudinal dispersivity becomes constant with increasing pathlength and in other cases
it remains growing. (2) Dispersivities reported from multiple comprehensive observations at a single site differ at similar pathlength
in some cases more than a factor two. (3) The observed difference between the plume fronts and plume tails is not represented in
the reported parameters. The analytic equations for advective transport phenomena at macroscale of De Lange (2020) describe the
thickness of the affected flow-tube and the spread of the plume front and tail. The scale factor defines the size of the averaging
domain and so of the initial phase. The new macroscale correlation coefficient relates the growth of the longitudinal dispersivity
beyond the initial phase to the aquifer heterogeneity. Using stochastic parameters for the aquifer heterogeneity, the parameters are
quantified at 14 field experiments in the United States, Canada and Europe enabling the comparison of calculated and reported
final dispersivities. Using the quantified parameters, 146 reported and calculated dispersivities along the traveled paths show a good
match. A dispersivity derived from the local plume growth may differ a factor of two from the aquifer-representative value. The
growths of plume fronts and tails between two plume stages are assessed in 14 cases and compared to calculated values. Distinctive
parameters for the plume front and tail support better understanding of field situations. A user-ready spreadsheet is provided.

Introduction
Observation of dispersion in field situations has left

three issues that may be better understood by applying
advective transport phenomena: (1) In some experiments
the longitudinal dispersivity becomes constant with
increasing pathlength and in other cases it remains
growing. (2) Dispersivities reported from multiple com-
prehensive observations at a single site differ for similar
pathlength, in some cases more than a factor 2. (3) The
observed difference between the lengths of the front and

Unit Subsurface and Groundwater Systems, Deltares,
P.O. Box 85467, 3508 AL, Utrecht, The Netherlands;
wim.delange@deltares.nl

Article impact statement: The methodology provides
dispersivities and spreads of plume fronts and tails to better
understand dispersion observed in the field.

Received December 2020, accepted November 2021.
© 2021 The Author. Groundwater published by Wiley Periodi-

cals LLC on behalf of National Ground Water Association.
This is an open access article under the terms of the

Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the
original work is properly cited, the use is non-commercial and no
modifications or adaptations are made.

doi: 10.1111/gwat.13151

the tail of a plume is not represented in the parameters
reported from field experiments.

Recent studies of the relation between longitudinal
dispersivity and travel distance have led to theoretical
understanding (Neuman and Tartakovsky 2009; Fiori
et al. 2017) and analyses of reported data (Gelhar
et al. 1992; Schulze-Makuch 2005). Zech et al. (2015)
concluded that their selected data does not support a
unique scaling law relationship between the longitudinal
dispersivity and travel distance or scale. This conclusion
is supported by comprehensive field experiments carried
out at Twin Lakes (Moltyaner and Killey 1988), Borden
(Rajaram and Gelhar 1991), and Cape Cod 1 (Hess
et al. 2002) that show a constant or equilibrium dispersiv-
ity with increasing travel distance while other experiments
at Krauthausen (Vereecken et al. 2000), Wagna (Fank
and Rock 2005), and MADE (Adams and Gelhar 1992)
show a permanent growth or nonequilibrium dispersivity.
At Cape Cod (Hess et al. 2002), the dispersivity reported
for the second experiment is twice that reported for the
first experiment at about half of the travel distance.

Field experiments report longitudinal dispersion in
terms of the overall parameters, dispersivity and/or vari-
ance, thus ignoring the difference between the front and
tail of the plume. At micro-scale, asymmetric dispersion
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Figure 1. Vertical cross section: Periodic domains filling up an aquifer (from De Lange 2020).

has been explained and simulated (Feehley et al. 2000) by
diffusion-limited mass transfer between the flowing and
nearly stagnant groundwater in pores or low conductivity
zones. At macroscale, the asymmetry of the plume
dispersion has been simulated by Janković et al. (2006)
using three-dimensional, Darcian flow through many,
arbitrarily placed spherical inclusions of fixed size
with conductivities varying according to a stochastic
distribution. For this concept (Fiori et al. 2006) presented
an approximate semi-analytical solution. Flow through
two-dimensional inclusions has led to analytical equations
for dispersivity in the works of Eames and Bush (1999),
Dagan and Lessoff (2001) and Lessoff and Dagan (2001).
In line with the latter research but derived independently,
the analytic equations of De Lange (2020) describe asym-
metric dispersion at macroscale by advective transport
phenomena in two-dimensional vertical space.

The present aim is to support better understanding of
the growth of dispersion observed in field observations by
offering a practical tool for the spread and dispersivity of
plume fronts and plume tails. The results from this tool
are compared with those reported for 14 well-documented
extensive field experiments at nine sites in the United
States, Canada, and Europe.

The dispersion parameter for modeling presented
in De Lange (2020) is different from the dispersivity
derived from field situations. The application in numerical
simulations requires extensive analysis that is beyond the
present scope. This will be reported in the future.

The present work is limited to longitudinal disper-
sion on macroscale in a granular aquifer with ambient
flow. Forced flow and fissures as included the work
of Neuman (1990) are excluded because the analytic
equations of De Lange (2020) do not apply to radial and
non-Darcian flow. Also, excluded are transient effects,
being one of the causes of horizontal transverse disper-
sion, or diffusion, being relevant at low velocities and
one of the causes of vertical transverse dispersion.

The conceptual model is illustrated by flow and
equipotential lines in a vertical cross-section generated
with the analytic element method (Strack 1989) using
line-doublets for the boundary of the conductivity zone
and line-dipoles for the aquifer boundary at top and

bottom as well as for the line-shaped conductivity zones in
Figure 4.

Methodology
The first part of the description of the methodology

below continues on the previous work (De Lange 2020), in
which the Equations 1–7 have been derived. The second
part describes an extension of the methodology and is
explicitly mentioned in the text.

Conceptually, the aquifer is subdivided (Figure 1)
in domains of the same size each containing a discrete
elongated zone with a contrasting conductivity of which
the properties are derived from stochastic parameters
(Figure 2). Dispersion is conceptualized (Figure 3) as the
change of flow of a front entering on the upstream side
of the domain into the dispersed front at the downstream
side, which is entirely due to the nonuniform velocity field
caused by the zone with the contrasting conductivity. This
inner-domain process is repeated in subsequent domains
(Figure 4) causing the overall dispersion over longer
distances and times.

Dispersion in an aquifer is conceptualized as stacked,
repeated domains A with a conductivity zone (Figure 1),
in each of which the process is completed once. Although
the idea of repetition of the dispersion process was
developed independently, it is similar to the concept of
periodicity used in the different theory by Eames and
Bush (1999).

The properties of the conductivity zone were derived
from the classic stochastic parameters (Gelhar 1993)
describing the aquifer heterogeneity. The characteristic
length λ represents the local correlation distance around an
observation point (Figure 2). The length and thickness of
the zone of correlation equals twice the horizontal (index
h) and vertical (index v ) characteristic length 2λh and
2λv (L) respectively. The length LA and thickness DA of
a domain A relate to the characteristic lengths by the scale
factor N according to LA = 2λh/N and DA = 2λv/N , so
a factor 1/N tot the size of the conductivity zone. The
lognormal distribution of the conductivity k describes the
average ka in the background aquifer and a characteristic
high and low value at the standard deviation. A high

Figure 2. Vertical cross section: Size of domain A and conductivity zone related to characteristic lengths.
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Figure 3. Vertical cross section (red lines are equipotentials, green lines path lines end at the same travel time): A straight
front of water particles (at left) is changed after passing through a zone with a conductivity five times higher (top) and lower
(bottom) than that of the background of the aquifer. Blue lines indicate the initial and the final shape of the front.

conductivity zone adds spread to the front of a plume
while a low conductivity inclusion adds spread to the
tail of a plume The conductivity ratios for the front
κf = ka/kf and tail κt = ka/kt can be calculated from
the log-conductivity variance by:

1/κf = κt = e

√
σ 2

lnk (1)

Figure 3, top shows the growth of a plume front by
flowing through a high conductivity zone in a uniform
flow field. A part of the path lines (green) in the
aquifer show convergence while entering the zone (left
in Figure 3, top). Inside the zone, the water particles
travel with increased velocity (dense path lines) while
the water particles outside the zone travel slower. The
path lines leaving the zone spread out (right in Figure 3,
top) and the water particles are clearly ahead of the ones
aside of the zone. Figure 3, bottom shows the impact
of a low conductivity zone. The plume tail develops in
backward direction relative to the average movement of
the water particles. Only a few path lines or water particles
enter the zone and generate a thin tail with a length of
more than twice that of the front. In conclusion, a high-
conductivity zone generates convergence and spread out
of path lines over a thick wake forming the front (Figure 3,
top) and a low-conductivity zone affects the path lines
over a thin wake forming the tail (Figure 3, bottom).
Both spreads in the water particle distribution occur at the
same time in a domain A, because a domain A represents
the complete variation of the conductivity characterized
by the conductivity ratios for the front and tail of
the plume.

The plume in Figure 3 is described by (1) the spread
�sA,j (L), in which index A indicates domain A, in which
index j equals for f the front and t for the tail of the
plume, and (2) the plume thickness W p (L) called the
wake after (Eames and Bush 1999) who, however, did
not present an equation for it. In Figure 3, the so-called
length of distortion Ldis (L) is the length over which the
velocity is clearly not uniform over the thickness. The
red lines in Figure 3 show that the potential or hydraulic
head is virtually constant in vertical direction across much
of the two conductivity zones. Neglecting the zones of

convergence and spread out, the gradient in the potential
in the flow direction is essentially equal inside and outside
each conductivity zone. Then, the following equations
hold (De Lange 2020):

�sA,j = (
1 − κj/ηj

)
Ldis,j (2)

Wp,j = DA/
(
1 + κj (1/N − 1)

)
(3)

In which κj = ka/kj (−) is de conductivity ratio and
ηj = na/nj (−) is the porosity ratio. In Figure 3, a single
value of σ 2

ln k of 2.6 is used causing in the elongated zone
a factor 5 higher as well as lower conductivity than that
of the aquifer. It follows from the term (1 − κ j /ηj ) in
Equation 2 that the spread �sA,f for the front (κ � 1)
is limited to Ldis ,f , whereas the spread �sA,t for the tail
(κ � 1) is negative (relative to the traveled distance) and
limited only to the traveled path length S . The length of
distortion Ldis (L) extends the length of the conductivity
zone by about the lengths of the areas with contracting
and diverging path lines at both ends of the conductivity
zone (De Lange 2020), which are about equal to the wake
W p,j and different for the front and tail of the plume:

Ldis,j = 2
(
λh + Wp,j

)
(4)

Equations 2–4 may also be applied to the case of a single
zone in an aquifer with both conductivities known. In the
present methodology, the parameters are assumed to be
stochastic-based as described above.

In each domain A so for S < LA, the dispersion
process is averaged leading to linear growth of the plume
with travel distance S (L). This linear growth is often
observed in the initial phase in field experiments.

�sj (S) = �sA,j ∗ S/LA for S < LA (5)

The growth of the variance with the path length deter-
mines the dispersivity by the well-known (e.g., Appelo
and Postma 1993) equation:

αj = �sj (S)2/2S (6)
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Figure 4. Vertical cross section (blue line = streamline): Water particles flowing through elongated strongly (top) and hardly
(bottom) increased conductivity zones relative to the aquifer average causing dependent (top) and independent (bottom)
repetition of dispersion (see text).

The analysis in De Lange (2020) has shown that
the variance of the total plume can be interpreted as
the product of the standard deviations or the spreads
of the front and the tail, so �s2

plume = �sf ∗ �st =√(
�s2

f ∗ �s2
t

)
. Division by 2S and use of Equation 6

leads to:

αplume =
√(

αf ∗ αt

)
(7)

which describes that the dispersivity of the total plume
αplume is the geometric average of the dispersivities of the
front and tail.

Next, the description by De Lange (2020) will be
extended for multiple, repeated domains so for cases in
which the traveled distance S is larger than the length of
a domain A. The process of repetition can be described as
follows. In the first domain A (gray box at left in Figure 4,
top) containing a long zone with high-conductivity, fast
water particles in the plume front generate a thick wake.
In the next domain A (gray box at right in Figure 4, top),
it is likely that most water particles will be within the
thick wake and again become fast, so determine the plume
front. Then, the spread in the plume front adds up in both
domains. This here-called dependently repeated dispersion
is believed to generally occur in heterogeneous aquifers.
In weakly heterogeneous aquifers containing zones with
a slightly different conductivity, the wake is about equal
to the thickness of this zone. Because the conductivity
zones vary in vertical position (Figure 4, bottom), water
particles become relatively fast or slow independently
of what occurred in the previous domain A. This here-
called independently repeated dispersion describes that the
spread of the front does not add up in subsequent domains
A. It is characterized by a constant dispersivity and a
linear growth of the variance of the particle distribution
with travel distance.

The distinction between dependently and indepen-
dently repeated dispersion leads to the following. In
stochastic theory, the combination of normal distributions
is described in terms of summation of average values
and standard deviations (Sachs 1984, 77–78). The stan-
dard deviations are added up (index 1 and 2) according
to:

�s =
√

�s2
1 + �s2

2 + 2r�s1 ∗ �s2 (8)

The correlation coefficient in the cross-product r
(0 ≤ r ≤ 1) represents the interdependency of

the two stochastic distributions. In groundwater,
the parameter r is called the macroscale disper-
sion correlation coefficient which describes the
interdependency of dispersion occurring in the sub-
sequent domains A. For r = 0, Equation 8 becomes
�s2

sum = ∑
�s2

i so variances add up which represent
independent repeated dispersion. For r = 1, the sum-

mation becomes �s1+2 =
√(

�s2
1 + �s2

2 + 2�s1�s2
) =√

(�s1 + �s2)
2 = �s1 + �s2 so standard deviations add

up representing dependent repeated dispersion. Values of
r between 0 and 1 represent intermediate dependency.
Equation 8 can be expanded for more than two domains
A by writing out �ssum =

√
(�s1 + �s2 + �s3 + · · ·)2

and adding r to all cross-products. In each domain A, the
standard deviation �si (i = 1, 2, 3, . . . ) equals �sA.
With p = S/LA called the repetition ratio for the path
length S , this leads to:

�sS,f = �sA,f

√
(p((p − 1)r + 1)) for S > LA (9)

In the application to field experiments, p is considered
a continuous parameter. For r = 1, Equation 9 becomes
�sS,f = �sA,f p. Using Equation 6, the front dispersivity
over the path length S becomes αS,f = �sf

2/2S and
the dispersivity in a single domain A over the length
LA becomes αA,f = �sA,f

2/2LA. Combination of these
three equations leads to αS,f = αA,f p expressing the
linear growth of the front dispersivity with path length.
Similarly, r = 0 leads to αS,f = αA,f generating a
constant front dispersivity with path length. In weakly
heterogeneous aquifers (r = 0), the plume growth is
nearly symmetrical. In strongly heterogeneous aquifers
(r = 1), a part of the tracer remains in low conductivity
zones near the injection point causing the plume tail
to grow linear with travel distance, which is similar to
the growth of the plume front. So, the plume tail and
the plume front develop in about the same way with
respect to the aquifer heterogeneity, but with different
lengths.

The dispersivity resulting from the above equations
is site-specific for all parameters except the path
length that is case-specific or depending on the
stage of development of the plume. Appendix A
describes the steps in the calculation of dispersivities
in the user-ready spreadsheet in File S1, Supporting
Information.
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Table 1
Categories of Data Assessment

Category Data Origin

Estimated Based on similar, described situation; no
direct source available

Interpreted Value translated from graph, distribution,
figure in reference

Deduced Determined based on multiple references
Calculated Calculated from data in reference
From As reported in reference

Assessing Parameters Values from Field
Experiments

Any application starts with the assessment of param-
eter values. Fourteen field experiments at nine sites in
the United States, Canada and Europe were selected on
the availability of information of the stochastic parame-
ters describing the aquifer and on the development of the
plume along the traveled length in terms of dispersivities.

Reported Parameter Values
The stochastic aquifer parameters λh , λv , σ 2

ln k and the
aquifer thickness Da at the nine sites have been derived
in different ways using different types of sources and are
classified in five categories (see Table 1). Table 2 presents
for each site the results and nick-names used throughout
the present work and ordered with increasing aquifer
heterogeneity. Most of the input data has been reported
explicitly, so comes from the original source. Some input
data could be calculated directly from published data.
For two cases in Germany, input data has been deduced
from multiple sources. Most aquifer thicknesses have been
interpreted from pictures. In the Wagna case, the river bed
aquifer has been estimated to be similarly heterogeneous
as the aquifer in Krauthausen. The range in σ 2

ln k is more
than two orders of magnitude. The ratios of λh and λv

differ up to a factor 25. In Table S.3.1 in File S3, the
origin per parameter is specified in detail.

The porosity ratio η determines the spread �s as
part of the ratio κ/η in Equation 2 and can be used

to analyze the impact of a single zone on the spread.
Local porosity variation may affect local flow velocity
and may explain variation in the dispersivity based on
breakthrough curve interpretation (e.g., Horkheim; Ptak
and Teutsch 1994). To use field data in the present
work, the distribution of the variation of the quotient
k/n in the aquifer is needed. Average effective porosities
have been reported for Borden (Sudicky 1986), Cape
Cod (Garabedian et al. 1992), and Denmark (Jensen
et al. 1993). Vereecken et al. (2000) and Table 1) report
statistics of the bulk porosity at Krauthausen. At present,
the variation of k/n at the scale of the aquifer is not
known and requires further research. Following common
practice of Jankovic et al. (2003) and Fiori et al. (2013)
the effective porosity is taken constant, so η = 1.

Parameters Assessed from Final Dispersivities
The parameters N and r will be assessed from

comparison of calculated and reported final dispersivities
αfinal (so different to the dispersivities observed along the
plume path used in the application to field experiments)
for the 14 field experiments. Table 3 shows these reported
final values that are assumed to represent the dispersion in
the experiment as completely as possible. All cases (field
experiments) have been reviewed by Zech et al. (2015),
except the case at Wagna. Multiple experiments at a single
site provide independent values at varying travel distances
and significantly add to the assessment of the site-specific
parameters N and r as will be shown below.

At Cape Cod 2 , the dispersivity at the largest travel
distance was calculated using Equation 6, see section
Application to individual field experiments. At Borden
2 , the multiplication by a factor 2–4 as suggested in
Gelhar et al. (1992) was applied. At Krauthausen , the
dispersivity derived from second moment of the tracer
distribution is based on the latest complete plume shape,
which is before a significant part of the plume had traveled
beyond the reach of the observation system. At Sued ,
the plume also moved out of the observation network.
However, the dispersivity in the final stage is not affected
by the unknown plume shape, because it comes from
breakthrough curve interpretation. At Horkheim (Ptak and
Teutsch 1994, Table 7), the dispersivity comes from the

Table 2
Site-specific Parameter Values (σ 2

ln k = log conductivity variance, λv , λh = vertical, horizontal characteristic
length, Da = aquifer thickness)

Site Nickname Primary Reference σ2
ln k λv (m) λh (m) Da (m)

Twin Lakes Moltyaner and Killey (1988) 0.04 0.5 20 12
Cape Cod Garabedian et al. (1992) 0.24 0.39 8 30
Denmark Jensen et al. (1993) 0.37 0.1 2.5 5
Borden Sudicky et al. (1983) 0.38 0.12 2.8 8
Krauthausen Vereecken et al. (2000) 1.08 0.37 6.66 7
Wagna Fank and Rock (2005) 1.08 0.15 11 4
Sued Boesel et al. (2000) 2.13 2 60 5
Horkheim Ptak and Teutsch (1994) 2.34 0.15 25 3
MADE Adams and Gelhar (1992) 7.00 1.5 12.3 10.0
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Table 3
Final Dispersivities αfinal with Travel Distances S

from Field Experiments

Experiment S (m) α (m)
Dispersivity
Value from

Twin Lakes 1 40 0.04–0.16 Moltyaner and
Killey (1988)

Twin Lakes 2 266 0.55 Moltyaner
et al. (1993)

Cape Cod 1 200 0.96 Garabedian
et al. (1992)

Cape Cod 2 41 1.221 Hess et al. (2002)
Denmark 75 0.45 Jensen et al. (1993)
Borden 1 (fast) 2 0.08 Sudicky

et al. (1983)
Borden 2 (slow) 11 0.16–0.321 Gelhar et al. (1992)
Borden 3 86 0.5 Rajaram and

Gelhar (1991)
Borden 4 25 0.3–0.8 Rivett et al. (1994)
Krauthausen 55 3.641 Vereecken

et al. (2000)
Wagna 312 18.3 Fank and

Rock (2005)
Sued 234 301 Boesel et al. (2000)
Horkheim 56.4 5.661 Ptak and

Teutsch (1994)
MADE 200 50–751 Adams and

Gelhar (1992)

1See explanation in text.

geometric mean of the dispersivities at about similar path
length but having traveled along different trajectories. At
MADE , the final dispersivity was based on the second
moment reported by Adams and Gelhar (1992, 3303). The
resulting 14 dispersivities in Table 3 cover a range of more
than two orders of magnitude.

The parameters N and r are site specific so are the
same for all experiments (cases) at a single site. The
parameter r applies to cases with a path length larger than
the length of domain A, that is, for S > LA. For smaller
path lengths, that is, S < LA, only parameter N remains as
an unknown. Therefore, parameter r will be derived after
the assessment of N .

The scale factor N is the ratio between length
and thickness of the conductivity zone and that of the
averaging domain A as illustrated in Figure 2. For N in
the range 0.1 to 0.5, the length of domain A, covering
a single complete dispersion process, is 10 to 2 times
the horizontal characteristic length λh (Table 2). Table 4
shows that dispersivities αcalc calculated for the above
range of N sufficiently cover the range of the field values.
The yellow cells contain values that fit best to the reported
dispersivities αfinal . The more heterogeneous the aquifer
is, the wider the wake and the longer spread in Figure 3,
top will be. Though the values of 0.3 and 0.4 seem
close, the calculated dispersivities are sensitive to that
difference, both in the initial and the repetition phase
(Table 5). Therefore, the scale factor N is taken 0.4 for
σ 2

ln k < 1 and 0.3 for σ 2
ln k > 1, which means that the length

of a single domain A is about five to seven times the
characteristic length for weakly (σ 2

ln k < 1) respectively
highly (σ 2

ln k > 1) heterogeneous aquifers (Table 2). This
compares well with the width of the boundary zone in
the infinite aquifer around the analytic element model of
Jankovic et al. (2003).

The macroscale correlation coefficient r represents
the degree of interdependency between dispersion in
subsequent domains A. The range of r follows from
statistic theory and is 0 ≤ r ≤ 1. Table 5 shows the results
using the values for N obtained above. The yellow cells
show the selected values.

In weakly heterogeneous aquifers (σ 2
ln k < 1) and for

relatively long travel distances (S > LA), the value r = 0
fits best generating an equilibrium dispersivity (αA). In
heterogeneous aquifers (σ 2

ln k > 1) and for S > LA, the value
r = 1 fits best generating linear growth of the dispersivity
with path length (αS = αA ∗ S/LA). The value of r = 0.33
for Twin Lakes 2 is explained in section Analysis of
individual field experiments. In practice, the values r = 0
for σ 2

ln k < 1 and r = 1 for σ 2
ln k > 1 and an in-between

value for r may be applied to analyze the process in the
field.

Application to Field Experiments

Growth of Dispersivity with Travel Distance
The derived parameter values were applied in the

analysis of the development of the dispersivity along the
paths traveled in field experiments. Many of the selected
experiments report series of data that enable to analyze
the plume development over time. Table S.3.2 in File
S3 describes the method of interpretation for each of
the experiments. Dispersivities from the second moment
of concentration distributions with travel distance were
calculated using Equation 6 (Gelhar 1993, Chapter 5).

Using logarithmic scaling, Figure 5 shows the ratio
of field over calculated dispersivities αField and αcalc

versus the ratio of path length S over the site-specific
length LA of the averaging domain A. The latter ratio
being smaller or larger than one distinguishes between
the initial and repetition phase along the flowpath. Three
types of assessment of dispersivity from field data are
distinguished: (1) The method of second moments (Gel-
har and Axness 1983), labeled 2M carried out for the
experiments Borden 3, Cape Cod 1 and 2, Krauthausen
and MADE. (2) The use of breakthrough curves (Ptak
and Teutsch 1994), labeled BT applied to the experi-
ments Twin Lakes, Denmark, Wagna, Sued, Horkheim. (3)
The three-dimensional analytic method (Sudicky 1986),
labeled 3A applied to the experiments Borden 1 and 2.
Table 6 shows the statistics for the ratios of dispersiv-
ities for the 2M, BT, and 3A, and all types of data
assessment.

The injection of a tracer at the origin of an
experiment generates a concentration distribution that
is not due to dispersion in water particles traveling in
the aquifer. Freyberg (1986) presents a correction for
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Table 4
Variation of the Calculated Dispersivity αcalc with Scale Factor N in the Initial Phase S/LA < 1

αcal

σ2
ln k αfinal S/LA N = 0.5 N = 0.4 N = 0.3 N = 0.2 N = 0.1

Twin Lakes 1 0.04 0.04–0.16 0.40 0.22 0.14 0.08 0.04 0.01
Borden 1 0.38 0.08 0.14 0.12 0.07 0.04 0.02 0
Borden 2 0.38 0.16–0.32 0.79 0.64 0.41 0.23 0.1 0.03
Sued 2.13 30 0.59 47.33 37.87 28.36 12.6 3.15
Horkheim 2.34 5.66 0.34 11.26 9.04 6.80 3.31 0.83

Selected values in yellow cells.

Table 5
Variation of the Calculated Dispersivity αcalc with Macroscale Correlation Factor r in the Repetition Phase

S/LA > 1

αcal

σ2
ln k αfinal S/LA N r = 0 r = 0.33 r = 1

Twin Lakes 2 0.04 0.55 2.66 0.4 0.35 0.551 0.94
Cape Cod 1 0.24 0.96 5.42 0.4 0.94 4.75 10.24
Cape Cod 2 0.24 1.22 2.72 0.4 0.94 1.48 2.57
Denmark 0.37 0.45 12.00 0.4 0.45 2.10 5.35
Borden 3 0.38 0.5 3.21 0.4 0.52 1.40 3.19
Borden 4 0.38 0.3–0.8 1.79 0.4 0.52 0.65 0.93
Krauthausen 1.08 3.64 1.24 0.3 2.99 3.22 3.69
Wagna 1.08 18.3 4.25 0.3 4.14 8.59 17.61
MADE 7.00 50–75 2.44 0.3 30.29 36.79 47.31

Selected values in yellow cells.
1See Section “Application to Individual Field Experiments.”

this by subtracting the variance of the concentration at
the injection point from all forthcoming ones. The first
reported variance was subtracted from the later ones
for all 2M experiments. The experiment at Krauthausen
will be discussed below. For BT and 3A experiments
variances are not available. In these cases, extreme ratios
of dispersivities in the first part of the initial phase, so
just after the injection, were taken out, being one value
in the series of the experiments Twin Lakes 2 , Borden
2 and Wagna as well as two values in the series of the
experiment Twin Lakes 1 .

Overall Results
The standard deviation of the ratio of dispersivities

αField /αcalc is larger (0.58 m) in the initial phase (S/LA < 1)
than that (0.24 m) in the repetition phase (S/LA > 1).
The plume spread caused by the flow through a single
conductivity zone (Figure 3) can give considerable
variation in the spread and the dispersivity in the initial
phase. In the repetition phase, that is, at larger travel
distances, the spread of the plume has grown such
that the same local spread becomes relatively small.
The standard deviation of the ratio of dispersivities for
types BT and 3A (0.34 m) in the repetition phase varies
more than that (0.24 m) for type 2M. The 2M method,
which always covers a significant volume of solute,
is less sensitive to the local variations of the tracer

concentration and/or the velocity. Overall in Figure 5
and Table 6, the agreement between field and calculated
dispersivities is good, which opens deeper analysis of the
experiments.

Application to Individual Field Experiments
In several field experiments, the observed dispersion

can be better understood from the underlying advective
transport phenomena.

• In the virtually homogeneous aquifer at Twin Lakes ,
the elongated shape of the conductivity zones (see λh in
Table 2) may cause overlap along the flow path enabling
fast particles to follow a chain of zones with relatively
high conductivity. This well-known advective transport
phenomenon causes strengthening of the growth of the
plume front. This leads to interdependency of dispersion
in the subsequent domains A in the repetition phase and
supports the match of the dispersivities in Table 5 for
r = 0.33.

• At Cape Cod 2 , the dispersivity of 2.2 m reported (Hess
et al. 2002) has been assessed from four observed plume
shapes in the range S/LA = 1.7 to 2.7 (LA = 40 m), which
is just beyond the initial phase. The reported variance
and the final travel distance (Hess et al. 2002; Table 2)
lead to �s = 16.3 m and αfinal = 1.22 m (Table 3).
These values compare well with the calculated values
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Figure 5. Ratio of field and calculated dispersivities versus ratio of path length S and LA, the site-specific length of domain
A. Abbreviations indicate the reported method of interpretation, where: 2M = second moment method; 3A = 3D Analytic
Method; BT = Breakthrough curve fitting; # = omitted initial extreme values, see text; * = field experiment as discussed in
the text.

of �s = 14.7 m and αcalc = 0.94 m (Table 3). (Hess
et al. 2002) mention the presence of a high-conductivity
layer. The local vertical movement of the plume into
this layer as shown in Hess et al. (2002), Figure 3)
causes the observed longitudinal spread so dispersivity
to grow less than the calculated regional dispersivity.
The velocity increase inside the high conductivity layer
causes the increased local growth of the dispersivity.
In the experiment Cape Cod 1 virtually along the
same path but lower in the aquifer (Hess et al. 2002,
Figure 6), this local advective transport phenomenon did
not occur. It is concluded that the overall dispersivity of
the aquifer is as in Table 3 and that the reported value
of 2.2 m represents a local phenomenon.

• At Denmark , the experiment started with measurements
taken far in the repetition phase. The significant
variation around the equilibrium value of 1 in Figure 5
may come from the breakthrough curve interpretations,
variations in the local velocities and/or variations in the
effective porosity.

• In the experiment Krauthausen , the plume moved
considerably downward into the base layer and beyond
the reach of the observation network (Vereecken
et al. 2000; Figure 9). The final reported stage is
formed by remainders of high tracer concentration in
low conductivity zones near the point of injection and
low concentrations in the plume front. In all observed
plume stages about 50% of the mass is recovered,
which indicates that only half the volume of injection
is transported in the observed part of the aquifer.
Therefore, 50% of the first reported variance is used
in the Freyberg (1986) correction.

Table 6
Number, Average, and Standard Deviation (Std

Dev) for Groups of the Ratios αField /αcalc ,
Excluding Extreme Ratios Near Injection Point,

See Text

Statistics on αField /αcalc 2M BT-3A All Types

Initial phase
S < LA

N 20 49 69
Average 0.91 0.85 0.87
Std Dev 0.58 0.53 0.55

Repetition
phase S > LA

N 33 44 77
Average 0.86 0.99 0.93
Std Dev 0.24 0.34 0.31

All N 53 93 146
Average 0.88 0.91 0.91
Std Dev 0.40 0.46 0.43

Application to Spreading in Front and Tail
The distinctive calculation of values enables to

analyze of the development the fronts and tails of plumes
in the field. The growths of the spreads between two
stages of each plume were assessed from figures that have
been reported for 14 cases in 6 of the 9 experiments
as specified in Table S.3.3 in File S3. The spread of
each front and tail in the field is taken to be the
distance in the flow direction between the center of the
highest concentration and the contour-line of the lowest
concentration. The growths in the spread �s that result
from this are shown in the columns field in Table 7, which
should be read as an estimate rather than as an absolute
value, because the interpolation underlying the reported
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Table 7
Comparison of Growth of Various Spreads �s , Calculated (Calc) and from Field Experiments (�S = path

length between two plume stages; the colors of the numbers are explained in the text)

S (m) s_total (m) s_front (m) s_tail (m)

Case Path (m) Field Calc. Field Calc. Field Calc.

Twin Lakes 1A 4 0.7 0.35 − 0.8 − 0.3
Twin Lakes 1B 7 2.5 0.6 − 3 − 0.6
Twin Lakes 2 20 3 1.55 − 3 − 1.85
Cape Cod 1A 100 15 11.4 − 25 − 21.9
Cape Cod 1B 200 20 17 − 30 − 32.8
Cape Cod 2 33 18 5.6 − 18 15.7
Denmark 1 Cl 24 6 4.8 − 10 − 8.5
Denmark 2 Tr 24 20 4.9 − 2 − 8.4
Borden 1 9.2 2.3 1.9 − 2.3 − 3.3
Borden 3A 44 14 5 − 14 − 8.6
Borden 3B 8 0.3 1.65 − 0.2 − 2.85
Borden 3C 54 6 5.5 − 13 − 9.6
Krauthausen 8 12 1.9 − 4 − 4.5
MADE 2 43 20 20.4 − 34 − 43

.6501.5
5.5 .21
6 3.4

40 33.1
50 49.7
36 22.2
16 13.3
22 13.3

.54 .25
28 13.6
0.5 .54
19 15.1
16 6.4
54 63.4

figures and the present assessment into numbers introduce
uncertainties.

Clusters are identified in Table 7 by green color if
the calculated and observed spreads differ less than two
times by red if the difference is larger than four times and
blue if in-between. The calculated and observed spreads
match well for all path length between two plumes larger
than 10 m, except at Krauthausen where the front spread
in the field is about 10 times larger than the calculated
spread. The agreement for the experiments Twin Lakes 2 ,
Cape Cod 1 , Borden 1 and 3C and MADE is even very
good. In the cases where the path length between two
plume stages is small, the observed development may
be affected by a local conductivity zone. Such a zone
may cause a local spread that is different from the spread
calculated for the average process in the aquifer. The
present comparison of field and calculated spreads is also
an independent check of N and r because the difference
between the front and the tail was not used before in the
assessment.

In the experiment Denmark 2 , the center of
the tritium concentration apparently does not agree
with the calculated one. This is opposite to the good fit
of the chloride concentration in experiment Denmark 1 .
The front and the tail of the plume develop symmetrically
in the experiments Twin Lakes 2 and Borden 1 and 3A
only. The calculated spreads of these experiments are
slightly asymmetric, which comes from the difference in
the thickness of the wakes of the front and tail as used
in the length of distortion (Equation 4).

In conclusion: The methodology and the assessed
parameter values do provide a consistent framework to
better understand dispersion of plume fronts and tails in
the field. The reader may verify his or her experiences
with the spreadsheet that is provided in File S1.

So, What about the Three Main Issues Raised
in the Introduction?

1. In some experiments the longitudinal dispersivity
becomes constant with increasing pathlength and in
other cases it remains growing.

In the initial phase in the first domain A, the dispersiv-
ity grows linearly with path length. In the repetition phase
in weakly heterogenous aquifers, dispersion occurs inde-
pendently in subsequent domains A and the dispersivity
becomes constant. In heterogeneous aquifers, water par-
ticles may travel in subsequent high-conductivity zones.
This generates interdependent dispersion in subsequent
domains A and a linear and unlimited growth of the dis-
persivity with travel distance. This is strongly supported
by the 146 dispersivities along the path in the selected
field experiments. Unlimited growth of the longitudinal
dispersivity with travel distance is not necessarily gener-
ated by unlimited increase of heterogeneity and aquifer
dimensions underlying the unified scaling relations sug-
gested by Neuman (1990).

2. Dispersivities reported from multiple comprehensive
observations at a single site differ for similar path-
length, in some cases more than a factor 2.

The present methodology calculates dispersivities at
the scale of the aquifer, which may differ from local
values. Dispersivities from local gradients in the second
moments of the tracer distribution may differ more than
a factor two and originates in local conductivity zones.
Dispersivities from breakthrough curves show similar
magnitude differences but are more scattered, which is
due to point-scale variation in the velocity as well as to
the history of the individual path line.
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3. The observed difference between the lengths of the
front and the tail of a plume is not represented in the
parameters reported from field experiments.

Most field experiments show asymmetric develop-
ment of the front and the tail of a plume. This is not
represented by the reported overall parameters longitudi-
nal variance and dispersivity. The present methodology
enables to calculate the distinct spread of the plume front
and plume tail which proved to agree reasonably well
with the observations in the experiments. An operational
spreadsheet is available for the analysis of user defined
situations. The parameter values derived for the different
sites should give guidance for choosing input values.
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