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Background. This study investigated histopathological changes and apoptotic factors that may be involved in the renal
damage caused by congestive heart failure in a rat model of infrarenal aortocaval fistula (ACF). Methods. Heart failure
was induced using a modified approach of ACF in male Wistar rats. Sham-operated controls and ACF rats were
characterized by their morphometric and hemodynamic parameters and investigated for their histopathological,
ultrastructural, and apoptotic factor changes in the kidney. Results. ACF-induced heart failure is associated with
histopathological signs of congestion and glomerular and tubular atrophy, as well as nuclear and cellular degeneration in
the kidney. In parallel, overexpression of proapoptotic Bax protein, release of cytochrome C from the outer
mitochondrial membrane into cell cytoplasm, and nuclear transfer of activated caspase 3 indicate apoptotic events. This
was confirmed by electron microscopic findings of apoptotic signs in the kidney such as swollen mitochondria and
degenerated nuclei in renal tubular cells. Conclusions. This study provides morphological evidence of renal injury during
heart failure which may be due to caspase-mediated apoptosis via overexpression of proapoptotic Bax protein, subsequent
mitochondrial cytochrome C release, and final nuclear transfer of activated caspase 3, supporting the notion of a
cardiorenal syndrome.

1. Introduction

Heart failure, a progressive disease marked by repeated hos-
pitalizations for episodes of acute decompensation, is fre-
quently complicated by kidney dysfunction—one of the
most important risk factors for poor clinical outcome and
death [1]. In congestive heart failure, the heart cannot deliver
oxygen at a rate proportionate to the demands of the metab-
olizing tissues that may result in damage to other organ sys-
tems such as the kidney [2–4]. It is well established that heart
performance and kidney function are closely interconnected
and dysfunction of one organ often leads to a deterioration of
the function of another which is known as cardiorenal syn-
drome [5]. Consistently, more than 1 million patients present

to hospitals in the United States with acutely decompensated
heart failure every year and approximately one-third of these
patients develop kidney injury [6]. Consequently, these
patients who develop kidney dysfunction after heart failure
have a significantly higher mortality rate [7, 8]. In addition,
there is emerging evidence that heart failure can also be con-
sidered as an inflammatory state that contributes to gradual
toxic injury to renal cells including apoptosis which may lead
to chronic kidney damage and functional loss [5, 9, 10].
Recently, Cho et al. showed that the number of TUNEL-
positive apoptotic tubular cells significantly increased in the
kidneys of rats with myocardial infarction [11].

Once cells receive the apoptotic stimulus, they constitute
specific pathways, including the disruption of mitochondrial
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transmembrane potential, followed by the release of mito-
chondrial proteins like cytochrome C and the activation of
caspase subtypes within the apoptosome complex leading to
cell death [12–14]. Recent evidence is emerging that the
mitochondria-mediated apoptosis is initiated by a variety of
apoptosis-inducing signals that cause the imbalance of
the major apoptosis regulator such as Bcl-2 and Bax
[15]. Therefore, the aim of our current study was to investi-
gate the histopathological and ultrastructural changes in the
kidney in a modified experimental rat model of infrarenal
aortocaval fistula-induced heart failure. Moreover, we inves-
tigated possible alterations in the expression of apoptotic
factors such as bax protein, cytochrome C, and caspase-3 as
well as activated caspase-3.

2. Materials and Methods

2.1. Animals. Male Wistar rats, 280–300 g (Harlan Winkel-
mann, Borchen, Germany), were maintained on standard
laboratory rat chow and water ad libitum. The animals were
kept on a 12h light–dark cycle with a temperature of 23°C
and a humidity of 75%. This study was carried out in accor-
dance with the European directive introducing new animal
welfare and care guidelines (2010/63/EU). IRB approval for
animal experiments was obtained from local authorities
(Landesamt für Gesundheit und Soziales, Berlin, Germany).
Surgical procedures were performed under isoflurane (ACF
induction) and tiletamine/zolazepam (hemodynamic mea-
surements) anesthesia, and all efforts were made to minimize
suffering. Postsurgical analgesia was provided by metamizole
(40mg/kg s.c.).

2.2. Experimental Heart Failure Model. The needle technique
to induce an infrarenal aortocaval fistula (ACF) has previ-
ously been described by Garcia and Diebold using an 18G
needle [16, 17]. In a modified approach, a laparotomy was
performed and the aorta was punctured by using a 16G nee-
dle (Braun, Melsungen, Germany) distal to the renal arteries
[17]. Then, the needle was advanced through the aortic wall
into the adjacent inferior vena cava. After temporarily com-
pressing the aorta and venous vessels above and below the
puncture site, the needle was carefully withdrawn and the
aortic puncture site sealed with a drop of cyanoacrylate glue.
Patency of the fistula (n = 5 rats for morphometric/hemody-
namic measurements, for immunohistochemistry and for
electron microscopy, resp.) was visualized by the pulsatile
flow of oxygenated blood into the vena cava inferior from
the infrarenal aorta [17, 18]. Sham-operated rats (n = 5 rats
for morphometric/hemodynamic measurements, for immu-
nohistochemistry and for electron microscopy, resp.) also
received a laparotomy with the vessels temporarily com-
pressed, but without any puncture of the aorta.

2.3. Morphometric Data. After 28± 2 days of fistula induc-
tion, the animals were sacrificed in isoflurane anesthesia
and blood, heart, lung, and kidney tissues were quickly
removed. The wet weight of heart, lung, and kidney tissues
(n = 5 rats) was measured by a balance and normalized to

the body weight of the individual animal to obtain the respec-
tive indices.

2.4. Hemodynamic Measurements. For hemodynamic mea-
surements, the “closed chest” method in spontaneously
breathing rats was used as described previously [17, 19]. All
measurements were performed under tiletamine/zolazepam
anesthesia (Zoletil®, 10mg/kg s.c. followed by 50mg/kg
i.m.) 28± 2 days after fistula induction [17, 20]. Measure-
ments were registered and analyzed by the PowerLab® sys-
tem/software (AD Instruments, New Zealand). After
tracheotomy, a PE-50-tubing catheter was inserted via the
left jugular vein into the superior vena cava for the assess-
ment of central venous pressure. Arterial blood pressure
was measured by cannulating the right carotid artery with a
microtip pressure-volume conductance catheter (Millar®,
SPR-838 NR). Intraventricular pressures and volumes were
registered by further advancing the catheter into the left ven-
tricle and optimizing its position aiming for maximal stroke
volume (SV). For measurement of the parallel conductance
volume, 100μl of 15% saline was injected into the central
venous line as a correction factor for the blood-left ventricle
(LV) tissue interface. Heart rate was derived from the ECG
signal. After completion of the hemodynamic measurements,
animals (n = 5 rats per group) were killed by exsanguination
and organs were eviscerated for further determinations.

2.5. Tissue Preparation. Rats were deeply anesthetized with
isoflurane and perfused transcardially with 100ml 0.1m
PBS (pH7.4) and 300ml cold PBS containing 4% parafor-
maldehyde and 0.2% picric acid (pH7.4; fixative solution)
for light and fluorescence microscopy and with 4% parafor-
maldehyde/0.1% glutaraldehyde/0.2% picric acid solution
(pH7.4) for electron microscopy, respectively [21]. The kid-
neys were removed, renal tissue postfixed for 90min at 4°C in
the fixative solution, and cryoprotected overnight at 4°C in
PBS containing 10% sucrose. Consecutive sections (6μm
thick) prepared on cryostat were mounted onto gelatin-
coated slides.

2.6. Histological Examination. Kidney tissue sections from 5
rats were stained with hematoxylin and eosin as previously
described [22]. For histological analysis, random nonover-
lapping fields from the cortex-to-corticomedullary region of
each kidney section were captured using a 40x magnification
lens by light microscopy (Zeiss Axioplan photomicroscope
equipped with a digital camera).

2.7. Transmission Electron Microscopy. Tissue of the kidney
from 5 rats was processed for electron microscopy as
described previously [21, 23]. Small pieces of tissue were
postfixed in 1% tannic acid (in 0.1m PBS) and 1% osmium
tetroxide solution (in 0.1m PBS), dehydrated in ethanol,
and embedded in Epon. Semithin and ultrathin sections
were cut on a Reichert Ultracut (Leica, Germany), followed
by contrasting with 2% uranyl acetate/lead citrate. Finally,
ultrathin sections were examined under a transmission
electron microscope (TEM 10, Zeiss, Germany). Semithin
sections were stained 1 to 2 minutes in 1% Toluidine Blue
(Merck, Darmstadt, Germany), rinsed several times in
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purified water, and examined under a light microscope
(Axiophot 100; Zeiss, Germany).

3. Apoptosis Assay

The assessment of liver apoptosis was performed in situ using
terminal deoxynucleotidyl transferase-mediated dUTP nick
end-labeling (TUNEL) assays (Chemicon Apo-Direct Tunel
Assay Kit; Merck Millipore, Darmstadt, Germany) for the
detection of the internucleosomal DNA fragmentation,
characteristic for apoptosis according to the manufacturer’s
instructions. Briefly, 6μm sections of paraformaldehyde-
fixed liver tissue were postfixed with precooled fixative
(ethanol/acetic acid) for 5min at −20°C. After PBS wash,
the sections were then immersed in 1x TdT equilibration
buffer at room temperature for 30min followed by incuba-
tion with working strength TdT enzyme for 1 h at 37°C.
The reaction was terminated with working strength stop/
wash buffer, and the sections were washed with PBS. Then,
the sections were incubated with FITC conjugated anti-
digoxigenin at room temp for 30min. After PBS washing,
the nuclei were stained bright blue with 4′-6-diamidino-2-
phenylindole (DAPI) (0.1μg/ml in PBS) (Sigma). As a
negative control, sections were incubated in the absence
of TdT enzyme.

3.1. Double Immunofluorescence Staining. Double immuno-
fluorescence staining of cytochrome C in the kidney was per-
formed as described previously [24, 25]. Kidney sections were
incubated overnight with the following primary antibodies:
(1) monoclonal mouse anti-mitochondria (catalogue number
MA5-12017, Thermo Fisher Scientific, Rockford, IL) in com-
bination with rabbit polyclonal anti-cytochrome C (cata-
logue number 4280, Cell Signalling, Danvers, MA); (2)
rabbit polyclonal anti-cleaved caspase-3 (catalogue number
9661, Cell Signalling), anti-caspase-3 (catalogue number
ab13847, Abcam; Cambridge, MA), and anti-Bax protein
(catalogue number SC-526, Santa Cruz Biotechnology,
Texas). After incubation with primary antibodies, the tissue
sections were washed with PBS and then incubated with
red fluorescent Alexa Fluor 594 donkey anti-rabbit antibody
(Vector Laboratories) in combination with green fluorescent
Alexa Fluor 488 goat anti-mouse antibody (Invitrogen,
Germany). Thereafter, sections were washed with PBS,
and the nuclei stained bright blue with 4′-6-diamidino-2-
phenylindole (DAPI) (0.1μg/ml in PBS) (Sigma).

3.2. Quantification of Immunostaining. The method of quan-
tification of colocalization of mitochondria with cytochrome
C in the kidney has been described in detail elsewhere
[25, 26]. Briefly, quantification of immunofluorescent colo-
calization of mitochondrial marker with cytochrome C in
kidney tissue sections was performed by using the Zeiss
Zen 2009 software Carl Zeiss Micro-Imaging GmbH
(Göttingen, Germany). Colocalization of proteins of interest
was quantified by calculating the colocalization coefficient
as derived from Mander’s article based on Pearson’s correla-
tion coefficient [26]. Images were adjusted to a threshold to
exclude background fluorescence and gated to include

intensity measurements only from positively stained cells.
The number of caspase-3-stained nuclei was determined by
the formula: caspase-3-stained nuclei/total number of
DAPI-stained nuclei× 100. For image analysis, using the area
of the whole stained tissue section, five rats per group were
used for analysis. Data were expressed as means± SEM.

3.3. Statistical Analysis. All tests were performed using SPSS
20.0 software program. Normal distribution was analyzed
with the Kolmogorov-Smirnov test. The results are expressed
as means± SEM. Statistical significance between the two
groups was analyzed by the Student t-test or Mann–Whitney
test as appropriate. p < 0 05 was considered statistically
significant. All tests were performed using Sigma Plot 13.0
statistical software.

4. Results

4.1. Increased Heart and Lung Weight Indices following
Congestive Heart Failure. Body weights of rats with ACF-
induced heart failure were not significantly different from
sham-operated controls (Figure 1). In contrast, the heart
and lung weight indices were significantly increased at
28± 2 days after ACF-induced heart failure (p < 0 01)
(Figure 1).

4.2. Systolic and Diastolic Dysfunction in ACF Rats. In vivo
hemodynamic measurements of control and ACF rats
showed that central venous (CVP) and left end-diastolic
pressure (LVEDP) were significantly increased in ACF rats
(p < 0 01) (Table 1). While the left ventricular end-
diastolic and end-systolic volumes (LVEDV and LVESV,
resp.) were significantly elevated (p < 0 01), the left ventricu-
lar ejection fraction (LVEF) (p < 0 01), and the maximum
rate of pressure development (p < 0 01) were significantly
reduced (Table 1).

4.3. Histopathological Changes in the Kidney following
Congestive Heart Failure. In kidney tissue sections of control
rats, a normal structure of glomeruli as well as proximal and
distal tubuli was observed (Figures 2(a) and 2(b)). In con-
trast, kidney sections of ACF rats showed signs of morpho-
logical and pathological changes (Figures 2(c) and 2(d)). In
the glomerular region of the kidney, several glomeruli
showed atrophic changes, widening of Bowman’s space with
obvious degeneration of cells and losing the prominent
glomerular structure suggesting apoptotic cell death. As
compared to controls (Figures 2(a) and 2(b)), the proximal
convoluted tubuli in ACF animals showed atrophic
changes including epithelial shedding and loss of brush
border (Figures 2(c) and 2(d)). Furthermore, pyknotic
nuclei and desquamated cells (Figure 2) were seen in the
tubular region. Tubular lumen was found to be sometimes
obliterated due to degeneration and swelling of lining epithe-
lial cells. The distal kidney tubuli of ACF rats revealed signs
of degeneration, manifested by desquamation of epithelial
tubular cells (Figure 2).
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5. Detection of DNA Fragmentation by Tunel
Staining in Kidney Cells following Congestive
Heart Failure

Apoptosis was confirmed by TUNEL staining. In ACF
kidneys, apoptosis was observed by TUNEL staining pre-
dominantly in tubular epithelial cells. Both proximal and
distal tubule cells displayed DAPI-positive nuclei that were
intensely TUNEL positive (Figures 3(b) and 3(f)). Further-
more, TUNEL-positive cells were not present in controls
(Figures 3(a) and 3(e)).

5.1. Expression of Proapoptotic Bax in Kidney Cells following
Congestive Heart Failure. To corroborate the TUNEL find-
ings and to investigate the possible mechanisms mediating
kidney apoptosis, we measured apoptotic factors in the
kidney following ACF-induced heart failure. Examining
kidney tissue of control rats by immunofluorescence confocal
microscopy, proapoptotic Bax immunostaining was faintly
observed in the proximal and distal tubuli; however, no stain-
ing was found in the glomeruli or interstitium (Figures 3(c)
and 3(g)). After the induction of ACF-induced heart fail-
ure, overt Bax staining was noticeable in the damaged prox-
imal and distal tubular cells of kidney tissue sections
(Figures 3(d) and 3(h)). Also, some glomerular cells showed
positive staining (Figures 3(d) and 3(h)).

5.2. Mitochondrial Leakage of Cytochrome C into the Cytosol
of Kidney Cells following Congestive Heart Failure. In kidney
tissue sections of control rats, cytochrome C immunoreacti-
vity was localized primarily to mitochondria as indicated by
an almost complete overlap with the mitochondrial marker
within renal tubular cells (Figure 4). In contrast, cytochrome
C immunofluorescence was found primarily within the cyto-
plasm especially in perinuclear area of renal tubular cells after
heart failure induction, where it no longer colocalized with
mitochondrial marker (Figure 4). Quantification of the colo-
calization coefficient of cytochrome C and mitochondrial
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Figure 1: (a) and (b) show the enlarged size of the heart (a) and lung (b) in rats with ACF-induced heart failure compared to sham-operated
controls. These animals revealed significantly increased heart and lung weight indices (d), but not body weight. (c)∗ denotes significant
differences compared to control (p < 0 01, Student t-test).

Table 1: Hemodynamic parameters.

Control (n = 5) ACF (n = 5)
SV (μl) 134± 3∗ 298± 40∗
LVEF (%) 74± 2∗ 45± 4∗
LVEDP (mmHg) 5.1± 0.3∗ 12.1±1∗
ZVD (mmHg) 0.1± 0.1∗ 5.6± 1∗
HR (min−1) 340.41± 10+ 316.98± 10+

LVESV (μl) 48.18± 5∗ 359.71± 36∗
LVEDV (μl) 181.86± 8∗ 658.04± 61∗
∗p < 0 05. + indicates p = 0 717.
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marker within kidney sections showed a significant reduction
of their colocalization in ACF animals compared to controls
(Figure 5(a)) indicating that cytochrome C had leaked from
mitochondria into the cytoplasm.

5.3. Nuclear Transfer of Caspase-3 as Activated Caspase-3
into the Nucleus of Kidney Cells following Congestive Heart
Failure. We evaluated the localization of caspase-3 using
antibodies that detect cleaved caspase-3-recombinant protein
alone or with pro-caspase-3-recombinant proteins in kidney
sections by confocal immunofluorescence microscopy in
ACF and sham-operated control rats (Figure 6). Immunoflu-
orescence confocal microscopy of kidney sections of control
rats revealed that caspase-3 immunoreactivity was confined
primarily to well-defined subcellular structures in proximal
and distal tubular cells of the kidney, no staining was found
in the glomeruli or interstitium. In contrast, caspase-3 immu-
nofluorescence was translocated into perinuclear area of cells
or nuclei within tubular cells in ACF rats. Also, some glomer-
ular cells show positive staining (Figure 6) indicating that
caspase-3 translocated in the active form. Therefore, we used
the apoptotic marker cleaved activated caspase-3 which is
absent under normal conditions and detectable only during
cell apoptosis. Indeed, using an antibody which detects
cleaved caspase-3-recombinant protein in kidney sections
of ACF rats revealed that cleaved caspase-3 immunoreactiv-
ity was confined primarily to perinuclear area of cells or
nuclei within tubular cells (Figure 6(b)).

Importantly, the number of caspase-3-IR nuclei as well as
cleaved caspase-3-IR nuclei cells in relation to the total num-
ber of DAPI-stained nuclei was significantly higher in ACF
rats than in controls (p < 0 05) (Figure 6(b)).

5.4. Transmission Electron Microscopy Evaluation of Kidney
Cells following Congestive Heart Failure. Ultrastructural
examination of kidney from control rats contrasted with ura-
nyl acetate and lead citrate presents normal tissue of kidney
ultrastructure containing mitochondria and endoplasmic
reticulum (Figure 7(a)). In contrast, kidney sections from
ACF rats present a marked cytoplasmic vacuolization of cells
and dilated endoplasmic reticulum, mitochondria, and pleo-
morphic lysosomes containing flocculent material. In addi-
tion, the changes in the structure of renal glomeruli and
tubular cells of ACF kidney included signs of matrix vacuoli-
zation, dilation of capillary, and degeneration of cell nuclei.
In edematous regions, the space between individual tubuli
was enlarged and there was a marked capillary dilation in
the peritubular area (Figure 7(b)). The morphology of the
renal tubules was also affected as reflected with numerous
swollen mitochondria with a crista disarrangement and par-
tial cristolysis within tubular epithelium (Figure 7(c)).

6. Discussion

Progressive heart failure is associated with growing deteri-
oration of kidney function which in turn leads to a hemo-
dynamic and neurohumoral worsening of heart failure,
thereby, increasing the risk of mortality by 7.5-fold [1].
This study investigated the possible mechanisms that
underlie renal damage following heart dysfunction using
the rat model of infrarenal aortocaval fistula-induced heart
failure. Kidney tissue sections of these animals showed
light microscopic alterations such as congestion, glomeru-
lar atrophy with widening of Bowman’s space, edema with
epithelial shedding in tubular structures, pyknotic nuclei,
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Figure 2: Light microscopic photographs of representative kidney sections of control and ACF adult rats. (a) and (b) show control
haematoxylin-eosin- (a) and toluidine blue-stained (b) rat kidney with normal distal (thin arrow), proximal (thick arrow) tubular and
glomerulus (G) structures are seen in the medulla of control kidney. (c) and (d) show ACF haematoxylin-eosin- (c) and toluidine blue-
stained (d) rat kidney with histopathological changes in atrophic glomeruli (G) with atrophic changes such as widening of Bowman’s
space with haemolysis, necrosis with obvious degeneration in nuclei, and apoptotic cell death. Also, histopathological changes in atrophic
distal (thin arrow) and proximal (thick arrow) tubular structures are shown with epithelial shedding and loss of brush border of proximal
tubules as well as desquamation of tubular epithelium of distal tubules in the medulla. (a), (c): ×120; (b), (d): ×200.
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desquamated cells, and hemorrhages suggesting apoptotic
events. Consistently, double immunofluorescent staining
revealed enhanced expression of proapoptotic Bax, mito-
chondrial leakage of cytochrome C, and nuclear transfer of

activated caspase-3 indicating apoptotic processes. Finally,
electron microscopy confirmed the presence of apoptosis by
signs of nuclear condensation, DNA fragmentation, shrink-
age, and dissolution of the mitochondrial structure. These
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Figure 3: Confocal microscopy of TUNEL staining ((a), (b), (c), and (d)) and proapoptotic Bax ((e), (f), (g), and (h)) in the kidney of control
and ACF adult rats. (a), (b), (c), and (d) showed TUNEL-positive (green fluorescence) with DAPI-counterstained nucleus (blue fluorescence)
immunofluorescence of the kidney in control or ACF adult rats. Note that apoptotic tubular cells were detected in the kidney following ACF-
induced heart failure in rats (c) and (d); however, no staining was found in controls (a) and (b). (e), (f), (g), and (h) Confocal microscopy of
proapoptotic Bax protein (red fluorescence) with DAPI-counterstained nucleus (blue fluorescence) immunofluorescence in the kidney in
control or in ACF adult rats. Note that the absence or weak Bax immunostaining was detected in the renal tubular cell cytoplasm of
control kidney (e) and (f). However, strong positive immunofluorescence staining within renal tubular cell cytoplasm after heart failure
induction was detected (g) and (h). Bar = 20 μm.
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Figure 4: Confocal microscopy of cytochrome C (red fluorescence) with mitochondrial marker (green fluorescence) double
immunofluorescence of the renal tubular cells in the kidney of control and ACF adult rats. Note that the cytochrome C immunostaining
overlapped with the mitochondrial marker in the cytoplasm of renal tubular cells of control kidney (A, E, I and C, G, K). However,
cytochrome C immunofluorescence was confined primarily within the cytoplasm after heart failure induction, where it no longer
colocalized with mitochondria within renal tubular cells (B, E, J and D, H, L). Bar = 20 μm.
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findings provide morphological evidence of apoptotic events
during kidney injury resulting from congestive heart failure.

Recently, our group successfully modified an experimen-
tal model of heart failure by the induction of an infrarenal
aortocaval fistula which resulted in overt signs of congestive

heart failure within a predictable short-time period [17].
Heart performance and kidney function are closely intercon-
nected, and a close link exists between these organs [1]. Dys-
function of one organ often leads to a deterioration of
function of the other one such as the kidney [27]. Recently,

ACF
Ctrl

100

80

⁎

60

40

20

0

Cy
to

-C
/M

ito
 co

lo
ca

liz
at

io
n 

co
effi

ci
en

t (
%

)

(a)

50

40

30

20

10

0

Ca
sp

as
e-

3-
IR

 n
uc

le
i/t

ot
al

 n
uc

le
i (

%
)

⁎

ACF
Ctrl

(b)

Figure 5: (a) Quantitative analysis of immunofluorescence microscopy of mitochondrial leakage of cytochrome C into the cytosol as well as
nuclear transfer of caspase-3 as activated caspase-3 into the nucleus of kidney cells following congestive heart failure. Quantitative analysis of
immunofluorescence microscopy of the colocalization coefficient of cytochrome C and mitochondrial marker showing a significant reduction
of their colocalization in the liver in ACF animals compared to in controls (n = 5, p < 0 05, Student t-test). (b) Quantitative analysis of
immunofluorescence microscopy for cleaved caspase-3-IR renal tubular cell nuclei in the kidney of ACF animals relative to the control
(∗ denotes significant differences compared to control, n = 5, p < 0 05, Student t-test).
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Figure 6: Confocal immunofluorescence microscopy of caspase-3 (red fluorescence) using an antibody detecting pro-caspase-3 recombinant
protein (A–D) or cleaved caspase-3-recombinant protein (E–H) with DAPI-counterstained nuclei (blue fluorescence) in the kidney sections
of control or ACF adult rats. (A–D) Note that caspase-3 immunoreactivity was confined primarily to well-defined subcellular organelles like
structures in renal tubular cells within the kidney in control rats. In contrast in ACF rats, caspase-3 immunofluorescence was transferred into
the perinuclear area of cells or inside the nuclei of renal tubular cells (C and D) indicating an activation of proapoptotic factor caspase-3.
(E–H) Confocal immunofluorescence microscopy caspase-3 (red fluorescence) and DAPI-counterstained nuclei (blue fluorescence) in
kidney sections using an antibody detecting exclusively cleaved caspase-3-recombinant protein. (G and H) showed that cleaved
caspase-3 immunoreactivity was confined primarily to perinuclear area of cells or nuclei within renal tubular cells of ACF rat kidney
(D); however, no staining was found in the control (F). Bar = 20 μm.
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the investigation of organ crosstalk in acute renal injury
reported that cell death, inflammation, cytokine and chemo-
kine overexpression, caspase-mediated apoptotic mecha-
nisms, and oxidative stress might induce distant organ
dysfunction [28, 29]. Consistently, the progression of heart
failure may contribute to gradual toxic injury to renal cells
including apoptosis and consequently persistent kidney
damage and functional loss [5, 9]. Therefore, we investigated
pathological changes in the kidney following ACF-induced
heart failure in rats. Our histological investigation revealed
that the glomeruli and tubuli in the kidneys of heart failure
rats showed morphological and pathological changes such
as mitochondrial condensation and nuclear degeneration sug-
gesting apoptotic cell death as compared to controls. Consis-
tently, kidney apoptosis was observed by TUNEL staining as
reflected with TUNEL-positive apoptotic tubular cells in the
kidney following ACF-induced heart failure. Our findings are
in agreement with a previous study showing that themicrovas-
cular endothelial permeability, inflammation, and tubular cell
apoptosis significantly increased in rat kidneys following left
coronary artery-induced myocardial infarction [11].

Then, we further corroborated evidence for apoptotic
events by demonstrating increased expression of the proa-
poptotic protein Bax in renal tubule epithelial cells and glo-
meruli after heart failure induction. Our findings are in
agreement with the previous report by Yang et al., [30] show-
ing that Bax overexpression positively correlated with
caspase-3 activity and subsequent renal apoptosis that was
associated with renal inflammation, tubular atrophy, and
renal fibrosis in experimental glomerulonephritis. Recent
evidence is emerging that the mitochondria-mediated apo-
ptosis is initiated by a variety of apoptosis-inducing signals
that cause the imbalance of the major apoptosis regulator
such as Bax [15]. Indeed, the previous studies reported that
the proapoptotic protein Bax after being activated triggers
the disruption of mitochondrial transmembrane potential,
followed by mitochondrial swelling and an increase in the
permeability of the outer mitochondrial membrane [12–14].
Therefore, we extended our investigation to determine the

apoptotic pathway-mediated mitochondrial enzyme cyto-
chrome C in renal cell death during heart failure. Indeed,
our immunofluorescence confocal microscopy revealed that
cytochrome C immunoreactivity was confined primarily to
mitochondria within renal tubule epithelial cells in control
rats; however, it leaked into the cytosol of renal tubule epithe-
lial cells following heart failure, where it no longer colocalized
with mitochondria. This is in agreement with previous stud-
ies reporting that cytochrome C released from mitochondria
to the cytosol initiates caspase activation in isolated kidney
cortex after cadmium-induced apoptosis [31]. Similarly,
another previous study reported that cytochrome C is
released from mitochondria to the cytosol during apoptotic
events such as hypertensive nephrosclerosis in rats [32].

We further corroborated the evidence for apoptotic
pathway-mediated renal cell death by providing further mor-
phological evidence for the activation of caspase-3 from cell
organelles like structures that could be shown to translocate
in the cleaved form into the perinuclear area of renal tubule
epithelial and glomerular cells after heart failure. Our results
receive good support from previous studies demonstrating
the activation of caspase-3 in cisplatin-induced renal injuries
[33] as well as in polymyxin-induced apoptosis in rat kidney
proximal tubular cells [34].

In summary, heart failure often leads to the damage of the
kidneys, a phenomenon called cardiorenal syndrome [9]. Our
present study demonstrates that progressive heart failure [21]
is associated with obvious apoptotic events with nucleus
degeneration, mitochondrial swelling, and cell death in the glo-
merular and tubular area of the kidney. In parallel, under nor-
mal conditions, cytochrome C colocalized primarily with cell
mitochondria and cleaved caspase-3 was absent. In heart
failure, the overexpression of proapoptotic Bax protein con-
comitant with cytochrome C released from the outer mito-
chondrial membrane into cell cytoplasm led to subsequent
caspase-3 activation triggering apoptotic events. These find-
ings provide morphological evidence of renal injury resulting
from congestive heart failure and support the pathological
interactions between the heart and kidney during heart failure.

Control

(a)

ACF

(b)

ACF

(c)

Figure 7: Transmission electron micrograph of the rat kidney in control (a) and ACF (b and c) groups. (a) shows normal ultrastructure of the
control kidney. Note; untreated control of kidney cells consist of vital nucleus (N), well-developed cell organelles like mitochondria (M),
lysosome (L), and a well-organized cytoplasm. (b) Electron microscopic demonstration of the ACF kidney tissue. Note that ultrastructure
evaluations show a marked cytoplasmic vacuolization (V) of cells and capillary (C) dilation in the peritubular area and dilated cell
organelles and cell nuclei (N) became condensed indicating intrinsic apoptotic events. (c) Many swollen mitochondria situated between
the extensive inholdings (arrow) of the basolateral plasma membrane (∗) that create the lateral cell processes of distal tubules become
dilated and exhibit a crista disarrangement and partial cristolysis. ×5000; bars:1 μm.
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