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Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots

at remote and hardly accessible places. Such MMIs make use of a virtual environment

and can therefore make the operator immerse him-/herself into the environment of the

robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can

adapt to changes in task load and task engagement online. Applying our approach of

embedded Brain Reading we improve user support and efficiency of interaction. The level

of task engagement was inferred from the single-trial detectability of P300-related brain

activity that was naturally evoked during interaction. With our approach no secondary

task is needed to measure task load. It is based on research results on the single-stimulus

paradigm, distribution of brain resources and its effect on the P300 event-related

component. It further considers effects of the modulation caused by a delayed reaction

time on the P300 component evoked by complex responses to task-relevant messages.

We prove our concept using single-trial based machine learning analysis, analysis of

averaged event-related potentials and behavioral analysis. As main results we show (1)

a significant improvement of runtime needed to perform the interaction tasks compared

to a setting in which all subjects could easily perform the tasks. We show that (2) the

single-trial detectability of the event-related potential P300 can be used to measure the

changes in task load and task engagement during complex interaction while also being

sensitive to the level of experience of the operator and (3) can be used to adapt the

MMI individually to the different needs of users without increasing total workload. Our

online adaptation of the proposed MMI is based on a continuous supervision of the

operator’s cognitive resources by means of embedded Brain Reading. Operators with

different qualifications or capabilities receive only as many tasks as they can perform to

avoid mental overload as well as mental underload.

Keywords: EEG, P300, machine learning, space robotics, teleoperation, task load, man-machine interaction,
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1. INTRODUCTION

Human-robot interaction with semi-autonomous robots has to
be improved to be safe and intuitive. This can be achieved by (1)
building robots with advanced “on-board” solutions that support
natural interaction behavior between human and robot (Kirchner
et al., 2015) and (2) by developing intelligent man-machine
interfaces (MMIs). Especially in cases of tele-operating robots at
remote places the MMI has to be easy, intuitive and comfortable.

Usually only experienced people are chosen to remotely
operate robotic systems (Cornellă et al., 2012), since their
performance is robust. During remote control of several robots
in a complex mission, task load and task engagement change
tremendously over time, which can lead to mental over- or
underload as well as fatigue. Therefore, an online-adaptable
MMI can be applied to act on these changes. For this,
reliable measures for online changes in the human’s state must
be detected (Allanson and Fairclough, 2004). Such realtime
indicators have to consider theories about brain capacity and
resources (Kahneman, 1973; Wickens, 1984, 1992, 2008), which
propose that brain resources are limited and must be shared
between tasks. Comprehensive work showed that certain patterns
in the electroencephalogram (EEG), e.g., the amplitude of the
event-related potential (ERP) P300 (Prinzel et al., 2003), or ratios
of EEG power bands like alpha, beta or theta bands (Pope
et al., 1995), can be used to measure the processing capability of
the brain, mental workload and task demands. In earlier work
from Pope et al. (1995) it is shown that an EEG-based index
of user engagement and arousal could indeed be used to, i.e.,
adapt the level of system automation in response to changes in
mental workload demands. It was found that especially the P300
is a reliable measure for changes in task load (Kok, 2001; Prinzel
et al., 2003). Earlier work that examined the P300 in response to
primary and secondary task demands showed that an increase in
demands on the primary task resulted in fewer resources for the
secondary task accompanied by a smaller P300 amplitude (Isreal
et al., 1980).Many studies make use of the dual-task design (Isreal
et al., 1980; Prinzel et al., 2003) to detect an increase in workload
or task load in the primary task by analyzing the P300 amplitude
evoked by the secondary task, e.g., listening to auditory stimuli
presented in an oddball fashion (Prinzel et al., 2003) or P300 that
is evoked by ignored probes (Kramer et al., 1995).

With the focus on online user state detection based on
the analysis of brain activity, which is naturally evoked
during human-machine interaction and deeply embedded into
the systems control, embedded Brain Reading (eBR) was
developed (Kirchner and Drechsler, 2013; Kirchner, 2014, 2015).
The main focus of embedded Brain Reading is to passively
infer on the human’s intention to implicitly improve interfaces
like an exoskeleton which is used for explicit interaction, such
that the intended interaction or behavior can be supported
best (Folgheraiter et al., 2012; Kirchner et al., 2013a,b, 2014).
However, embedded Brain Reading can also be applied to
passively infer on the users’ neurophysiological state, such as their
current workload or task load, to adapt an interface implicitly in
such a way that the user is neither stressed nor bored (Kirchner
et al., 2010, 2013b; Wöhrle and Kirchner, 2014a) which would

both have negative impact on human-robot interaction. We
already showed that eBR can utilize P300-related activity to infer,
whether subjects recognize and will respond to important task
messages, which were presented interleaved with task-irrelevant
messages in an oddball fashion, while performing a complex
interaction task like playing a labyrinth game (Kirchner et al.,
2013b). In a later work we showed that eBR can indeed be
applied to improve interaction in an application scenario in
which subjects had to respond to warnings interleaved with
task-irrelevant status messages while remotely controlling a
robotic arm via an exoskeleton (Wöhrle and Kirchner, 2014a).
In both cases, the information about the operator’s capability
of recognizing task-relevant warnings was used to adapt the
developed MMI with respect to the timing of repetitions of
task messages. To this end, the MMI was adapted before the
operator would respond to the task message. In our previous
work, subjects had to perform two tasks: controlling a machine
and responding to task-relevant warnings. Thus, we did not
make use of the primary and secondary task design just for
the purpose of measuring task load on the user. The second
task was indeed required to be performed by the user with the
goal to estimate an operator’s capability to perform two tasks at
the same time. We also believe that even when using ignored
probes to measure load on the user, i.e., workload (Kramer
et al., 1995), any extra stimulation which is only added for the
purpose of measuring load on the user will likely disturb the
operator in a complex and demanding interaction task. Instead,
we used the single-trial detectability of the naturally evoked
P300 components in case that rare task-relevant stimuli were
presented (i.e., warnings that anyway requested responses of
the operator) and had to be answered as index of load, here,
task load and task engagement. However, in many real world
applications the occurrence of task-relevant target stimuli is
likely not interleaved consistently with task-irrelevant stimuli
as it was implemented in the previous studies by using the
oddball design. Thus, it is of interest to investigate whether
single-target stimuli successfully and reliably evoke P300 ERP
components during human-machine interaction, as suggested by
comprehensive work performed under controlled conditions of
the single-stimulus paradigm (Mertens and Polich, 1997; Polich
and Margala, 1997). Polich and Margala (1997) for example
showed, that single-target stimuli evoke P300 components with
similar characteristics as target stimuli presented in an oddball
fashion as long as the probability and the inter target interval
(ITI) were kept the same.

One research interest of the current work is therefore to
investigate whether P300 ERP components are reliably evoked
under application conditions in case of a single-stimulus
presentation that was naturally embedded into a human-machine
interaction task. We further investigate whether eBR can be
used to adapt the frequency of task messages that are presented
to the user by an MMI instead of modulating task repetitions
as in a former work (Kirchner et al., 2013b; Wöhrle and
Kirchner, 2014a). The adaptation of the MMI should again be
performed online. However, the proposed MMI is designed for
multi-robot control. Hence, an adaptation of the MMI with
respect to the inferred task load and the users current task
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engagement in preceding, still ongoing, tasks for other robots can
be investigated. Again, task engagement or task load was inferred
from P300-related ERP activity that is naturally evoked during
interaction. Both a high task load and a high task engagement to
a preceding task were expected to reduce the amplitude of P300-
related activity evoked by a new task message. In the presented
work, subjects performed only one type of task: controlling
different robots with respect to different requested tasks. Hence,
we break down dual-task execution into sequential and timely
overlapping task execution to investigate the influence of task
load and task engagement between subsequent tasks. We again
show that it is not necessary to artificially add an extra task
or probe, like in the dual task or ignored-probe design, to
evoke P300-related activity for measuring task load and task
engagement. Instead we directly infer the task load and task
engagement of the operator from the P300-activity evoked by
task messages.

Hence, our approach matches natural requirements on the
user during robot control since it avoids to add potentially
disturbing stimuli, like auditory stimuli, just for the goal to
measure and adapt for task load.

We further present and describe the developed MMI, which
makes use of a virtual control environment, i.e., a Cave
Automatic Virtual Environment (CAVE) (Figure 1). This MMI
can be adapted based on the changes in task engagement of the
user measured by EEG, i.e., P300-related ERP activity. While the
presentation of each task-relevant message was expected to evoke
a P300 we further assumed that the amplitude of a single-trial
P300 evoked by a new task message is reduced in case that the
user is still involved in executing a previous task. This is due to
the fact that mental resources are still bound to the previous task.
The more frequently such task conflicts occurred the stronger
we expected a reduction in averaged P300 peak amplitude. We
further assumed that the expected changes in P300 amplitude
were mainly caused by effects like task engagement or task load
but not by target probability, since the inter-stimulus interval
(ISI) between stimuli was very long. Polich (1990) showed
by means of an auditory discrimination task that the target
probability has no effect on P300 amplitude in case of longer
ISIs, i.e., ISIs longer than 6–8 s (Polich, 2007). For longer ISIs,
the probability effect (Tueting et al., 1970; Duncan-Johnson and
Donchin, 1977) is missing since brain resources can be redirected
fast enough to process a new target stimulus.

It is important to state that in the present work the level
of task load and task engagement as well as the occurrence of
task conflicts may strongly depend on different factors, e.g., the
general capability of the user in controlling the robots, fatigue
levels or secondary requirements on attention that are not related
to the main task, i.e., distractions of any kind that may occur
while the operator was controlling the robots. While the concept
of workload is distinct from the concept of multiple resource
theory (Wickens, 2008), both concepts do overlap in real world
applications and it is not always clear what contributes most.
Moreover, additional mechanisms like confusion, cooperation
between task elements like ongoing task engagement to the
preceding task and unwanted diversion of attention influence the
allocation of brain resources (Wickens, 2008). Additionally, as

known from educational research, changes in the motivational
state influence perception of workload, task complexity and
cognitive strategies (Kyndt et al., 2011). Real world applications
are therefore not a good paradigm to decouple components and
dimensions of influencing parameters, but they can be used as
a test case on whether certain measures can be used to predict
the general state and capacities of a subject. Since the goal
of our study was to measure the current task engagement or
task load of an operator and to use this measure to adapt an
MMI continuously to avoid an overall state of overload, we took
measures to avoid excessive workload.

In summary, the scope of this study was to artificially evoke
task conflicts to (I) not only show that P300-related activity was
naturally evoked when task messages were presented, but also
that it was indeed modulated by generally high demands on
the operator and by task engagement to previous tasks and (II)
that the detectability of P300-related activity could be used to
adapt an MMI with regards to task engagement and therefore
enabling a kind of steady-state task involvement. This should
result in higher subjective contentment and high overall task
performance.

The paper is structured as follows. In Section 2 we describe
the experimental setting, i.e., the developed MMI, the kind of
human-machine interaction task which can be performed and the
interaction tasks that the subjects had to solve, the experiments
that were performed for this work, and data recording procedure.
We further describe our research goals and hypotheses in more
detail and describe the performed data processing and analysis.
In Section 3 we describe our results with respect to behavioral,
machine learning and ERP average analysis. Finally in Section 4
we will discuss the outcome of our work and its relevance for the
improvement of MMIs for multi-robot control.

2. MATERIALS AND METHODS

2.1. Experimental Design
We developed an experimental setup in which a subject can
control several simulated robots. For this, we designed a virtual
environment using the in-house developed software “Machina
Arte Robotum Simulans” (MARS) (Rommerman et al., 2009;
DFKI - RIC, 2015), which can be run as a 3D environment in,
e.g., a CAVE (see Figure 1), as a 2D environment on a standard
personal computer and monitors or a multi-screen system (see
Figure 2). In both environments the operator can use different
input devices to control the robot, e.g., a 3D mouse, a wand,
an exoskeleton or an eye tracking device. In the future, the
developed virtual 3D environment will be used to control real
robots. To allow this, we use a physical simulation with close to
realistic physical simulations of the real robots developed at our
institute. In this work a 2D multi-screen system was used as the
environment and a wand was used as the interface to control the
simulated robots in the simulated environment. The used wand
is a hardware device and functions in a 3D environment similar
to a mouse in a 2D environment. It is tracked in 3D space using
an ultrasound-based tracking system combined with an IMU and
has five buttons as well as a pressure-sensitive joystick as input
options. We used the inertial-ultrasonic hybrid tracking device
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FIGURE 1 | Immersive virtual 3D multi-robot control using a CAVE supported by embedded Brain Reading (eBR).

InterSense IS-900 (Thales Visionix, Inc., Billerica, USA) in our
experiments.

2.1.1. Human-Robot-Interaction
In general, the task of the operator in the multi-robot control
environment (see Figure 2) was to supervise all robots and to
assign new tasks to individual robots as indicated by messages
presented to the user on the screen (see Figures 3A,B upper
part for examples of different messages). Individual robots were
labeled with different colors. Task messages were presented as
icon based widgets supporting fast recognition by the operator.
The operator used the interface to select a robot he or she
wanted to control by either selecting the robot directly or
by selecting the robot’s icon in the upper part of the middle
screen (see Figure 3A: 2). Moreover, information about the
chosen system was presented to the operator on the right screen
via an icon based information panel. Information such as the
robot’s name, its energy level, its current task as well as robot
control commands were presented here (see Figure 3A: middle
picture lower right corner). On the left monitor, tasks for the
operator were listed as soon as the operator confirmed that
he/she had seen the message by clicking on the appropriate
robot icon on the monitor in the middle. By selecting the robot’s
icon with a double click, the virtual camera was additionally
moved such that the chosen robot was in the focus of the
operator. After selecting a robot, the operator can issue a task
by clicking the corresponding robot control command icon.
(see Figure 3A: 4). In case that an operator was not sure or
did not recognize the robot to whom a task was assigned,
he or she could select an unknown icon displaying a gray
robot with a question mark (see Figure 3A). After clicking the
unknown icon, all the missed tasks were displayed in the task
list on the left screen. However, in the experiments presented
here this gray robot button was disabled to force the subjects
to focus on the task messages as much as possible. In case
that a user did not recognize the task message correctly she

or he had to wait for the automatic repetition of the task
message.

2.1.2. Interaction Tasks
As mentioned in Section 2.1.1 the operator had to fulfill different
tasks with the robots. Within the experiment there were three
kinds of tasks with varying complexity:

• Send message The task with the lowest complexity is
sending a message. This task can be solved by selecting the
corresponding robot and clicking on the send-message icon
within the robots control elements (see Figure 3A bottom
number 4). An example of such a message for the green robot
can be seen in the upper left part of Figure 3B.

• Go to landmark The task with a medium complexity is
the navigation task. Within the experiment there are five
different landmarks (for example see the cube labeled with 1
in Figure 3A). The goal of this task is to navigate the robot to
one of these landmarks. Therefore the operator needs to select
the robot and afterwards plan the path by creating waypoints.
Waypoints will be put at the position of the cursor, when
clicking a specific button. The robot will consecutively travel
from waypoint to waypoint on straight lines. When the robot
reaches the landmark the task is fulfilled. An example of such
a message for the red robot with target position 3 can be seen
in the upper middle part of Figure 3B.

• Recharge robot The most complex task is recharging the
robot. Again the correct robot needs to be selected first.
Afterwards the operator has to plan a path to the lander (see
in the top right corner of Figure 3A). The path planning is
realized as explained above in the “Go to landmark” section.
After reaching the lander the robot needs to be selected again
and the recharge icon from the robot’s control elements needs
to be activated by clicking on it. This task is more complex
than the “Go to landmark” task due to a gap in between the
two stages of the task and therefore the operator must track the
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FIGURE 2 | Experimental setup. Upper part: Virtual multi-robot control in 2D using a multi-PC system supported by embedded Brain Reading (eBR). Lower part:

Interaction is controlled by different software managers and schedulers. Widget-based icons are used to display information about the robots, messages for the user

and to select robot commands. The user “Need-to-Know Area” is the part of the system visible to the user. The robot interface with connections to the real robots

(depicted by dotted lines) is not yet implemented.

robot’s state. The operator may also forget to click the recharge
icon after the robot reached the lander. An example of such a
message for the red robot can be seen in the upper right part
of Figure 3B.

All tasks were pseudo-randomly chosen, such that no more than
one task at a time was assigned per robot. When creating a new
“Go to Landmark” task for a specific robot the robot’s distance
to the landmarks will be computed first. In order to solve the
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FIGURE 3 | Description of experimental setting and tasks performed by the operator. A (top) initial state, a task message was shown to the operator (1). The

message contained information about the type of the task (e.g., send a message) and the corresponding robot (e.g., the green robot). The subjects had to confirm the

task by clicking on a response button (2). A (middle) after the task was confirmed, it was shown in the task manager (3). A (bottom) when the green robot was

selected, a menu with all possible control commands was shown. In this example, the mission could be accomplished by clicking on the send-message button of the

control menu (4). When a task was accomplished, it was removed from the task manager (5). (B) The scenario contained three possible tasks, which were depicted

by an intuitive symbol. All tasks were related to a specific robot, encoded by a colored symbol, see the following examples. B (top left) send a message with the

green robot. B (top middle) send the red robot to waypoint 3. B (top right) recharge the red robot. Different robots (encoded by color) and different task messages

were randomly combined. B (bottom) messages are sorted in order as they are presented. Some messages (repetitions of tasks) get a higher priority and will be

presented earlier.

task the robot has to be in a specific radius around the chosen
landmark. If the robot is already within the specific radius the
new task would directly be solved when the robot is selected. In
such a case the target landmark will be chosen among the other
landmarks. Further, there was an automated mechanism which

generated a “Recharge Robot” task in case that the energy level
of a robot dropped bellow a certain value. This was necessary to
ensure that a robot would remain fully functional. If a robot runs
out of energy it would get stuck at its position and no more tasks
could be solved by this robot.
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When a message was presented requesting interaction the first
response of the user like selecting the correct robot was counted
as correct behavior. The message was not repeated. On the other
hand, a predefined response time (in our experiments 13 s) and
a predefined ISI was set for the operator. The predefined ISI was
important for our experiments and research questions as will be
explained in Section 2.4. Task messages were put into a message
queue. To avoid unfair scheduling due to different urgency of
information pending messages may change their priority over
time (see Figure 3B lower part). So far it is implemented that a
message is repeated as a warning in case that a complex task with
longer duration is started, i.e., a robot is sent to a landmark, but
does not arrive after a certain amount of time. Since the robot
might have got stuck the warning is repeated with higher priority.
To give the user an overview on initiated but still running tasks,
they were visualized in a icon panel in the upper left corner of
the left monitor in the order as they appeared with the newest
depicted on the top (see Figure 3A: 5). As soon as a task was
fulfilled the task message was removed.

2.2. Performed Experiments
Six subjects participated in the study. All subjects were male with
normal or corrected to normal vision and aged between 20 and
38 years (mean: 28.74, SD: 6.92). All subjects were intensively
trained in the scenario on a different day to get used to the tasks,
i.e., to control the robots by using the developed MMI. On the
same day of the study just before data recording subjects were
asked to get comfortable with the scenario. The study consisted
of 6 runs, performed in the same order. In each run, subjects had
to complete 30 tasks. The response behavior was supervised and
logged by the message scheduler (see Figure 2 lower part).

In case no response was detected within 13 s after presentation
of a taskmessage, the same taskmessage was again attached to the
message queue. Since the queue is implemented as a FIFO (first
in first out), the message is repeated after presentation of all other
messages within the queue.

Task messages (Figure 3 top illustration and Figure 3B) were
presented for 1.1 s. The duration of presentation was determined
by empirical tests with a different group of 4 subjects. The goal
was to keep the duration of message presentation as short as
possible to allow the evaluation of event-related activity in the
EEG while ensuring that subjects were able to recognize and
understand the presented messages.

2.2.1. Adaptation of the Inter-Stimulus Interval (ISI)
Between the 6 runs experimental conditions were varied with
respect to the ISI (Table 2.1: EEG data). For runs 1 to 4 ISIs were
fixed. We used two different ISIs: a long ISI (25 s) in runs 1 and 2
and a short ISI (15 s) in runs 3 and 4. In both cases an additional
random jitter of ±5 s was added. Appropriate time intervals for
long and short ISIs were empirically determined beforehand by
tests with 4 subjects that were not involved in this study. The
time interval for the short ISI was chosen such that the overall
workload or overall task load caused by the message frequency
was not too high. We were successful in empirically determining
an appropriate time interval for short ISIs as supported by results
of the evaluation of the NASATask Load Index questionnaire (see

Section 3.1.3). The time interval for the long ISI was empirically
chosen to be clearly higher in the subjective perception of the
4 test subjects. A very low ISI could not be chosen, since we
experienced that subjects easily gave up the run in cases of very
short ISIs, i.e., with a duration of 5 s or even with a duration
of 10 s. Further, no P300 was evoked under extremely stressful
circumstances, as in runs with an ISI of 5 s. Moreover, to train
the classifier qualitatively good training examples were required.
And finally, we had to limit the number of runs and thus total
experiment time to avoid overstraining the subjects.

For runs 5 and 6 the ISI was adapted online with respect to
detectability of the P300 and related ERP activity. For the online
detection of single-trial ERP activity a classifier was trained on
examples from either runs 1 and 2 (for application in run 5)
or on examples from runs 3 and 4 (for application in run 6)
(see Section 2.8 for more details). Adaptation in runs 5 and 6
of the ISI was increased gradually (up to a maximum of 35 s
in steps of 5 s) in case that an expected P300 was not detected
two times in a row after a new task message or was decreased
stepwise (down to a minimum of 5 s in steps of 5 s) in case that
an expected P300 was detected two times in a row. For both
adapted runs the ISI was preset to 25 s. We always startet with
the fixed ISI condition with an ISI of 25 s in runs 1 and 2 to
allow subjects to get comfortable with the control task. This was
done since long training sessions just before the experimental
session were not possible since they would have increased the
total experiment time to an unacceptable long duration. For
our experimental setting it was more important to record all
runs in the same session to avoid between-session effects on
the shape of the ERPs as well as the single-trial classification
performance. Although subjects were intensively trained, they
needed to readapt to the control of the robots, since the control
task was very complex. Next, in runs 3 and 4 training data was
recorded under the fixed ISI condition. We did not perform a
run with adapted ISI right after the recording of training data
with ISI 25 to keep both runs with adapted ISI close together
and thus condition of the subjects similar. Further, interleaving
runs with fixed and adapted ISIs were not performed, since this
might have had an influence on the motivation of the subject
during the recording of training data after a run with adapted
ISI.

2.2.2. Ethics Statement
The study has been conducted in accordance with theDeclaration
of Helsinki and approved with written consent by the ethics
committee of the University of Bremen. Subjects have given
informed and written consent to participate.

2.3. Recorded Data
During each executed run EEG was recorded with 64 electrodes
referenced against electrode FCz. An actiCap system (Brain
Products GmbH, Munich, Germany) arranged as an extended
10–20 system was used for recording. Electrode impedance was
kept below 5 k�. EEG signals were sampled at 5 kHz, amplified by
two 32 channel BrainAmpDC amplifiers (Brain Products GmbH,
Munich, Germany) and filtered with a low cutoff of 0.1Hz and
high cutoff of 1 kHz.
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2.4. Research Goals & Hypotheses
The presented work addresses two different research goals with
specific subgoals. (I) We want to show that a P300-related
activity is naturally evoked when task messages are presented
and recognized. (Ia) We investigate whether the evoked P300
is modulated by factors like demands on the operator or the
operator’s task engagement to previous tasks. (II) We want to
show that single-trial detection of P300-related activity can be
used to adapt the interaction with respect to the task engagement
of the operator. (IIa) In particular, we investigate whether an
individual balanced task involvement of the operator can be
achieved by adaptation of the ISI resulting in a higher subjective
contentment of the operator and in an individually optimized
overall task performance.

By means of data recorded in runs 1–4 we investigated
research goal (I). We artificially modulated the current task
engagement (on the previous task) by presenting a new task.
This was achieved by modulating the time interval between both
consecutive tasks: long ISIs of 25 seconds in runs 1 and 2; short
ISIs of 15 s in runs 3 and 4. Changes in P300 characteristics
were investigated by averaged ERP analysis andmachine learning
methods. To support the usage of single-trial P300 detection
we had to assure that the detection performance is adequately
high and not too strongly influenced by ISI per se such that
for very short ISIs possibly no P300 would be detectable in
single-trial. For this, an offline machine learning analysis was
performed first with training and test on runs with the same ISI.
These results were used as a baseline for other experiments. This
condition was called “baseline” condition. Using this analysis,
we investigated whether P300-related activity is detectable in
single-trial under application conditions and for different ISIs as
well as how strongly different ISIs would influence classification
performance.

Further, we investigated the effect of classifier transfer between
runs with different ISIs. More precisely, a transfer of classifier
between training runs (runs 1 and 2 or runs 3 and 4) and test
runs (runs 5 and 6 with adapted ISI) was applied. This condition
was called “transfer” condition. This offline analysis was relevant
because under the online condition the classifier was transferred
between different ISI conditions. Different ISIs were caused by
the adaptation of the ISI under the online condition. Results allow
to estimate the sensibility of the classifier for changes in ISI.

To achieve research goal (II) we adapted the developed MMI
with respect to the current task engagement of the user to
previous tasks when a new task was presented in runs 5 and 6
(Table 2.3: online stCL). Current task engagement was measured
by the online single-trial classification of P300-related activity
evoked by recognized target stimuli, i.e., task messages: (1) task
engagement to a previous task was expected to be high in case
that the P300-related activity was weakly evoked by a new task
and thus not detected by a classifier, (2) task engagement to
a previous task was expected to be low in case that P300-
related activity was more strongly expressed and thus detected
by a classifier. Note that in the online case each EEG trial
after a presented first task message was classified, thus in case
the operator completely missed a task message no P300 was

expected to be evoked and could therefore not be detected.
Hence, our approach did not only account for reduced P300
activity but also for missed P300 in case of missed target
events.

To prove that the interaction of the user was improved by
online adaptation of the ISI, we analyzed the total runtime,
median reaction time and number of late responses and missed
messages. We expected a reduction in total runtime by online
adaptation of the ISI compared to the case of a fixed long ISI (ISI-
25; runs 1 and 2). We did not expect a significant difference to be
found for reaction times, since our approach would avoid user
overload and responses were rather complex (see Section 2.1).
However, we expected some late responses and missed messages
in cases that the user was strongly involved in ongoing tasks when
a new task was presented.

Our approach of online adaptation of the ISI allows to adapt
an MMI with respect to the current task engagement or task
load, improves user performance by equalizing the level of
task engagement over all tasks and by selectively avoiding task
overload. To further support this, we investigated the effect
of an online adaptation of the ISI on averaged P300-related
activity, i.e., we investigated whether expected changes related
to task engagement in P300 amplitude could be found. For this
evaluation, we compared averaged activity evoked in case of a
fixed ISI of 25 s (runs 1 and 2) and a fixed ISI of 15 s (runs 3 and
4) with averaged P300-related activity evoked in runs 5 and 6.

Based on the research goals, we had three hypotheses: (1) The
online adaptation of the ISI reduces total runtime if compared
to the long fixed ISI condition (ISI of 25 s). (2) The modulation
of the ISI influences amplitudes of averaged ERP. In particular,
we expect differences between ISI types with respect to peak
amplitudes of the averaged ERP. (3) The usage of historic data
is feasible to detect P300 in the current data (e.g., a transfer
of the classifier trained on historic data to the current data is
possible).

2.5. Analysis of Subjects’ Behavior
2.5.1. Analysis of Total Runtime
The total runtime was measured as the time between the first
and the 30th task message within the experiment. This procedure
was chosen since the total number of tasks differs slightly. This
happens if the last task is from one of the categories “go to
landmark” or “recharge robot” and if the adapted ISI is quite
low. Solving one of these more complex tasks may take some
time since the traveling distance can be rather long. Therefore, all
robots may get one of these tasks.When one of the robots reaches
its goal position the experiment is finished, but in this way more
than 30 task messages could have been displayed to the user (see
Figure 5).

For the statistical analysis, the value of total runtime was
merged depending on the ISI type. This leads to three groups:
ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online
adaptation (runs 5 and 6). The three ISI groups were compared
by the Friedman test. For multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction).
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2.5.2. Analysis of Reaction Times
To calculate the reaction times, the EEG marker files were
analyzed in order to deduce all important operator- and scenario-
related events. Whenever a message was presented to the
operator or the operator issued a control command this was
marked in the EEG file. Based on the markers we calculated the
reaction times, i.e., the amount of time the operator required
to react to a task message by clicking on the correct response
button for the robot. Only first task messages were considered
in the analysis. Repetitions of task messages were not analyzed.
The median of reaction time was calculated because of strong
deviations and outliers. For a comparison with the ERP average
analysis an additional analysis was performed considering only
reaction times after target trials with ISIs that were used for
the average analysis, i.e., target trials which belonged to one
of the both groups: ISI-long or ISI-short (see Table 1). Note
that for the ERP analysis not all trials could be used since in
run 5 6.82% of the ISI-long trials and 13.33% of the short ISI
trials and in run 6 18.57% of the ISI-long trials and 12.05% of
the ISI-short trials contained artifacts and were discarded from
analysis.

For the statistical analysis, the value of reaction time was
merged depending on ISI type and this leads to three groups:
ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online
adaptation (runs 5 and 6). The three ISI groups were compared
by the Friedman test. For multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction).

Additionally to median reaction times we calculated late
responses after 15 s, and missed messages. EEG trials after
messages with responses later than 15 s as well as missed message
trials were not considered during training of the classifier (see
Section 2.8).

2.5.3. Questionnaires
Before the experiments started, each subject was instructed to
assess its skills related to the use of computers by filling out
the “Computer usage questionnaire” (CUQ) (Schroeders and
Wilhelm, 2011). For the statistical analysis, the Friedman test
was performed to compare the patterns of computer usages
between subjects. Formultiple comparison, theWilcoxon signed-
rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction). Furthermore, after each of the
six runs of the experimental session, the subjects had to fill
out the NASA Task Load Index (TLI) questionnaire (Hart
and Staveland, 1988). For the statistical analysis, the value
of task load index was merged depending on the ISI type
and this leads to three groups: ISI-25 (runs 1 and 2), ISI-
15 (runs 3 and 4), and ISI-online adaptation (runs 5 and 6).
The three ISI groups were compared by the Friedman test.
For multiple comparison, the Wilcoxon signed-rank test was
performed (the p-value was adjusted by the Bonferroni-Holm
correction).

2.6. Analysis of the MMI Behavior
The behavior of the MMI was analyzed by plotting the changes
in the ISI for each subject in case of ISI adaptation (run 5 and

6, see Figure 5). Figure 5 illustrates what kind of tasks were
presented to the operator and which ISI was used, therefore
the trace is the same as it was during the actual experiment.
The purpose of this analysis was to give an impression of
how “good” the adaptation worked and which ISI was most
comfortable for the operator over the course of the run. For
a comparison of the mean ISI between subjects, the mean
ISI for each subject and run was calculated and the mean
ISI of each run was compared between subjects by using
the Friedman test. For a multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by
the Bonferroni-Holm correction). Furthermore, we investigated
whether the mean ISI is a useful indicator for the analysis
of the MMI behaviors. To this end, the correlation between
the mean ISI and the total runtime was calculated using the
Spearman’s rank correlation. We expected a positive correlation
such that a longer ISI leads to a longer total runtime. In
addition, we investigated task type as another factor with a
potential effect on the total runtime. For example, the task
types “go to landmark” and “charging robot” required a longer
total runtime compared to the task type “send message.” The
frequency and order of task types were randomly chosen. Thus,
differences in frequency of task types can in principle lead to
differences in total runtime between subjects. However, we did
not expect a strong correlation between task type and total
runtime.

2.7. ERP-Average Analysis
Continuous EEGs were bandpass-filtered (0.1–30Hz) and
segmented into “target” trials from−100 to 1000ms with respect
to the stimulus onset (baseline correction: from −100ms before
the stimulus onset to 0ms). As for the machine learning analysis
only trials after the first taskmessages which have been responded
to within a time period of 15 s were labeled as “target” trials
when analyzing runs 1–4. For runs 5 and 6 again only trials
with answered task messages were used as “target” trials and
averaged as explained in Table 1. This procedure copies the
procedure of the offline analysis. Trials after missed taskmessages
were not averaged to exclude their contribution to the average
ERP characteristic. We used a common average reference (CAR)
and recalculated the data from channel FCz. For ERP average
analysis only artifact-free segments were used (see Table 1).
Artifact detection was performed semi-autonomously with a
maximum amplitude of −100µV and 100µV. We compared
average artifact-free ERP activity evoked in runs with ISI-25 and
ISI-15 as well as ISI-long and ISI-short. Trials for ISI-25 were
conducted in runs 1 and 2 and trials for ISI-15 in runs 3 and
4. An adaptation of the ISI in runs 5 and 6 did not only result
in various ISIs but also in individual ranges of ISIs for different
users (see Table 1). Therefore, we individually divided the EEG
segments of runs 5 and 6 into two ISI groups with respect to
trials being evoked after short or long ISIs for each subject. For
example, from the data of the subject depicted in Figure 9 we
merged examples after ISI-15 and ISI-20 to calculate average
ERP activity after long ISIs and ISI-5 and ISI-10 to calculate
average ERP activity after short ISIs (see Table 1). By means of
this procedure, we could compare averaged P300-related activity
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TABLE 1 | Number of artifact-free targets for each run and distribution over different ISIs.

Subject Number of targets for each run

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

S1 26 25 28 27 32 21

S2 31 30 32 33 29 29

S3 23 19 9 27 23 17

S4 21 24 25 25 38 21

S5 23 19 25 23 25 22

S6 29 22 29 30 29 30

Average 25.50± 3.89 23.17 ± 4.17 24.67 ± 8.12 26.83 ± 4.02 29.33 ± 5.32 23.33 ± 5.09

Subject Number of targets for all possible ISI-groups within runs 5 and 6

Run 5

ISI-05 ISI-10 ISI-15 ISI-20 ISI-25 ISI-30

S1 4 15 10 3 0 0

S2 14 7 5 2 1 0

S3 0 7 6 6 4 0

S4 0 2 10 20 6 0

S5 0 2 4 10 9 0

S6 8 12 3 4 2 0

Average 4.33 ± 5.72 7.50 ± 5.24 6.33 ± 3.01 7.50 ± 6.75 3.67 ± 3.39 0.00 ± 0.00

Run 6

S1 4 9 0 6 2 0

S2 1 12 11 3 2 0

S3 1 4 6 5 1 0

S4 0 1 2 6 7 5

S5 0 0 3 11 7 1

S6 19 6 3 0 2 0

Average 4.17 ± 7.41 5.33 ± 4.63 4.17 ± 3.87 5.17 ± 3.66 3.50 ± 2.74 1.00 ± 2.00

Run 5 + Run 6

Average 4.25 ± 6.31 6.42 ± 4.85 5.25 ± 3.49 6.33 ± 5.31 3.58 ± 2.94 0.50 ± 1.45

For average ERP analysis different ISIs were categorized in two ISI-groups: ISI-short (marked as red) and ISI-long (marked as blue).

for ISI-short and ISI-long of runs 5 and 6 with the activity evoked
in runs 1 and 2 (fixed ISI of 25ms: ISI-25) or runs 3 and 4 (fixed
ISI of 15ms: ISI-15) (Table 2.2). For peak detection, we selected
a single window of the interval 0.3 –0.7 s after a “target” trial.
The positive maximum peak was detected within the selected
window.

For the statistical analysis of average ERP amplitude values
with a sample size of 6 (i.e., 6 subjects), we performed the
Wilcoxon signed-rank test to compare different ISI types (ISI-25
vs. ISI-15 and ISI-long vs. ISI-short).

2.8. Machine Learning Analysis
The data flow of the machine learning algorithm is depicted
in Figure 4A. For the analysis the software framework

pySPACE (Krell et al., 2013a) was used. First the continuous
EEGs were processed by a DC removal filter, which is an
online-capable method for centering the signal around zero. The
normalized EEGs then were decimated from 5000 to 25Hz.A
cutoff frequency of 4Hz was used for the anti-alias filter in the
decimation process (Jansen et al., 2004; Ghaderi et al., 2014).
Afterwards the EEGs were segmented into chunks of 1 s length.
Chunks cut right after a first task message (not after repetitions
of messages) were labeled as “targets.” Within the training, these
windows were only cut if the operator responded to the first
task message within 15 s after presentation, in the online case
every first task message was analyzed. We further cut “standard”
windows of length 1 s while training. These windows were
needed to train the used binary classifier. The standard windows
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FIGURE 4 | Data Processing. (A) data flow for signal processing and single-trial classification. (B) example of an ERP (black line) being processed as local slopes of

a straight line.

were cut every second with the constraint that no other action
relevant for task recognition was performed in a range from
[−1, 1] s around the cut window. For the task recognition,
actions such as the presentation of a task message or the response
of the operator of one of these messages were used. The segments
were further processed with the xDAWN spatial filter (Rivet
et al., 2009). The xDAWN is a spatial filter especially designed
for P300 detection. It (1) enhances the separability of the P300
ERP and noise and (2) reduces the dimensionality of the data.
To achieve this, a set of filters maximizing the signal-to-signal-
plus-noise ratio is computed on a training data set. The resulting
filters can be used to create a set of pseudo-channels that contain
the filtered signal. From the newly created pseudo channels the 8
most relevant channels were used for further processing.

As features we used local straight line features, i.e., polynomial
features. To fit a polynominal function EEG data must be
segmented (see Figure 4B). Earlier investigations showed that
the longer the segments are chosen, the more coefficients are
needed to keep the performance level high. For this paper every
120ms, segments of length of 400ms within the 1 s segments after
stimulus onset were cut. Polynominal features of order one, i.e.,
straight lines were fitted to the 400ms long segments of the ERP
data with 120 ms steps to describe the ERP in terms of a series
of slope values (see Figure 4B). Polynominal features of order
one have been chosen since in former investigations of P300 ERP
activity the highest value was obtained with this low coefficient.
Previous analyses, too, as performed for example in Wöhrle and
Kirchner (2014b) support our choice.

After this preprocessing a Support Vector Machine
(SVM) (Chang and Lin, 2011) was used as classifier. During
training the complexity of the SVM was optimized with a grid
search and an internal five-fold cross validation. The possible
complexities were 10n with n ∈ 0,−1, . . . ,−6. Further a
threshold optimization was applied (Metzen and Kirchner,

2011). Further a threshold optimization was applied (Metzen
and Kirchner, 2011). After building the model of a SVM the
decision boundary is defined as 0 and the two classes (here
target and standard) are at the positive and negative side of the
boundary. The threshold optimizations gives the opportunity
to further improve the classification performance with respect
to a given metric, here the balanced accuracy. The threshold is
shifted into the negative or positive direction, in a way that for
the training data the highest classification performance in terms
of balanced accuracy is achieved.

We used the balanced accuracy (bACC), i.e., the mean
of true positive rate (TPR) and true negative rate (TNR),
as the performance metric due to the insensitivity of this
metric to changes in class distribution (Krell et al., 2013b;
Straube and Krell, 2014). Area under the curve (AUC) values
were additionally calculated. Classification performance was
compared between all conditions. For details see Table 2.3.
Although the adaptation of the ISI was evaluated online
(Table 2.3: online stCL), we additionally analyzed the data in the
offline mode (Table 2.4: offline stCL). This procedure was chosen
for reasons of fair comparison. While in the online mode data of
two runs (runs 1 and 2 or runs 3 and 4) were used for training,
this was not possible for evaluating the general P300 detectability
in case of fixed ISIs since here only one run could be used for
training while the other was used for testing. By means of the
chosen offline approach we were able to analyze the no-transfer
case (as baseline/control) and the transfer case equally.

For the statistical analysis on single-trial classification
performance, two separate comparisons were performed by using
the Wilcoxon signed-rank test. First, we compared two online
cases: online P300 detection in run 5 vs. run 6 (see (e) vs. (f)
in Table 2.3: online stCL). Here, two samples per subject were
obtained for each online case. Altogether, we obtained a sample
size of 12 (2 samples × 6 subjects) for each online case. Second,
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TABLE 2 | Design for the recording of EEG data, evaluation design for ERP analysis and design for the analysis of single-trial classification performance

(online/offline-mode).

Table 2.1. EEG data Table 2.2. Evaluation design for ERP analysis

(a) run 1: fixed ISI of 25 s Average ERP in (a)
ISI-25: average of (a) and (b)

(b) run 2: fixed ISI of 25 s Average ERP in (b)

(c) run 3: fixed ISI of 15 s Average ERP in (c)
ISI-15: average of (c) and (d)

(d) run 4: fixed ISI of 15 s Average ERP in (d)

(e) run 5: online adapted ISI Average ERP in (e) Various ISIs are grouped in short and long ISI

(f) run 6: online adapted ISI Average ERP in (f) for each subject: (e), (f), or average of (e) and (f)

Table 2.3. Online stCL Table 2.4. Offline stCL

Adapted ISI Adapted ISI (e) ISI-25 (control) Adapted ISI (f) ISI-15 (control)

classifier transfer transfer no transfer transfer red no transfer

Training Test Training Test Training Test Training Test Training Test

ISI-25 (fixed ISI of 25 s)

(e)

(a) (e) (c) (e)

(a) + (b) merged (b) (e) (d) (e)

Mean (e) (a) (b) Mean (e) (c) (d)

ISI-15 (fixed ISI of 15 s)

(f)

(a) (f) (c) (f)

(c) + (d) merged (b) (f) (d) (f)

Mean (f) (b) (a) Mean (f) (d) (c)

ERP, event-related potentials; online stCL, online single-trial classification; offline stCL, offline single-trial classification; and ISI, inter-stimulus interval. Each run contained 30 trials. For

online single-trial classification, 60 trials (e.g., runs 1 and 2) were used to train a classifier and 30 trials (e.g., run 5) were used for evaluation. For offline single-trial classification, 30 trials

were used for training and testing in both cases (no transfer/classifier transfer).

two adapted ISI conditions were compared with two fixed ISI-
conditions in offline mode depending on the type of training
data (ISI-25 or ISI-15) used to train the classifier: (1) adapted
ISI (e) vs. ISI-25 (control) (see in Table 2.4: offline stCL) and
(2) adapted ISI (f) vs. ISI-15 (control) (see in Table 2.4: offline
stCL). In the offline analysis, the number of training examples
for the fixed ISI conditions (run 1 or run 2 / run 3 or run 4,
see Table 2.4) was half the number of training examples used for
the adapted ISI conditions in case of online evaluation (run 5 or
run 6, see Table 2.3). For a fair comparison between the adapted
and fixed ISI-condition, only one run (run 1 or run 2) was used to
train the classifier to test it on run 5, and themean of classification
performance obtained by using run 1 or run 2 for training was
calculated in the case of the adapted ISI(e) (see Table 2.4 (e) in
offline stCL). Similarly, in the case of the adapted ISI(f), only one
run (run 3 or run 4) was used to train the classifier to test it on run
6 and the mean of classification performance obtained by using
run 3 or run 4 for training was calculated (see Table 2.4 (f) in
offline stCL). Each adapted and fixed condition has two samples
per subject. Altogether, we obtained a sample size of 12 (2 samples
× 6 subjects) for each condition.

3. RESULTS

3.1. Behavior of Subjects
3.1.1. Total Runtime
Figure 5 shows how the ISI changed over one run based
on the inferred task load and task engagement of the user

measured by P300 detectability. Subjects reported that the
online adaptation made them feel to have just the right
task frequency. This indicates that online adaptation of the
MMI has a positive effect on the interaction. The finding
was supported by the results of the behavioral analysis of
the total runtime (see Figure 6). The online adaptation of
the ISI reduced total runtime significantly if compared to
the ISI-25 condition [p < 0.001]. Moreover, there was no
significant difference in total runtime between the case of online
adaptation of ISI and the case of ISI-15 condition [p =

n.s.].

3.1.2. Reaction Time
Figure 7A shows themedian reaction time for individual subjects
over all runs. It can be seen that median reaction times are
very similar over all conditions and runs for each subject. When
merging the two runs of each condition (ISI-25, ISI-15, and
ISI-adapt) we found no significant difference between ISI types.
However, when analyzing median reaction time individually for
ISI-long and ISI-short groups of runs 5 and 6 as performed
for average ERP analysis it can be seen that the reaction time
on task messages presented after short ISIs showed a higher
variance compared to task messages presented after long ISIs (see
Figure 7B).

A descriptive analysis of the sum of late responses and missed
messages per subject for each run is visualized in Figure 8. It can
be seen that for some subjects the number of late responses and
missed messages was higher than for others (subjects 3 and 4).
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FIGURE 5 | Changes in ISI over each run in case of the adapted ISI condition (runs 5 and 6) for each subject are depicted.

Table 3 provides information about the number of late responses,
missed messages and the sum of both as depicted in Figure 8.

3.1.3. Questionnaires
The analysis of the “computer usage questionnaire” shows
a significant difference between subjects, especially subject 4
differed significantly from the other subjects [p < 0.03]. The
analysis of the “NASA Task Load Index (TLI) questionnaire”
shows no significant differences between runs [p = n.s].

3.2. Behavior of MMI
Figure 5 depicts the changes of the ISI for both adapted runs
(runs 5 and 6) for each subject. It can be seen that the adaptation
of the ISI is very individual for each subject and even for
each run. While for some subjects and runs, as for subject
2 in run 5, the ISI goes down to the minimum of 5 s and
stays there for almost 20 trials, for other subjects the ISI is
not reduced that much (see for example subject 5 for both
runs).
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FIGURE 6 | Mean runtime for different ISI conditions. The means of both

runs for each ISI type are depicted. The median across all subjects for each ISI

type was 17.59 for ISI-25, 11.49 for ISI-15 and 12.45 for ISI-adapt.

In most cases the ISI gradually decreases just to later increase.
However, there are exceptions from these findings. For example
subject 1 shows a reduction of ISI at the end of run 6 and subject
6 stays with a low ISI during both runs. For all subjects the ISI
starting with 25 s was reduced to a lower mean ISI with average
values of 14.67 and 15.62 s (runs 5 and 6) (seeTable 5).Moreover,
we could also find differences in the mean ISI between subjects.
For example, while the mean ISI for subject 4 and subject 5 is
around 19 and 22 s (runs 5 and 6), the mean ISI for subject 6
is at 10.45 and 8.43 s (runs 5 and 6) and for subject 2 at 9.85
and 12.42 s (runs 5 and 6). The mean ISI for Subject 4 and
subject 5 was significantly higher compared to the other subjects
[p < 0.017]. Furthermore, the mean ISI correlated strongly with
the total runtime [r = 0.874, p < 0001], but not the task type
(e.g., send message, go landmark, etc.).

3.3. Average P300-Related Activity
As shown in Figures 9,10, we observed differences in averaged
ERP shape depending on the ISI condition (short/long ISI). Note
that the ISI in case of long ISIs and short ISIs differ for both
average analysis conditions (fixed-ISI condition and adapted-
ISI condition, see Table 5). While for ISI-long average analysis
condition the ISI is set to 25 s, ISI-long for the adapted-ISI
condition is around 19 s. Similar differences can be found for the
ISI-short average analysis condition (fixed short ISI: 15 s versus
adapted ISI around 10 s). The peak amplitude of the averaged
P300-related activity was not significantly reduced in case of ISI-
15 (runs 3 and 4) compared to ISI-25 condition (runs 1 and
2) [p = n.s.]. However, we observed a significant reduction in
averaged P300 amplitude in run 5 and run 6 for short ISI groups
compared to long ISI groups [p < 0.04]. Furthermore, there was
a significant difference between ISI-15 and ISI-short [p < 0.04],
but not between ISI-25 and ISI-long [p = n.s.].

3.4. Online P300 Detectability
Finally, we achieved high classification performances in both the
online and offline analysis. In the online evaluation, we found
no significant difference between both online runs [adapted ISI
(e) vs. adapted ISI (f): bACC of 0.77 vs. bACC of 0.78, p =

n.s., see adapted ISI (e) vs. adapted ISI (f) in Table 4.1]. In

the offline evaluation, classification performance obtained by
using the classifier trained on ISI-25 statistically differed from
classification performance obtained in case of no transfer [ISI-
25 vs. adapted ISI: bACC of 0.84 vs. bACC of 0.75: p < 0.003,
see adapted ISI (e) vs. ISI-25 in Table 4.2]. However, we found
no significant difference in classification performance when using
the classifier trained on ISI-15 compared to the case of no transfer
(ISI-15) [ISI-15 vs. adapted ISI: bACC of 0.80 vs. bACC of 0.79:
p = n.s., see adapted ISI (f) vs. ISI-15 in Table 4.2]. There was no
significant difference between the online and offline evaluation
for the case of ISI-adaptation [adapted ISI (e) in Table 4.1 vs.
adapted ISI (e) in Table 4.2: p = n.s. ; adapted ISI (f) in Table 4.1

vs. adapted ISI (f) in Table 4.2: p = n.s.]. In summary, we found
a transfer effect on classification performance in case that the
classifier was trained on data from the ISI-25 runs. However,
such an effect was missing when the classifier was trained on data
from the ISI-15 runs. It must be emphasized that the classification
performance was very similar in case of both classifier transfer
analyses, i.e., adapted ISI (e) and adapted ISI (f) (see Table 4.1).

4. DISCUSSION

4.1. Improvement of Interaction
Supporting our hypothesis (1) behavioral data showed that
total runtime in runs with adapted ISI was significantly shorter
compared to an unadapted condition with an ISI of 25 s.
Although there was no significant difference between the adapted
ISI and the fixed shorter ISI of 15 s the mean total runtime was
still very low considering the fact that runs with ISI adaptation
did start at an ISI of 25 s. Significant differences in the total
runtime between runs with adapted ISI and the fixed shorter ISI
of 15 s were not expected, since the time needed until a task was
performed by a robot does (although not strongly) depend on
the type of task. For example, sending data was very fast and
instant while reaching a certain landmark could take a long time
depending on the current position of the robot and the landmark.
Thus, some deviation in runtime depending on the kind of tasks
that had to be performed by the robot, was expected. On the other
hand, we did not choose subjects with a certain qualification but
chose subjects independent of their experience in robot control
or video gaming. Thus, we expected differences in the subjects’
performances resulting in different “suitable” ISIs and hence also
in different total runtimes. Important was that a significantly
shorter runtime could be achieved compared to the fixed ISI-25
condition under which all the subjects could perform the tasks
without being stressed.

Besides, the goal was not to reduce the total runtime to a
minimum but to adapt the ISI with respect to the demands of
the user of the MMI. Indeed, for some subjects the mean ISI
was reduced to mean values around 10 s while for other subjects,
i.e., subjects 4 and 5, the ISI was clearly above 15 s (around
19 s, see Section 3.2). On the other hand, even for subjects
for whom the ISI was not reduced that much, mean ISI was
clearly below 25 s, supporting our presupposition from the 4
test subjects that were not included in this study that a fixed
ISI of 25 s ensures that all subject can easily perform the tasks
but will probably make the subjects feel bored. An interesting
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FIGURE 7 | Median response time. (A) median reaction times for each run and each subject are depicted. (B) median reaction times for each run and each subject

sorted with respect to trials with short and long ISI as defined for average ERP analysis are depicted.

finding is that subject 4 for which the ISI was reduced only
to a still high value (around 19 s) significantly differed from
the other subjects with respect to computer usage as evaluated
by the “Computer usage questionnaire” (CUQ). This finding
supports our assumption that the MMI could be adapted based
on the detectability of the P300 to support the user with respect
to her or his general capabilities. Note that subject 4 showed
the lowest classification performance in both runs compared to
the other subjects (although no significant differences between
subjects could be found, see Table 4). Moreover, subject 4 had
a high amount of late responses and missed messages (see
Figure 8). Another interesting finding is that the median reaction
time does not significantly differ between subjects. This finding

suggests that in our application behavioral data is probably not
a good indicator for task load. Moreover, it shows that using
our approach subjects were exposed to an appropriate workload.
In summary, the results suggest that by using the developed
MMI utilizing embedded Brain Reading, theMMI cannot only be
adapted to the general capabilities of the user (e.g., experienced or
rather inexperienced in computer usage) but also to the changes
in task load over time.

4.2. Changes in the Characteristic of
Average P300 Depending on the ISI
Applying average ERP analysis, we were able to show that during
a complex multi-robot control task a P300-related activity is
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FIGURE 8 | Sum of late responses and missed messages for each run and each subject is depicted.

TABLE 3 | Number of tasks with late or no response in runs 5 and 6.

Run 5 Run 6

Subject Late Missed Total Late Missed Total

S1 4 0 4 2 0 2

S2 0 0 0 2 2 4

S3 4 0 4 8 0 4

S4 5 0 5 8 0 8

S5 0 1 1 1 0 1

S6 1 0 1 0 2 2

evoked by task messages which are presented to the operator.
This finding is the most important basis for our approach to
adapt anMMI based on P300 detectability. As expected we found
no significant differences in the averaged-peak P300 amplitude
for both fixed ISI conditions. This supports earlier findings that
the ISI has no influence on the P300 amplitude in case of
long ISIs (longer than 6–8 s as found by Polich, 2007). More
importantly this finding supports our assumption that on both
fixed ISI conditions the general workload on the subjects was
rather modest and comparable. Hence, any found differences in
the P300 peak amplitude should be caused by changes in the
current task load and task engagement. This finding is supported
by the fact that in case of an ISI adaptation the average P300
peak amplitude was significantly reduced for trials after short ISIs
compared to trials after long ISIs.

Our results from the average ERP analysis support hypothesis
(2): we could show differences in the P300 peak amplitude for
average conditions with a high task load (averaged ERP activity
after ISI-long in adapted ISI condition) compared to average
conditions with low task load (averaged ERP activity after ISI-
long in adapted ISI condition).

The finding that the peak amplitude of the average P300
activity after trials with ISI-short (adapted ISI condition) is

significantly smaller compared to the peak amplitude of the
average P300 activity of both fixed ISI conditions (ISI-25 and ISI-
15) suggests that for all subjects the MMI was indeed adapted to
achieve the best performance without enhancing the workload
too much such that no P300 would be evoked. Tests on 4 subjects
(not included in this study) showed that in cases in which the
workload was too high no P300 was evoked on average or could
not be detected in single-trial while subjects reported that they
were very stressed and could not perform the tasks. Hence, the
MMI is adapted such that subjects perform best while avoiding an
excessive general workload. Some subjects were able to keep their
performance high with a short ISI all through the experiment
while others did not. For the latter, theMMI was again adapted to
longer ISIs reducing the task load back to normal. The task load
and thus the general workload being modest under the adapted
condition after long ISIs is supported by the finding that the
average P300 peak amplitude evoked after long ISI trials under
the adapted ISI condition is comparable to the average P300
peak amplitude under the fixed ISI conditions (ISI-25 and ISI-
15). This was even the case although the mean long and short
ISI differed strongly between subjects (see Tables 1, 5). Based on
these findings we suggest that the P300 ERP is indeed a good
indicator for the current and individually different task load of
a subject while controlling the robots.

4.3. Detectability of P300 in Single-Trial
The results of the offline machine learning analysis support that
the P300-related activity which was evoked by task messages
can be detected in single-trial even in case that the classifier is
transferred between different ISI conditions. Thus, the results
support hypothesis (3).

When comparing online classification with offline
classification a performance drop can be observed. This
can be explained as follows: In the online case each first message
was classified independently of having been responded to.
Therefore, trials after missed task messages which likely did
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FIGURE 9 | Adaptation of the ISI over one run and the evoked averaged ERP activity at Pz for one subject: (A) depicts online adaptation of ISI in case of

using the classifier trained on data with ISI of 25 s (i.e., training data: ISI-25, test data: run 5, see (e) in Table 2.3: online stCL) and (B) the corresponding

averaged ERP curve evoked during the same run (Table 2.2: ERP analysis). Only artifact-free trials were used: 7 trials for ISI of 15 s and ISI of 20 s; 21 trials for

ISI of 5 s and ISI of 10 s. Different types of tasks (tasks of type: message, way point and charging, see Figure 3 for details) had to be solved by the subjects.

not contain a P300 were classified, leading to “false negative”
results. It was therefore expected that classification performance
was lower for the online case, since the approach is sensitive to
missed targets. The small difference between online and offline
results support that the MMI was well designed such that only
few target events (messages) were completely missed (see also
Table 3).

Besides this, in both transfer cases similar classification
performance can be achieved. Hence, for an application it is
not that relevant for the classification on which data a classifier
is trained. While we found no significant differences between
subjects for online classification performance it is noticeable that
subject 4 had the worst classification performance in both runs
compared to the other subjects (Discussion see Section 4.1).

4.4. P300 Detectability as Index for Task
Load or Task Engagement
By reducing the ISI to way shorter ISIs compared to the ISI-15
condition (see Table 5) we strongly enhanced the task load and
likelihood of conflicts since subjects might still be engaged in
a former task when a new task message was presented. This is
supported by two findings: (1) the higher variance in reaction
time found for the ISI-short group (based on grouping for
average analysis) and (2) the smaller average P300 evoked after
short ISI trials in the adapted ISI condition (see Figure 10).
Likely, subjects were still involved in a previous task and often
could therefore respond to a new task only with a delay.

We found a similar effect in a previous study (Kim and
Kirchner, 2012). In this previous study, subjects played a
labyrinth game and had to respond to target stimuli which were
presented in an oddball design. However, subjects were not
allowed to respond to target events right away. We asked the
subjects to steer the ball in a save corner first before answering
a target event. When analyzing the average P300 potential we
grouped the data with respect to reaction time such that the first
group consisted of EEG trials with only short reaction times up to

1.4 s, for the second group trials were added which had reaction
times up to 1.6 s, for the third group up to 1.8 s, the fourth up to
2.0 s, and the fifth up to 7.0 s. Although keeping the trials with
short reaction times up to 1.4 s for the second group and up to
1.6 s for the third group, we still found descriptive differences
in average peak amplitude of the P300 component between all
groups with highest amplitude for the group of 1.4 s and lowest
for the group of 7.0 s. When classifying between standard and
target trials we found significant differences between the group
of 1.4 s compared to all other groups with the exception of
group 1.4 s compared to group 1.6 s and significant differences
between the group of 7.0 s compared to all other groups with
highest classification performance of 0.85 for the group of 1.4 s
and lowest classification performance of 0.76 for the group
of 7.0 s. These results suggest that ongoing task engagement,
i.e., playing the labyrinth game, reduced the P300 evoked by
a new target stimulus tremendously and would also reduce
classification performance.

4.5. Summary and Outlook
In summary, our results show that complex interaction between
humans and robotic systems can be improved by the application
of an MMI adapted by eBR. The time between tasks can be
adjusted such that a reduction of run time compared to a
safe mode is possible. The strength of adaptation does further
correlate with the experience of the user. Thus, the MMI can
be adapted to the needs of the user within a range of workload
that can otherwise not be resolved. Our approach shows that
EEG activity like the P300-related activity that is naturally evoked
during interaction can be used to adapt an MMI with respect to
online changes in task load or task engagement of an operator.
Thus, the dual-task design (with a primary and usually artificially
introduced secondary task) that is often applied to infer on
current processing capacity of the brain must not be applied to
adapt for task engagement. The ERP activity can be used rather
naturally, similar to approaches that make use of ratios of EEG
power bands (Pope et al., 1995) while being specific to certain
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TABLE 4 | Online and offline classification performance.

Table 4.1. Online single trial classification performances (cf. Table 2-3. Online stCL)

bACC AUC

Adapted ISI (e) Adapted ISI (f) Adapted ISI (e) Adapted ISI (f)

classifier transfer classifier transfer classifier transfer classifier transfer

S1 0.7646 0.7586 0.8481 0.8343

S2 0.8403 0.8177 0.8692 0.8596

S3 0.7892 0.7422 0.8516 0.8681

S4 0.6486 0.7083 0.7620 0.7365

S5 0.7981 0.7631 0.8790 0.8621

S6 0.7931 0.9021 0.9292 0.9375

Mean 0.7723 0.7820 0.8565 0.8497

Table 4.2. Offline single trial classification performances (cf. Table 2.4. Offline stCL)

bACC AUC

Adapted ISI (e) ISI-25 Adapted ISI (f) ISI-15 Adapted ISI (e) ISI-25 Adapted ISI (f) ISI-15

transfer no transfer transfer no transfer transfer no transfer transfer no transfer

S1 0.7057 0.8086 0.7595 0.7725 0.8063 0.8815 0.7979 0.7966

S2 0.7690 0.9536 0.8366 0.9361 0.8183 0.9873 0.8870 0.9604

S3 0.6987 0.7568 0.7912 0.7406 0.8643 0.8923 0.476 0.8159

S4 0.6772 0.7310 0.7195 0.7187 0.7670 0.7451 0.7170 0.8459

S5 0.7722 0.8135 0.7685 0.7650 0.8054 0.8942 0.8193 0.8745

S6 0.8625 0.9600 0.8843 0.8864 0.9037 0.9692 0.9549 0.9045

Mean 0.7476 0.8373 0.7933 0.8032 0.8275 0.8951 0.8373 0.8663

TABLE 5 | Mean ISIs in case of online ISI-adaptation (runs 5 and 6).

Mean ISI in sec.

Table 5.1 Table 5.2

Subject Run 5 Run 6
Run 5 Run 6

ISI-long ISI-short ISI-long ISI-short

S1 12.7 ± 5.01 13.94 ± 5.47 16.15 8.95 21.25 8.46

S2 9.85 ± 5.97 12.42 ± 5.09 16.47 6.67 16.07 9.62

S3 16.25 ± 4.84 15.15 ± 5.43 22.00 12.31 17.27 9.00

S4 19.22 ± 5.46 21.94 ± 5.63 21.15 14.17 22.69 13.33

S5 19.55 ± 4.33 21.82 ± 3.44 22.37 13.33 25.63 8.57

S6 10.45 ± 6.08 8.43 ± 5.95 17.86 8 .00 15.00 6.20

Average 14.67 ± 4.29 15.62 ± 5.35 19.33 ± 2.84 10.57 ± 3.10 19.65 ± 4.19 9.20 ± 2.33

Table 5.1: mean over all trials. Table 5.2: mean over a selected group of trials with ISI-short and ISI-long as defined for average ERP analysis (see Table 1).

stages of information processing (Prinzel et al., 2003). Hence,
for the user, our approach of measuring brain states and task
engagement remains invisible and avoids any possible additional
load on the user, since the task itself is used to measure task load,
without any additional task.

In the future, we will have a closer look at the long term
effect of adaptation of the ISI compared to a high task load

condition, i.e., ISI of 10 s or even lower. For this, it is required
to avoid the recording of extra training data since this requires a
considerable amount of time. The total time for one experiment
(6 runs) was already between three to 4 h including preparation.
Thus, for a long term study, preparation and especially training
of the classifier must be kept to a minimum. This can be
achieved by using zero-training approaches (Krauledat et al.,
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FIGURE 10 | Averaged ERP activity over all subjects at electrode Pz under offline condition (left side) and under online condition (right side). Grand

averages over all subjects are depicted. Each run contained 30 trials. Only artifact-free trials were used: 292 trials for ISI-25 and 313 trials for ISI-15, 139 trials for

ISI-long and 164 trials for ISI-short.

2008; Kindermans et al., 2012) or by using old training data
from either previous recordings of the same subject or other
subjects (Lotte and Guan, 2010; Devlaminck et al., 2011; Samek
et al., 2013). To reduce transfer effects (between sessions and
between subjects) adaptive algorithms for the spatial filter (Rivet
et al., 2011; Ghaderi and Straube, 2013), the classifier (Li et al.,
2008; Lu et al., 2009; Tabie et al., 2014) or both (Wöhrle et al.,
2015) can be applied. Moreover, we want to investigate whether
adaptive measures can be used to even improve the classification
performance and the support for the user as we could already
show for the prediction of movement onsets (Tabie et al., 2014).
Finally, we will investigate transferability of the final approach
to a mobile analysis system which makes use of hardware
accelerators as already tested for the current application. Even
for an adaptive approach hardware accelerators have shown to
be feasible for the detection of both the P300 event-related
potential (Wöhrle et al., 2013b,a, 2014a) and the movement-
related ERP activity (Wöhrle et al., 2014b).
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