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with a high mortality. The mechanisms that cause ischemia/reper�

fusion injury are complex and many factors are involved in the

injury formation process; however, the only available treatment

is surgical intervention. Recent studies demonstrated that the

intestinal microbiome plays a key role in intestinal ischemia/

reperfusion injury and there are many factors associated with

intestinal bacteria during the formation of the intestinal ischemia/

reperfusion injury. Among the Toll�like receptors (TLR), TLR2, TLR4,

and their adaptor protein, myeloid differentiation primary�response

88 (MyD88), have been reported to be involved in intestinal

ischemia/reperfusion injury. Oxidative stress and nitric oxide are

also associated with intestinal bacteria during the formation of

the intestinal ischemia/reperfusion injury. This review focuses on

our current understanding of the impact of the microbiome,

including the roles of the TLRs, oxidative stress, and nitric oxide,

on intestinal ischemia/reperfusion injury.
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IntroductionMany studies have investigated ischemia/reperfusion (I/R)
injury in cardiac,(1) cerebral,(2) and hepatic diseases,(3) as well

as intestinal injury and transplantation.(4) Among these organs, the
intestine is the most sensitive to I/R injury.(5) Acute mesenteric
ischemia (AMI) is a typical intestinal I/R injury-related disease
that is caused by rapid interruption of blood flow in the mesenteric
vessel. AMI occurs in a variety of clinical conditions, including
small bowel occlusion and thrombosis of the mesenteric artery,
vascular surgery, shock, small bowel transplantation, and trauma.(6)

AMI is divided into two types: nonocclusive mesenteric ischemia
(NOMI) and occlusive mesenteric arterial ischemia.(7–9)

NOMI is an acute mesenteric circulatory disorder that is not
caused by organic occlusion of blood vessels. Most cases involve
spasm of the superior mesenteric artery (SMA) and the disease
easily advances to an irreversible intestinal necrosis because of the
difficulty in making a definitive diagnosis.(10) Usually, patients with
NOMI are critically ill with severe heart failure, hemodialysis,
aortic insufficiency, septic shock, or myocardial infarction and
the mortality rate exceeds 50%.(10–15) In the primary stage of
NOMI, the intestine is damaged by the interruption of blood flow.
Although the primary injury could be repaired by re-establishing
the normal mesenteric blood supply, reperfusion could further
worsen the initial intestinal damage. This is known as intestinal
I/R injury. Mortality rates are especially high when the intestinal

I/R injury progresses to shock, multiple organ failure, and sepsis.(8,16)

Guidelines of the European journal of trauma and emergency
surgery recommend that broad spectrum antibiotics should be
administered because bacterial translocation is an early event in
the progress of AMI.(17) However, no clinical studies have shown
the efficacy of prophylactic antibiotics in patients with acute
intestinal I/R, and the bacteria responsible for the disease severity
and prognosis have not yet been identified.

Occlusive mesenteric arterial ischemia is subdivided into acute
mesenteric arterial embolism and acute mesenteric arterial throm-
bosis. These diseases are also severe conditions. However, these
disease states are primarily ischemic injuries rather than I/R
injuries, because embolisms and thrombosis rarely occur naturally.

Because of the disease severity and its prevalence, there are
many models and studies targeting intestinal I/R injury. However,
the disease mechanisms are not completely understood and there
is little useful treatment other than surgical intervention and
supportive care. A better understanding of the pathogenesis of
intestinal I/R injury is needed to develop new treatments and
improve the prognosis. This review focuses on the recent advances
in the mechanisms of intestinal I/R and describes the role of the
intestinal microbiome during intestinal I/R injury.

Mechanisms of Ischemia/Reperfusion Injury

The mechanisms of the I/R injury are complex and many factors
are involved in the injury formation process. Therefore, many
experimental animal models have been established to evaluate the
pathogenesis and mechanisms of intestinal I/R injury. Complete
ischemia by temporary vascular occlusion with vascular clips or
permanent vascular occlusion by ligation of the SMA in rodents
are the most commonly used methods used for studying intestinal
I/R injury. In most studies, the small intestine was examined after
60 min of ischemia with a reperfusion time of 90–120 min.(18–20)

Animal studies indicated that intestinal I/R injuries occur after
two events: ischemic injury and reperfusion injury. Ischemic
injury is caused by microcirculatory flow disorders. In this stage,
the tissue of the small intestine is injured mainly due to hypoxemia.
Resumption of blood flow after the original ischemic event further
exacerbates the intestinal injury; however, it is necessary for
intestinal epithelial cell survival.(21,22) This injury is known as the
reperfusion injury.
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Mucosal barrier function is destroyed and vascular permeability
is increased during the formation of the I/R injury.(23) The increased
vascular permeability allows the activation and adhesion of
inflammatory cells. These inflammatory cells release reactive
oxygen species (ROS), proinflammatory chemokines, and protein
kinases.(5) Representative induced molecules include inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor
necrosis factor α (TNF-α), interleukin (IL)-1, IL-6, prostaglandin,
intracellular adhesion molecule, and E-selectin.(24–28)

Additionally, the intestinal barrier dysfunction causes bacteria
to infiltrate the intestinal mucosa and submucosa after I/R injury.(29)

This bacterial translocation stimulates inflammatory cells and
induces the inflammatory response while releasing proinflamma-
tory chemokines and protein kinases.(23) The bacteria that penetrate
the mucosa reach other organs through the blood circulation. João
et al.(29) demonstrated that 99mTc-labeled bacteria that was
gavaged before I/R treatment were detected in the serum, lung,
liver and mesenteric lymph nodes after mesenteric I/R injury in a
time dependent manner. Recent studies indicated that the bacteria
played a key direct or indirect role in the intestinal I/R injury.

Intestinal Microbiome

A large number of bacteria exist in the human gastrointestinal
tract, especially in the colon. Recent studies revealed that these
intestinal bacteria, collectively called the microbiome, play impor-
tant roles in maintaining the gut mucosal barrier and intestinal
immune system.(30) The microbiome interacts with human intes-
tinal environments and modulates host physiological functions
such as food digestion and metabolism of nutrition,(31,32) immuno-
modulation,(33) resistance to pathogens,(34) and so on. Therefore,
the gut microbiome attracted attention, because studies have
reported that many diseases, including obesity,(31,32) diabetes,(35)

liver cancer,(36) IBS,(37) IBD,(38) and non-steroidal anti-inflammatory
drug (NSAID)-induced small intestinal damage,(39) were associated
with abnormalities of the gut microbiome, called dysbiosis.

It is also thought that dysbiosis is involved in the pathological
condition in intestinal I/R injury. Souza et al.(40) reported that in-
testinal I/R injury was inhibited in germ-free mice. Yoshiya et al.(41)

demonstrated that depletion of gut commensal bacteria by oral
administration of a broad-spectrum antibiotic cocktail for four
weeks attenuated intestinal I/R injury. Watanabe et al.(19) demon-
strated that oral administration of ampicillin significantly reduced
intestinal I/R injury in mice. In contrast, Chen et al.(42) demon-
strated that intestinal microbiome depletion by oral administration
of broad-spectrum antibiotics exacerbated intestinal I/R injury in
mice.

Collectively, these results strongly suggest that intestinal
bacteria may mediate I/R injury, although some conflicting results
have been reported. However, our knowledge about bacterial
involvement in the damage is very limited. No study has discussed
in detail the small intestinal microbiome change during I/R injury,
although one report demonstrated that the colon microbiome
changed before and after intestinal I/R injury.(43) Intensive studies
using next generation sequencing could lead to the identification
of bacteria responsible for the induction of the I/R damage, and
development of useful agents against this damage.

Some reports suggested that probiotics, which regulate the
intestinal microbiome, may be candidates for use as therapeutic
agents against intestinal I/R injury. Several studies demonstrated
that pretreatment with Lactobacillus plantarum ameliorated rodent
small intestinal I/R injury by decreasing inflammatory cytokines
and preventing intestinal barrier dysfunction.(23,44) Salim et al.(45)

demonstrated that VSL#3, which is a probiotic preparation of
eight live freeze-dried bacterial species including Lactobacillus
plantarum, reduced intestinal I/R injury and inflammation. Thus,
some probiotic such as Lactobacillus plantarum suppress intes-
tinal inflammation and play protective roles against intestinal I/R

injury. In other intestinal injury models, viable lactobacillus strains
have been also reported to possess antimicrobial activity.(46,47)

Additionally, Ménard et al.(46) demonstrated that lactic acid
bacterial strains and their metabolites inhibited the binding of
lipopolysaccharide (LPS) to THP-1 cells, and decreased NF-κB
nuclear translocation. Although the mechanisms by which these
probiotic bacteria ameliorate intestinal I/R injury is still unclear,
bacteriostatic and immunosuppressive actions may be involved
in the prevention of the damage by the bacteria. Even though
probiotics are effective against I/R injury in animal models, it is
not realistic to use them as therapeutic agents for treating intestinal
I/R injury in humans, because probiotics are usually prescribed
orally. Therefore, administering probiotics alone or in combina-
tion with antibiotics could be candidate agents for the prophylaxis
of intestinal I/R injury in high-risk patients, such as those who will
undergo small bowel surgery. Clinical trials to evaluate the pro-
phylactic efficacy of probiotics should be conducted to prove their
usefulness.

Toll�like Receptors

A representative receptor that recognizes the constituent
molecules of bacteria and contributes to the homeostasis of the
intestinal environment is the Toll-like receptor (TLR). TLRs play
important roles in the innate immune system. Researchers have
identified 10 TLRs in humans and 12 in mice. Although specific
ligands are recognized by each TLR,(48) they generally recognize
pathogen-associated molecular patterns and danger-associated
molecular patterns.(49) The TLR signaling pathway activates
inflammatory responses, such as the secretion of NF-κB and TNF-
α. Among these TLRs, previous reports suggested that TLR2 and
TLR4 play important roles in intestinal I/R injury. The reported
role of TLR2 and TLR4 in intestinal I/R injury is controversial;
however, majority of the studies conducted in pathological models
other than those of intestinal inflammation have reported that the
TLR2 and TLR4 signaling pathways induce inflammation.

TLR2 is a membrane surface receptor that is activated by
bacterial peptidoglycans, which are highly expressed on the outer
membranes of gram-positive bacteria, and in fungal substances.
TLR2 is expressed on microglia and inflammatory cells, such
as monocyte/macrophage, dendric cells, B lymphoceles, and T
lymphoceles. In general, the TLR2 signaling pathway leads to
production of TNF-α and NF-κB.(48)

Several studies in a TLR2 knockout mouse model indicated
that the role of TLR2 in intestinal I/R injury is controversial.
Several studies reported that small intestinal injury after I/R treat-
ment in TLR2 knockout mice was increased compare to that in
wild-type mice.(18,50) In this study, secretory immunoglobulin A,
which is a protective factor in intestinal I/R injury, was dependent
on TLR2 activity and TLR2 knockout mice had more inflamma-
tory cytokines in the small intestine. In contrast, in our study,
TLR2 knockout mice exhibited less severe I/R injury than wild-
type mice with decreasing TNF-α mRNA expression.(20) This
study suggested that TLR2 mediated intestinal I/R injury via
induction of inflammatory mediators. There is a possibility that
the balance between the TLR2-related offensive factor and
defensive factor may have contributed to the intestinal I/R injury.
In addition, the results may be different if the study conditions
change (Table 1).

TLR4 is also a membrane surface receptor that is activated
by the LPS of gram negative bacteria. Similar to that by the TLR2
signaling pathway, TLR4 activation induced production of TNF-α
and NF-κB.(48,51) Some reports using TLR4 knockout mice sug-
gested that TLR4 was protective against intestinal I/R injury.(18)

Chen et al.(42) also suggested that administration of LPS, a repre-
sentative TLR4 ligand,(52) decreased intestinal I/R injury by
preventing an increase in intestinal permeability thorough TNF-α
signaling. Contrary to these studies, some reports suggested that
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the TLR4 signaling pathway is the aggravating factor against
intestinal I/R injury.(53–55) Pope et al.(54) demonstrated that TLR4
deficiency attenuated intestinal I/R injury via reducing comple-
ment activation and Moses et al.(55) suggested that TLR4-mediated
COX-2 expression increased intestinal I/R injury. Additionally,
some reports suggested that high mobility group box 1, a TLR4
ligand,(56,57) was an aggravating factor for intestinal I/R injury.(58,59)

Because there are many types of TLR4 ligands, the effect of the
TLR4 signaling pathway may be different depending on the acti-
vating ligand. However, there is no doubt that the TLR4 signaling
pathway plays an important role in intestinal I/R injury (Table 1).

Slone et al.(60) reported that the TLR9 pathway was not related
to intestinal I/R injury and there have been few reports regarding
other TLRs. It is likely that other TLRs play only minor roles in
intestinal I/R injury.

Myeloid differentiation primary response 88 (MyD88) is an
adapter protein used by all TLRs, except TLR3. During activation
of the TLR2 or TLR4 signaling pathway, MyD88 combines an
N-terminal death domain with a C-terminal Toll/IL-1 receptor
domain that serves to anchor the molecule to the corresponding
domain of TLR2 or TLR4. This signaling pathway activates NF-
κB.(48,61) We previously reported that MyD88 plays a protective
role in intestinal I/R injury via induction of COX-2.(19) In contrast,
Wang et al.(58) reported blocking MyD88 using anti-MyD88
antibody to ameliorate the mice intestinal I/R injury with reduced
NF-κB protein expression. The role of MyD88 reported in these
studies was contradictory, similar to the studies regarding the role
of TLR2 and TLR4, which are upstream of MyD88, in intestinal
I/R injury (Table 1).

The role of TLRs in I/R injury has also been investigated in
other organs, such as the heart, brain, kidney, and liver.(62) In

cardiac, cerebral, renal, and liver I/R injury, it has been reported
that among the TLRs, TLR2, TLR4, and MyD88 are receptors that
are mainly involved in pathological conditions. Interestingly, most
studies have indicated that TLR2, TLR4, and MyD88 are exacer-
bating factors for I/R injury in other organs, unlike the studies
conducted in the intestine.

In studies regarding the small intestine in other pathological
rodent models, TLR2, TLR4, and MyD88 are often described as
factors that exacerbate inflammation. A typical disease involving
intestinal bacteria in the disease state is NSAID-induced small
intestinal injury. Most studies, including our study, have reported
that the TLR4 and MyD88 signaling pathways are aggravating
factors for NSAID-induced small intestinal injury.(56,63,64)

Contrary to studies conducted in other organs, the role of TLRs
in intestinal I/R injury is controversial. One of the reasons for this
is that bacteria constantly exist in the gastrointestinal tract, unlike
other organs. Some papers suggested that the TLR signaling
pathway induced by commensal bacteria has a beneficial role.
Rakoff-Nahoum et al.(65) demonstrated that the long-term deple-
tion of commensal bacteria, as well as genetic deletion of MyD88,
modulates the expression of several molecules such as TLRs and
heat-shock proteins, which play important roles in maintaining
intestinal homeostasis. They suggested that the recognition of
commensal bacteria by TLRs plays a beneficial role in the control
of intestinal epithelial homeostasis and protection from direct
injury.

Thus, the balance between the beneficial and detrimental effects
of the TLR pathway may be disturbed in the intestines of TLR
and MyD88 knock out mice, in whom the TLR signaling was
absent. This imbalance may lead to a high susceptibility to
intestinal I/R injury in such mice, resulting in controversial results

Table 1. In vivo studies on the role of TLRs and MyD88 in I/R injury

TLR, Toll�like receptor; MyD88, myeloid differentiation primary response 88; I/R, ischemia/reperfusion; TNF, tumor necrosis factor; MPO, myeloper�
oxidase; ICAM, intercellular adhesion molecule; IFN, interferon; IL, interleukin; HMGB, high mobility group box; COX, cyclooxygenase.

Publications TLRs studied
Beneficial or unbeneficial 
against intestinal I/R injury

Findings

Tatum, J Pediatr Surg
TLR2
TLR4

beneficial
Neonatal mice deficient in TLR4, either alone or in 
concert with TLR2, were more susceptible to intestinal 
mucosal damage.

Watanabe, PLoS One TLR2 unbeneficial
TLR2−/− mice exhibited less severe mucosal injury and 
decreased MPO and TNF�α and ICAM�1 mRNA 
expression.

Aprahamian, Pediatr Crit Care Med TLR2 beneficial
In TLR2−/− mice, intestinal injury scores increased and 
the expression of IFN�γ, IL�4, and IL�6 mRNA decreased.

Chen, Shock TLR4 beneficial
Lipopolysaccharide, a TLR4 ligand, decreased mesenteric 
I/R injury�induced gut damage through TNF�α 
signaling.

Zhu, Oncotarget TLR4 unbeneficial
TLR4 mutation suppressed histological injuries and 
reduced cytokine expression in the intestine (TNF�α, 
IL�6, IL�1β, and NF�κB).

Pope, Mol Immunol TLR4 unbeneficial
TLR4�deficient mice sustained less damage and 
inflammation after I/R than wild�type mice.

Moses, J Leukoc Biol
TLR4

MyD88
unbeneficial

The absence of TLR4 or MyD88 attenuated local 
mucosal damage and significantly decreased cytokine 
and eicosanoid secretion, including PGE2 production.

Wang, World J Gastroenterol
TLR4

MyD88
unbeneficial

Blocking HMGB1 and MyD88 reduced the levels of 
inflammatory cytokines (NF�κB, p65, and TNF�α) 
in serum.

Kojima, J Surg Res TLR4 unbeneficial
Anti�HMGB1 antibody treatment significantly reduced 
the damage and improved the 48�h survival rates.

Slone, Am J Clin Exp Immunol TLR9 no effect
TLR9 is not required for I/R�induced injury or inflam�
mation of the intestine.

Watanabe, Am J Physiol Gastrointest 
Liver Physiol

MyD88 beneficial
The MyD88 signaling pathway inhibited I/R injury in 
the small intestine by inducing COX�2 expression.
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among experimental studies using TLR knockout mice and those
using the antagonists or agonists of the corresponding receptors.
Therefore, studies using conditional knockouts of TLRs and
MyD88, or the agonists and antagonists against TLRs and MyD88
are necessary to clarify the precise role of the TLR and MyD88
pathways in the development and progression of intestinal I/R.

Oxidative Stress

Many studies have demonstrated that oxidative stress caused by
ROS and free radicals, including superoxide anion radicals (O2

•−),
hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl
radical (•OH), affects the intestine during reperfusion of the
ischemic small intestine.(66–69) An important source of these ROS
and free radicals are neutrophils and macrophages. These inflam-
matory cells release ROS and free radicals during respiratory
bursts against invading bacteria. Although this production of ROS
and free radicals is designed to sterilize invading bacteria, exces-
sive production leads to local tissue injuries because of the exces-
sive inflammatory reaction.

Xanthine oxide (XO) metabolism is another important source
of free radicals during I/R injury. In ischemic situations, XO
is generated from xanthine dehydrogenase by Ca2+-dependent
proteases and generates singlet oxygen and hydrogen peroxide by
catalyzing the oxidation of xanthine and hypoxanthine into uric
acid.(70) This XO system can produce large amounts of ROS during
the formation of the I/R injury. Inhibition of XO by the purine
analog, allopurinol, protects the intestine from I/R injury.(71–73)

Prevention of oxidative stress can be useful for the treatment
of intestinal I/R injury. Many studies demonstrated that heme
oxygenase (HO)-1 plays a protective role, especially in I/R injury,
by preventing oxidation.(74–76) HO-1 is an enzyme that catalyzes
the degradation of heme to carbon monoxide, biliverdin, and free
iron. Carbon monoxide is not an antioxidant,(77) but it plays a
protective role in intestinal I/R injury via anti-inflammatory and
anti-apoptotic properties.(24,26) Biliverdin and its metabolite
bilirubin are also antioxidants. Some reports demonstrated that
the administration of bilirubin ameliorated the intestinal I/R injury
by reducing inflammatory cytokines.(78,79)

Many other antioxidants have also been reported to have
protective effects against intestinal I/R injury (i.e., melatonin, N-
acetylcysteine, dimethyl sulfoxide, superoxide dismutase, and
vitamin C).(5,72,80–91)

Therefore, oxidative stress plays important role in intestinal I/R
injury. Although ROS and super oxide from inflammatory cells
are necessary to maintain intestinal homeostasis and protect
against invading bacteria, excessive production of ROS and super
oxide cause tissue injury. Antioxidants, which eliminate excess
ROS and super oxide, may be candidates for the treatment of
intestinal I/R injury.

Nitric Oxide

Nitric oxide (NO) is an important mediator of physiological
and pathological processes. Many studies have demonstrated
that NO regulated intestinal blood flow by relaxing the vascular
endothelium.(92,93) Increasing the blood flow allows inflammatory
cytokines to be carried away and improves local inflammation.
However, sometimes, increased blood flow may carry bacteria
that passed through intestinal epithelial barrier to another organ
and cause remote organ failure.

NO plays another important role related to oxidative stress in
intestinal I/R injury. NO is produced from the guanidine group of
L-arginine by NO synthase (NOS). Four major isoforms of NOS,
including neuronal NOS (nNOS), endothelial NOS (eNOS),
iNOS, and mitochondrial NOS (mtNOS), have been identified
and all four isoforms are present throughout the gastrointestinal
tract.(94–97) iNOS is induced and produces NO after stimulation

by proinflammatory cytokines, although nNOS and eNOS are
naturally present.(94,98,99) mtNOS is a Ca2+-dependent NOS subtype
found in the inner membrane of the mitochondria.(97) Although NO
produced through constitutive NO synthase (nNOS and eNOS)
can be an important protective molecule against intestinal I/R
injury, over-production of NO through iNOS may aggravate
inflammation.(96,100–102)

A more likely explanation for the protective effect of nNOS
and the NO produced thereby is that they act as antioxidants
during the inflammatory response.(71) Additionally, damage and
loss of function of nNOS immunopositive myelin neurons may be
fundamental to bowel movement disorders, suggesting that NO
produced by nNOS is protective against metabolic injury.(103–105)

In contrast, NO is involved in the inflammatory cascade by
radical-mediated mechanisms in overproduction situations. NO
captures and eliminates other free radicals. However, at the same
time, another strong free radical called peroxynitrite (ONNO−) is
generated.(106) Peroxynitrite can be protonated to the highly cyto-
toxic peroxynitrous acid (ONOOH) and cause DNA breakage and
cell injury.(107)

Therefore, regarding intestinal I/R injury, the results of the
previous studies regarding the influence of NOS are controversial
and depended on which NOS was primarily involved. Addition-
ally, Naito et al.(108) reported that NO produced by iNOS exacer-
bated intestinal I/R injury by lipid peroxidation and administration
of the selective iNOS inhibitor ameliorated the I/R injury in rats.
In contrast, Margaritis et al.(71) reported that oral administration
of the nonselective NOS inhibitor, NG-nitro-L-arginine methyl
ester, aggravated rat intestinal I/R injury with increasing neutro-
phil infiltration.

NO has many other beneficial effects during the formation of
intestinal I/R injury. NO can induce apoptosis and necrosis. High
levels of NO-induced apoptosis in I/R injury and an inhibitor of
iNOS led to a decrease in NO production and subsequent intestinal
apoptosis.(96,109) NO also reduced neutrophil infiltration into the
gastrointestinal tract in response to acute inflammation and NO
inhibition exacerbated leukocyte recruitment.(96) Therefore, there
is no doubt that NO and various NOSs play important roles in
intestinal I/R injury. However, because NO has both protective
and inductive effects in intestinal I/R injury, whether an NO
inhibitor or stimulator can be used as a treatment method should
be carefully considered.

Conclusion

Previous findings strongly indicate that the gut microbiome
mediates intestinal I/R injury; it is thought to use TLRs to induce
the damage (Fig. 1). Animal studies demonstrated that both TLR4,
a receptor of LPS of gram-negative bacteria, and TLR2, a receptor
of bacterial peptidoglycans, which are highly expressed in gram-
positive bacteria, play crucial roles in intestinal I/R injury,
suggesting the involvement of multiple bacterial species in the
damage. In addition to animal studies to investigate microbial
characteristics and those using conditional knockouts of TLRs or
specific agonists or antagonists against TLRs, clinical studies
evaluating the efficacy of antibiotics should be urgently performed
to confirm the involvement of the bacteria in intestinal I/R injury.
Metagenomic analyses of human samples could help identify the
bacteria responsible for intestinal I/R injury.
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