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Abstract

Background: Emerging technologies such as smartphones and wearable sensors have enabled the paradigm
shift to new patient-centered healthcare, together with recent mobile health (mHealth) app development. One
such promising healthcare app is incision monitoring based on patient-taken incision images. In this review,
challenges and potential solution strategies are investigated for surgical site infection (SSI) detection and eval-
uation using surgical site images taken at home.
Methods: Potential image quality issues, feature extraction, and surgical site image analysis challenges are
discussed. Recent image analysis and machine learning solutions are reviewed to extract meaningful repre-
sentations as image markers for incision monitoring. Discussions on opportunities and challenges of applying
these methods to derive accurate SSI prediction are provided.
Conclusions: Interactive image acquisition as well as customized image analysis and machine learning methods for
SSI monitoring will play critical roles in developing sustainable mHealth apps to achieve the expected outcomes of
patient-taken incision images for effective out-of-clinic patient-centered healthcare with substantially reduced cost.
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The U.S. healthcare sector is transitioning from re-
active care to proactive care, with the emphasis shifting

to preventive measures and early interventions. Patients are
increasingly empowered in this endeavor, both as a goal and
as a result. Empowered patients may actively seek ways to
engage in their healthcare using emerging technologies
such as smartphones and wearable sensors. Recent studies
have shown that patients are already using camera phones to
e-mail and text incision photos to their providers [1], with
access often prompted by providers. As a response to grow-
ing technology use among patients, a number of smartphone
apps have been developed, such as the mPOWEr app (mobile
Post-Operative Wound Evaluator; https://mpowercare.org),
that enable patients to monitor their surgical sites for signs
and symptoms of surgical site infection (SSI) at home and
transmit photographs and self-reported incision and clinical

observations to physicians. This generates promising new
types of data that may address many challenging SSI prob-
lems, whereas the enormous scale of the data and the novelty
also bring exciting intellectual challenges requiring close
collaboration between medical professionals, statisticians,
and computer scientists.

Increasingly available image data, together with other new
types of data, naturally inspire the adoption of data-driven
methods, such as machine learning, to extract information
and make use of information-rich but statistically complex
data. However, classic machine learning algorithms often
have difficulty extracting semantic features directly from raw
data. This phenomenon, commonly known as the semantic
gap [2], requires assistance from domain knowledge for
hand-crafted feature representations, on which machine
learning models operate more effectively. In contrast, more
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recent deep learning approaches derive semantically mean-
ingful representations, through construction of a hierarchy of
features to represent a sophisticated concept. Deep learning
requires less hand-engineered features and expert knowledge,
and has recently achieved tremendous success in visual ob-
ject recognition [3–6], face recognition and verification [7,8],
object detection [9–12], image restoration and enhancement
[13–18], clustering [19], emotion recognition [20], aesthetics
and style recognition [21–24], scene understanding [25,26],
speech recognition [27], machine translation [28], image
synthesis [29], and even playing Go [30] and poker [31].

This promising progress has also motivated the widespread
usage of deep learning in the medical image fields. For ex-
ample, UNet [32] was first applied successfully in medical
image segmentation. Esteva et al. [33] trained an end-to-end
deep network and achieved dermatologist-level performance
in classifying skin cancer. Moreover, deep learning is also
applied successfully to many other tasks in the medical image
context such as knee cartilage segmentation [34], diabetic
retinopathy detection [35–37], lymph node detection [38–
41], pulmonary nodule detection [42–44], brain lesion seg-
mentation [45–48], and Alzheimer’s disease classification
[49–53]. A comprehensive survey can be found in Litjens
et al. [54].

Our goal is to borrow strengths and translate the successes
achieved those domains in incision image analysis for SSI,
and further reinforce those domains with new methods de-
veloped to tackling new challenges in SSI. In this article, we
propose a roadmap for developing incision image algorithms
for automatic SSI detection and evaluation. Challenges per-
sist, ranging from limited photo quality and uncontrolled
imaging variations (e.g., light and angle), to the enormous
heterogeneity of patients that calls for personalization in our
algorithms [55]. We introduce both novelty and challenges in
using incision images for SSI detection and evaluation and
provide an overview of recent and related developments in
computer vision, medical imaging processing, and analysis.
We discuss a roadmap that could lead us to a systematic de-
velopment of computational algorithms to detect and track
SSI risk accurately using incision images captured by smart-
phones in a variety of conditions by a heterogeneous pop-
ulation.

Challenges in User-Generated Incision Images

As the National Patient Safety Agency has recently re-
ported, 11% of serious medical events leading to mortality or
substantial morbidity incidents are a function of unrecog-
nized progression of disease [56,57]. This is particularly true
for SSI because its natural history is still largely unknown.
Whereas incision image data (and other types of user-
generated data) offer great promise in helping clinicians
capture disease progression with unprecedented and fine-
grained resolution, it is challenging to extract risk-predictive
patterns that correlate with the underlying disease progres-
sion because of challenges we discuss in the following sub-
sections.

Quality issues in image acquisition

To extract clinically meaningful features from the user-
generated incision images, we have to overcome the chal-
lenges presented by images taken by patients or family

members who do not have clinical backgrounds and are taken
using different types of devices in a variety of naturalistic
environments. These challenges have not been addressed
adequately in the existing literature. For example, images
may be taken under different lighting conditions, and the
positioning and size of the incision in the image may change
between different images of the same incision (Fig. 1). Fre-
quently, obstructing objects are included in incision images.

Several methods have been proposed to alleviate the issues
above, including using apertures to ensure consistent lighting
conditions, using transparent films over the incision, and
using color or size fiduciaries such as a common object or
uniform color template. One goal might be to develop auto-
mated guidance for patient–photographers, such as the image
guidance provided in check-deposit banking applications,
which may prompt the user to move closer or further away
to optimize size and focus, or that may give warning of inade-
quate contrast or lighting. However, even with automated guid-
ance, different healthcare during guidance will produce images
with different styles [58]. Depending on whether these image
differences are accounted for, these solutions may weaken the
monitoring framework. In Shenoy et al. [59], the light condi-
tion is consistent in the incision images and incision is always
centered. Under these conditions, their network achieved a
high F1 score and this indicates the promising performance of
available approaches after the quality issue is solved.

Feature extraction

It is apparent that image data provides an unprecedentedly
rich source of data for SSI research, although this information
may be masked by the wide variations in image acquisition.
Important features extracted from images of the surgical site
might include incision size, granularity, color, and mor-
phology [60]. Image processing and analysis algorithms have
been developed to extract these features directly from inci-
sion images. In addition to these traditional image analysis
algorithms focusing on predefined image features, recent
deep learning algorithms can automatically find feature rep-
resentations that would be useful to monitor SSI, allowing
for the discovery of new image features indicative of SSI
progression [61].

Traditional teaching is that redness (erythema) adjacent to
the incision indicates SSI, however, work by Sanger et al.
[62] in characterizing the predictive value of provider inci-
sion observations of hospitalized patients did not show
erythema to be predictive of infection, suggesting the im-
portance of further investigation. There is no universal defi-
nition of imaged erythema, which would need to incorporate
different skin tones, possibly individual patient responses to
infection/inflammation, and imaging condition variability.
Systematic characterization would be needed to understand
the relation between SSI and either erythema as an extracted
image feature, or as a deep learning feature representation of
incision images.

Incision segmentation

To overcome the enormous variations in image acquisition
and lay a reliable foundation for effective feature extraction,
incision segmentation (spatial identification of the incision
within the image) is a critical tool. An immediate goal of
incision segmentation is to extract the size information of the
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incision area for SSI evaluation [63]. Segmentation can also
be used to remove complex background distractions. Algo-
rithms for incision segmentation have mostly been developed
using incision images captured by skilled professionals with
relatively well-controlled experiments, i.e., with consistent
use of image acquisition device and procedure on a selected
cohort. Early work involved applying a region growing
method and automatic selection of the best channel [64] and
developing active contour model in which the minimax
principle was used adaptively to regularize the contour ac-
cording to the local conditions in the incision image [65].
However, this method often contained many parameters that
required manual adjustment for different images. Moreover,
as we target user-generated incision images that come from

amateur imaging devices (e.g., hand-held mobile phones), we
expect image quality to be both decreased and variable [55].
In addition to the diverse incision characteristics, the im-
precise definition of incision boundaries also complicates the
problem. There are typically transition regions between in-
cision and normal skin, but there is no clear consensus on
image criteria to identify an incision boundary.

Recent Developments in Computer Vision
and Medical Imaging Analysis

Deep learning

A basic neural network is composed of a set of perceptrons
(artificial neurons), each of which maps inputs to output

FIG. 1. Example of the challenges faced characterizing surgical site images, including poor lighting conditions, obstructing
objects such as hair, stitches, and thin films, as well as different camera angles and positioning. Color image is available online.
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values with a simple activation function. Taking image clas-
sification as an example [3], a deep learning-based image
classification system represents an object by gradually
extracting edges, textures, and structures, from lower to
middle-level hidden layers, which becomes more and more
associated with the target semantic concept as the model
grows deeper. Driven by the emergence of big data and
hardware acceleration, the intricacy of data can be extracted
with higher and more abstract level representation from raw
inputs, gaining more power for deep learning to solve even
traditionally intractable problems.

Among recent deep neural network architectures, con-
volutional neural networks (CNNs) and recurrent neural
networks (RNNs) are the two main streams, differing in their
connectivity patterns. Convolutional neural networks deploy
convolution operations on hidden layers for weight sharing
and parameter reduction. Convolutional neural networks
can extract local information from grid-like input data and
have mainly shown successes in computer vision and image
processing, with many popular instances such as LeNet [66],
AlexNet [3], VGG [67], GoogLeNet [68], and ResNet [69].
Recurrent neural networks are dedicated to processing se-
quential input data with variable length. Recurrent neural
networks produce an output at each time step. The hidden
neuron at each time step is calculated based on input data and
hidden neurons at previous time step. To avoid vanishing/
exploding gradients of RNNs in long-term dependency, long
short-term memory (LSTM) [70] and gated recurrent unit
(GRU) [71] with controllable gates are used widely in prac-
tical applications.

Recent deep networks have been shown to accomplish
many tasks with substantial performance improvements over
traditional image processing methods. For example, UNet
[32], SegNet [72], ReSeg [73], MaskRCNN [74], and PSPNet
[75] have achieved considerable performance progress in
image segmentation. ResNet [69], GoogleNet [67], InceptionV3
[76], VGG [77], and NASNet [78] have achieved exceptional
performance in image classification. Deep models can also
be enhanced with particular robustness to real-world im-
age degradations such as low resolution and noise [4,5,79],
and therefore becoming more applicable to non-ideal
quality photos from mobile devices. Readers with further
interest are referred to the comprehensive deep learning
textbook [80].

Feature extraction from incision images

Feature extraction methods for incision images have
relied on identifying interpretable features indicative of
incision progression. For example, a prevalent system
widely used in incision assessment is the red-yellow-black
system to identify granulation, slough, and necrotic tissue
types [81]. Most traditional feature extraction methods
have relied on first segmenting the incision into these
distinct classes and then proceeding to extract features
from these classes separately. For example, Mukherjee
et al. [82] extracted features such as mean, standard de-
viation, skewness, kurtosis, and local contrast from 15
different color spaces. Using these features, a support
vector machine (SVM) was used to segment the incision
images into the red-yellow-black system for tissue type
identification.

Many studies have indicated that color features are
more useful for incision tissue classification compared with
textural features [83–85], showing the effectiveness of the
red-yellow-black system. However, textural features could
further refine the incision assessment. Kolesnik and Fexa [86]
studied the robustness of SVM models that only used color
features, in comparison with SVM models that used both
color and textural features for incision segmentation. Their
study indicated that the textural features reduced the aver-
age magnitude of segmentation error compared to using only
color features.

Moreover, color correction of the incision images has been
shown to make feature extraction more robust. A study done
by Wannous et al. [85] decomposed color correction into
two distinct problems by obtaining a consistent color re-
sponse via adjusting camera settings first and then deter-
mining the relation between the device-dependent color data
and the device-independent color data. They conquered the
second problem by placing a small Macbeth pattern in the
camera field and achieved an improvement in accuracy from
68% to 76%.

Incision segmentation

As mentioned earlier, incision segmentation would be
a critical tool to facilitate and enhance feature extraction
from incision images. Particularly, machine learning-based
methods [87] for incision segmentation have been found
particularly promising to achieve full-automation and self-
adaption. Early works include the use of SVM classifier, e.g.,
as in Kolesnik and Fexa [84], by treating incision seg-
mentation as a binary classification task. Kolesnik and Fexa
[86] further evaluated the robustness of SVM for incision
segmentation. Their research indicates that it is not stable
for new incision images and therefore not feasible for an
automatic system. In addition, neural networks, Bayesian
classifiers, and random forest decision trees were also utilized
[88,89]. However, these methods relied highly on the choice
of hand-crafted features that were created based on prior
knowledge, which could only explore a limited amount of the
image information.

The recent advance of deep learning brought tremendous
developments to incision image processing, although many
of them were not developed for user-generated incision im-
age data. Since Long et al. [90] proposed fully convolutional
networks (FCN), which extended the successful deep learn-
ing classification framework to segmentation task by repla-
cing the fully connected layers with convolutional layers,
many incision segmentation models were developed based
on it. These models could be trained end-to-end and achieve
superior performance. An encoder–decoder was utilized for
the segmentation of incision by Lu et al. [91] and Wang
et al. [92]. The WoundSeg, with higher performance and
efficiency, was proposed by Liu et al. [63]. The architecture
of the WoundSeg is shown in Figure 2. It modifies the FCN [90]
structure by adding a skip connection from previous fea-
ture map with higher resolution for making the segmen-
tation result finer. They also leverage data augmentation
and post-processing, which together improve the accuracy
to 98.12%. However, their dataset is taken by a profes-
sional in a hospital environment and the quality of images
is ensured.
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Because all these methods used supervised learning that
required a lot of expert labeled data, it is an expensive ap-
proach if the labeling cost is considerable. Many studies also
explored unsupervised methods such as clustering in incision
segmentation. Yadav et al. [93] compared k-means and fuzzy
c-means on Dr and Db color channels. The spectral approach
based on the affinity matrix was explored in Dhane et al. [94].
Dhane et al. [55] further proposed fuzzy spectral clustering
(FSC) that constructed similarity matrix with gray-based
fuzzy similarity measure using spatial knowledge of an im-
age. How scalable and practical these methods for analyzing
user-generated incision images to tackle SSI problems de-
mands many further studies and validations.

Discussion

With the rapid development of machine learning and
medical image analysis, many developing techniques can
potentially be adopted to address the existing challenges. In
this section, we discuss some of the possibilities.

Learning-based image processing and enhancement

As we have elaborated earlier, incision images taken by
amateur users are, in general, of low quality compared with
professional skin scans. Importantly, they would display
huge variations of lighting conditions, e.g., because of shad-
ows or over-/underexposures, which will greatly jeopardize
both feature extraction and incision region segmentation.

Many deep learning based enhancement algorithms, which
are trained to regress low-quality images to enhanced ver-
sions, could potentially be used. In other words, it is to
map those low-quality images into high-quality incision
image templates created by incision image data collected
by professionals such that the low-quality image could be
automatically calibrated, de-noised, enhanced, and imputed.
Although this is a promising idea, more challenges arise from
the fact that in the field of incision image analysis, there
currently does not exist, nor will it be easy to collect, a large
set of paired low-quality/enhanced images for training such
models.

A tentative solution is to treat this as an image domain
translation problem, in which domain is formed by a set of
images with the same pattern. For example, landscape pic-
tures taken in summer and winter can be treated as from two
domains. The summer pictures are from domain A and the
winter pictures are from domain B as shown in Figure 3(a).
For each summer picture a from domain A, there exists a
corresponding winter picture b in domain B, and thus, a can
be transformed to b through a function F. The function F is
called as domain translation function and the function H is
the domain translation function from B to A. A translation
demonstration between them is shown in Figure 4. Whereas
in many applications, the reality is that there is no paired
sample from domain A and B, we could resort to optimization
solutions in a statistical framework. For example, as shown
in Zhu et al. [95], a novel consistency loss was developed

FIG 2. The architecture of WoundSeg [63]. Color image is available online.

FIG 3. (a) Summer picture and (b) corresponding winter picture while F and H are translation functions. (b) Consistency
loss measures the distance between a and a 0, in which a 0 = H(F(a)). Color image is available online.
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to measure the distance of the sample a and a 0 = H(F(a))
as shown in Figure 3(b). For good domain translation
functions F and H, the distance between a and a 0 should be
small. Therefore, with unpaired data from two domains,
we can optimize the translation functions through minimiz-
ing the consistency loss. Similar techniques were lately ap-
plied to natural image enhancement applications [96], and
we expect the idea to also be helpful for incision image
enhancement.

Interactive image capture

An important question is whether smartphone-based sys-
tems have any disadvantage in image capture quality com-
pared with traditional medical workstations. Kumar et al. [97]
showed that teleophthalmology images taken by a smartphone
had a near-identical quality to images taken by a standard
medical workstation. This suggests that images captured us-
ing smartphones do not suffer from any major quality issues

FIG 4. The domain translation between summer and winter pictures [95]. Color image is available online.

FIG 5. Interactive procedure for image capture using mobile phones. Color image is available online.
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compared with those taken using medical workstations, as
long as sufficient quality control is put in place.

A solution that can potentially increase the quality of SSI
images acquisition is to interactively guide the user when
taking the SSI images. Indeed, a system that aids patients and
medical personnel in adjusting/finding correct lighting condi-
tions, exposure, and incision location could solve most of the
image quality issues we highlighted previously. Such a system
not only needs to have sufficient quality control mechanisms to
obtain accurate SSI incision features, but also needs to be user-
friendly. Recent medical image capture systems have utilized
mobile phone-based applications to facilitate image capture,
such as in teleophthalmology, clinical microscopy, and dia-
betic wound treatment [97–99]. Such interactive image capture
methods have many notable advantages. Agu et al. [99] noted
that the use of smartphones for medical image capture had the
benefits of easy deployment as smartphone applications are
easily developed and installed, and accessibility as smart-
phones are conveniently available to any person. In addition,
new hardware can be timely leveraged to help SSI monitoring
because smartphone hardware is upgraded frequently.

For the case of SSI image capture, existing incision as-
sessment systems have relied on using peripheral or ancillary

devices to control the lighting and incision positions. More-
over, thin films that overlay graph paper with mesh grids are
typically used when measuring incision size [100–102]. An
interactive incision image capturing system would need to
have these mechanisms in place to ensure proper image
quality.

Such an interactive system can be shown in Figures 5
and 6. As shown in Figure 5, a coin is placed near the incision
image as a size indicator, while a virtual mesh grid is used to
replace the graphpaper thin film traditionally used. After the
picture is taken, the incision is localized as shown in Figure 6.
The user is asked to draw the contour of the incision region
to allow a deformation of the mesh grid to normalize the
incision region size. With this normalized image, color seg-
mentation can be conducted, and interpretable feature of
the incision can be extracted. Lighting conditions can also be
normalized, and features can be readily extracted from the
SSI images for effective and reliable SSI monitoring.

Incision image segmentation and assessment

As mentioned earlier, challenges in segmenting and as-
sessing incision images using deep learning center around

FIG 6. Envisioned interactive image capture system. Color image is available online.

FIG 7. Deep image segmentation with noisy labels: (left) synthetic testing image example; (middle) simulated noisy
segmented image; (right) image segmentation by modified U-net using the simulated noisy segmentation. Color image is
available online.
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three main issues: the labeled data volume, the segmentation
label quality, and the interpretability and domain knowledge
integration.

To overcome the first challenge, we resort to data aug-
mentation, a widely utilized tool in deep learning to arti-
ficially increase the labeled data volume and diversity,
without extra data collection efforts [3]. The common
means relies on identifying label preserving transforma-
tions, i.e., variations known to exist in real data but not
affecting semantic annotations. Moreover, models trained
with such augmented data will also gain invariance to the
selected types of variations. For example, one can alter
the lighting conditions as well as color tones of labeled
incision images for robust feature learning to varying
lighting and skin color. For example, following Wang et al.
[21], we can apply g correction to the luminance channel
with random g values; a gradient in illumination could be
further added to simulate an oriented light source. The
lighting augmentation will not affect either image or pixel-
level annotations.

The second challenge of segmentation label quality re-
sults from the fact that pixel-wise annotations are often
generated using semi-automatic methods such as the wa-
tershed algorithm; hence there could be incorrectly labeled
pixels, making the supervision information for the seg-
mentation task ‘‘noisy.’’ Motivated by recent success of
training deep models with noisy labels [103,104], we could
adopt the bootstrap strategy of Reed et al. [103] and in-
troduce a noise layer into the deep image segmentation
model as done by Sukhbaatar et al. [104] when we use noisy
segmentation supervision. Our preliminary result [107] has
shown promising potential of this approach, i.e., we have
modified the U-net with a noise layer, which can take noisy
segmentation results (Fig. 7, middle) for training and seg-
ment synthetic images (Fig. 7, left). Figure 7 (right) shows
that such a modification can achieve promising segmenta-
tion results.

Eventually, another crucial capability for deep learning
models to address SSI is how to make their predictive results
interpretable to human. In this regard, many recent works
from the interpretable deep learning fields show promise. For
example, sensitivity analysis [108] tried to explain a pre-
diction based on the model’s locally evaluated gradient
(partial derivative). Matching similar image parts could also
be a promising method as done by Chen et al. [61]. We refer
the readers to a literature review by Chakraborty et al. [107].
Different from existing incision image assessment meth-
ods that were either rule-based [100,108,109] or data-driven
[63], we advocate to draw the complementary power of
knowledge-based feature design and data-driven feature
learning to maximize the information extraction from the
incision images with robust performances.
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