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Abstract
Oxidative stress has an important role in brain aging and its consequences include 
cognitive decline and physiological disorders. Peroxisome proliferator-activated 
receptor-γ (PPARγ) activation has been suggested to decrease oxidative stress. 
In the current research, the effect of PPARγ activation by pioglitazone(Pio) on 
learning, memory and oxidative stress was evaluated in aged rats. The rats were 
divided into five groups. In the Control group, vehicle (saline-diluted dimethyl 
sulfoxide (DMSO)) and saline were injected instead of Pio and scopolamine (Sco), 
respectively. In the Sco group, the vehicle was injected instead of Pio and the rats 
were injected by Sco 30 min before the behavioral tests. In the Sco-Pio 10, Sco-Pio 
20, and Sco-Pio 30 groups, 10, 20, and 30 mg/kg Pio was injected and finally, the 
rats were injected with Sco 30 min before the behavioral tests. Morris water mater 
maze(MWM) and passive avoidance(PA) tests were carried out, and finally, the 
hippocampus and cortex were removed for biochemical assessments. The results 
showed that the highest dose of Pio decreased the traveling time and distance 
during 5 days of learning and increased the time and distance in the target area 
on the probe day of MWM. The highest dose of Pio also prolonged the delay time 
for entering the dark and total time spent in the light while decreasing the total 
time spent in and the number of entries into the dark in PA test. Pio especially, in 
the medium and highest doses, decreased MDA while increasing thiol, superox-
ide dismutase, and catalase in the hippocampus and cortex. It is concluded that 
PPARγ activation by Pio as an agonist improved learning and memory in aged 
rats probably by attenuating oxidative stress in the hippocampus and cortex.
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1   |   INTRODUCTION

Aging is a natural process that causes cognitive decline and 
physiological disorders (Jia et al., 2016; Oh & Nam, 2019), 
which is associated with many diseases such as Alzheimer's 
disease(AD), Parkinson's disease, and Huntington's dis-
ease (Guyot et al.,  2020; Horvath et al.,  2016). Recorded 
data shows that 11 percent of the world's population is 
over the age of 60, which is projected to increase to more 
than one billion over the next 10 years (Baierle et al., 2015; 
Chen et al., 2017). Loss of memory is a typical feature of 
natural aging (Larrayoz et al., 2017) which is closely related 
to age-related brain changes (Souza et al., 2015). In older 
communities, cognitive processes and in particular, long-
term memory development, preservation, and regenera-
tion are disrupted (Koen & Yonelinas, 2014). Brain aging 
is also a poorly understood complex condition correlated 
with the deterioration of executive functioning along with 
motor and sensory problems (Casu et al., 2002). In aging 
conditions neurotransmitter systems are also disturbed, 
among them cholinergic system dysfunction is notice-
able (Schliebs & Arendt,  2011). Cholinergic dysfunction 
induced by scopolamine (Sco) has been repeatedly used 
as a well-known animal model to examine the effects 
of the drugs on learning and memory or to challenge 
the mechanism(s) responsible for learning and mem-
ory impairments (Azizi-Malekabadi et al., 2012; Chen & 
Yeong, 2020; Jamialahmadi et al., 2013; Tang, 2019). This 
agent acts as a muscarinic receptor antagonist to impair 
learning and memory and to produce an animal model 
which mimics AD (Azizi-Malekabadi et al.,  2012; Chen 
& Yeong,  2020; Jamialahmadi et al.,  2013; Tang,  2019). 
It is well known that Sco induced learning and memory 
impairment is accompanied with an oxidative stress sta-
tus in the brain (Ghasemi & Moradzadeh, 2019; Hosseini 
et al., 2015; Tang, 2019).

One of the most common causes of memory loss in the 
elderly and responsible for the events that lead to aging 
is inflammation and oxidative stress (Picca et al.,  2022).
Oxidative stress is considered as an imbalance between 
reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) and weak antioxidant defenses such as reduced 
enzyme activity such as superoxide dismutase (SOD) and 
glutathione peroxidase (GSH-Px) (Baierle et al.,  2015). 
Excessive accumulation of ROS and oxidative stress dam-
age lipids, proteins, and cellular DNA disrupting cellular 
function and eventually leading to the death of neuronal 
cells (Ali et al., 2015). Oxidative stress is suggested to have 
an important role in brain aging and age-related cognitive 
impairments (Tönnies & Trushina, 2017). Therefore, an-
tioxidant drugs, vitamins, and natural products are con-
sidered to have improving effects on age-related cognitive 
dysfunction (Giudetti et al., 2018).

Peroxisome proliferator-activated receptors (PPARs) are 
ligand-dependent transcription factors. Activation of the 
PPARγ subtype is known to increase insulin sensitization, and 
modulate glucose and lipid metabolism. Pioglitazone(Pio) is 
a thiazoledinedione (TZD) and a selective PPARγ agonist 
(Sood et al., 2000). Recently, the focus on PPARγ agonists 
has intensified, as their novel biological roles have emerged, 
particularly for their therapeutic potential in neurodegen-
erative disorders, such as AD (Nicolakakis & Hamel, 2010). 
The effects of PPARγ agonists including Pio on learning and 
memory has been reported (Almasi-Nasrabadi et al., 2014; 
Gupta & Gupta, 2012; Xiang et al., 2012); however, the ef-
fects of Pio on learning and memory impairments induced 
by Sco and oxidative stress indicators in the brain tissues 
of aged rats has not been addressed. Considering the roles 
of oxidative stress in age-related learning and memory im-
pairment, and considering the antioxidant role of PPARγ 
agonists, it was hypothesized that PPARγ activating by Pio 
may improve learning and memory in aging conditions. 
Therefore, this study was undertaken to investigate the ef-
fects of PPARγ activation by Pio on learning and memory 
impairment induced by Sco, and hippocampal and cortical 
tissue oxidative stress in aged rats.

2   |   MATERIALS AND METHODS

2.1  |  Animals and drugs

Thirty-five aged (28–29 months, 350–380 g weight) male 
Wistar rats were allocated into five groups of seven in 
each group. The animals were kept in the animal lab of 
Mashhad University of Medical Sciences. The animals 
were maintained under standard conditions with a 12-hr 
light/dark cycle and average temperature (22–24°C) with 
free reach to laboratory food and water in the animal house 
(Lights on at 6:00 am). All experiments were performed 
under the Mashhad University of Medical Sciences Ethics 
Committee (IR.MUMS.MEDICAL.REC.1398.313).

The grouping was as follows:
Control group; the old rats received 1 ml/kg saline di-

luted dimethyl sulfoxide (DMSO) as a vehicle instead of 
Pio intraperitoneally (IP) and normal saline injection (IP) 
instead of Sco. Sco group; the vehicle was injected instead 
of Pio for two weeks but treated by Sco (2 mg/kg, Sigma 
Chemical Co) 30 min before each behavioral test during 
the third week (Mohammadpour et al., 2015). Sco-Pio 10, 
Sco-Pio 20, and Sco-Pio 30 groups; the rats were treated 
daily with 10g, 20, or 30 mg/kg (Baghcheghi et al., 2016; 
Baghcheghi et al.,  2019; Beheshti et al.,  2019). Pio dis-
solved in saline diluted DMSO (final concentration 10%) 
for 3 weeks, and then they were also injected by Sco (2 mg/
kg, i.p.) 30 min before the behavioral tests.
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The experiments were done for 3 weeks. The groups were 
treated for two weeks as described above. In the third week, 
Pio or vehicle was daily injected 30 min before Sco, and 
Sco was injected 30 min before doing the behavioral tests. 
The behavioral tests included Morris water maze (MWM) 
and passive avoidance (PA) and they were done between 
09:00 am and 03:00 pm. A graphical timeline demonstrating 
the sequence of experimental protocols is shown in Figure 1.

2.2  |  Behavioral tests

Spatial memory and learning measurement was done using 
the MWM study. The apparatus was including a pool of 
136 cm in diameter and 60 cm in height. The pool was filled 
with water (23–25°C) up to 30 cm. Besides, the pool itself 
was hypothetically divided into four quarters. There was 
also a circular and transparent platform with a diameter of 
10 cm and a height of 28 cm which was located in the pool.

During the first five days of the experiment, each rat was 
released into the pool four times from different positions (north 
(N), south (S), east (E), and west (W)). The software randomly 
determined the rat's release positions. All movements and 

travel routes were recorded by a camera and transferred to 
the computer via an interface. The distance (path length) and 
delay time to reach the platform were extracted from the soft-
ware's processed films. Each rat was given 60 s to search the 
platform in the pool. If the rat considered the platform for this 
time or less, it was allowed to stay on it for 15 s. If the rat could 
not find the platform for 60 s, it was directed to the platform 
and remained on it for 15 s. On day 6, a probe test was per-
formed to analyze the rats to remember the platform's location. 
In the probe test, the platform was removed, and each rat was 
released into the pond and given 60 s for searching the plat-
form. The time elapsed in the target quadrant and the traveled 
distance in this area were reported for comparison between 
groups (Asghari et al., 2022; Beheshti, Karimi, et al., 2017).

Non-hippocampal-dependent learning and memory 
were evaluated using the PA test. The device was divided 
by a guillotine door into light and dark places. The ani-
mals were first placed into the equipment to move freely 
between the two spaces for five minutes when the guillo-
tine door was opened. An electric shock (2 mA, 2 s) was 
applied to the foot of the rats in an acquisition experiment 
when they entered the darkroom. After 3, 24, 48, and 72 h, 
the animals were placed in the light chamber, and the 

F I G U R E  1   A graphical timeline demonstrating the sequence of experimental protocols. MWM, Morris water maze; PA, Passive 
avoidance test.
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delay in dark composition, time of light and darkness, and 
frequency of entering into the dark part were recorded 
(Asghari et al., 2022; Beheshti, Karimi, et al., 2017).

2.3  |  Biochemical assessments

The animals were anesthetized by urethane (1.4 g/kg) and 
sacrificed after the last day of the behavioral study. The 
hippocampal tissues and all parts of the cortex were then 
removed. Total thiol and malondialdehyde (MDA) concen-
tration and superoxide dismutase (SOD), and catalase (CAT) 
activities were detected in cortical and hippocampal tissues.

As lipid peroxidation index, MDA concentration in 
the hippocampal and cortical tissues was measured ac-
cording to a previously described protocol (Beheshti, 
Karimi, et al.,  2017; Mansouri et al.,  2021). MDA reacts 
with thiobarbituric acid (TBA) to form a red complex. 
The absorbance was read at 535 nm. Besides, total thiol 
concentration was determined in both the hippocampus 
and cortex. In this procedure, the reaction between DTNB 
(2,2′-dinitro-5,5′-dithiol benzoic acid) and thiol groups 
forms a yellow complex. Absorbance was read at 412 nm 
(Beheshti, Karimi, et al., 2017; Mansouri et al., 2021).

The method for both SOD and CAT activity was as previ-
ously reported (Beheshti, Karimi, et al., 2017). The SOD ac-
tivity was measured using the Madesh and Balasubramanian 
processes (Madesh & Balasubramanian,  1998; Mansouri 
et al., 2021). The SOD activity was measured at 570 nm ac-
cording to a colorimetric technique. One unit of SOD was 
equal to the amount of enzyme that should be inhibited by 
50% of the MTT reduction rate. The Aebi method was used 
to measure CAT activity using hydrogen peroxide (30 mM) 
as a substrate (Aebi et al., 1976; Mansouri et al., 2021).

2.4  |  Statistical Analysis

We provided the data as means ± SEM. Repeated meas-
ures ANOVA, one-way ANOVA, and Tukey's post hoc 
tests were utilized to evaluate the behavioral and bio-
chemical data. To evaluate data, SPSS software (version 
26 Chicago, IL) was used. Differences were considered 
statistically significant when p < 0.05.

3   |   RESULTS

3.1  |  PPARγ activation improved the 
performance of the aged rats in MWM

The results indicated that the time and path to reach the hid-
den platform in the Sco group were significantly higher than 

in the Control group (p < 0.05 to p < 0.001). Pretreatment with 
30 mg/kg Pio decreased the escape latency and traveled dis-
tance compared to the Sco group (p < 0.05 to p < 0.001). There 
was no significant difference between the rats pre-treated by 
10 and 20 mg/kg Pio and Sco group in the elapsed time and 
traveled distance to reach the platform (Figure 2a,b).

On probe day, the results showed that animals in the 
Sco group spent less time and traveled a shorter distance 
in the target quadrant than the Control group (p  < 0.01). 
Administration of Pio at the dose of 30 mg/kg, improved the 
spatial memory of rats and the rats spent a longer time and 
traveled longer distance in the target quadrant than the rats 
of Sco group (p < 0.01 for both). Additionally, none of 10 and 
20 mg/kg didn't change the traveling time and distance in the 
target part of MWM (Figure 3a,b). The result also showed 
that the rats of Sco- Pio 30 group spent longer time and trav-
eled longer distance in the target area of MWM than the rats 
of both Sco- Pio 31 and Sco- Pio 20 groups (p < 0.01 for both).

3.2  |  PPARγ activation improved 
performance of the aged rats in PA test

However, by comparing the delay time to enter the dark 
chamber after administering the shock, it was found that 
the rats of Sco group had a shorter time to enter the dark 
chamber at all 3, 24, and 48 h after the shock compared to the 
Control group (p < 0.01 to p < 0.001). The results also showed 
that 30 mg/kg Pio increased delay time compared to the Sco 
group at all times, including 3, 24, and 48 h after the shock, 
and protected against harmful effects of Sco (p < 0.01 at all 
times; Figure 3a). None of 10 and 20 mg/kg was not effective 
on the delay time. In addition, the delay time for entering the 
dark in the rats treated with 30 mg/kg Pio was longer than the 
ones treated with 10 mg/kg (p < 0.05 at all times) (Figure 4a).

The results also showed that the dark time in the Sco 
group was longer in the dark than that in the Control group 
at all 3, 24 ad 48 h after the shock (p < 0.05 to p < 0.01). 
Treatment by the highest dose (30 mg/kg) of Pio was able 
to shorten the dark time at all 3, 24, and 48 h post-shock 
time (p < 0.01 at all times) but the lowest and the medium 
doses were not effective (Figure 4b). The dark time in the 
Sco-Pio 30 was shorter than that in Sco-Pio 10 group at 3 
and 24 h and than Sco-Pio 20 group at 24 h post-shock time 
(p < 0.05 to p < 0.01).

The animals in the Sco group spent a shorter time in 
the light chamber compared to the animals in the Control 
group at all times, including 3, 24, and 48 h after the shock 
(p < 0.05 to p < 0.01; Figure 4a). The highest dose of Pio 
(30 mg/kg) was able to increase the stay time in the light 
compartment at 3, 24, and 48 h after the shock adminis-
tration (p < 0.05 to; Figure 5a) but the medium and lowest 
doses were not effective. The light time in the Scio-Pio 30 
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was longer than that in Sco-Pio 10 group at 3 and 24 h pot 
shock time (p < 0.05 to p < 0.01).

The results of the PA test also showed that the number 
of entries into the dark segment in the animals of the Sco 
group was higher than in the Control group at all 3, 24, 
and 48 h after the shock (p < 0.05 to p < 0.001). The num-
ber of entries into the dark in the Sco-Pio 20 and Sco-Pio 
30 groups at 3 and 48 h and in the Sco-Pio 30 group at 24 h 
after the shock was lower than in the Sco group (p < 0.05 
to p < 0.001). In addition, the dark entries in the Sco-Pio 

30 group were lower than that in Sco-Pio 10 group at both 
3 and 48 h after the shock (p < 0.05; Figure 5b).

3.3  |  PPARγ activation attenuated 
oxidative stress in the hippocampus and 
cortex of the aged rats

MDA concentration was higher in the hippocampus 
and cortex of the Saco group than in the Control group 

F I G U R E  2   The results of traveling time (a) and distance (b) 
in the learning phase of the Morris water maze test. *p < 0.05, 
**p < 0.01, and ***p < 0.001 present the difference between Sco 
group and Control group, #p < 0.05, ##p < 0.01, and ###p < 0.001 
present the difference between Sco-Pio 30 group and Sco group. 
The data are presented as mean ± SEM (n = 7 per group). Sco: 
scopolamine, Sco-Pio 10: scopolamine–pioglitazone 10 mg/
kg, Sco-Pio 20: scopolamine–pioglitazone 20 mg/kg, Sco-Pio 30: 
scopolamine–pioglitazone 30 mg/kg.

F I G U R E  3   The results of traveling time (a) and distance (b) in 
the target area trial on the sixth day of the Morris water maze test in 
which the probe trial was done. *p < 0.05 and **p < 0.01 present the 
difference between other groups and Control group, ++p < 0.01 and 
+++p < 0.001 present the difference between other groups and Sco 
group, #p < 0.05 presents the difference between other Sco-Pio 10, Sco-
Pio 20, and Sco-Pio 30 groups. The data are presented as mean ± SEM 
(n = 7 per group). Sco: scopolamine, Sco-Pio 10: scopolamine–
pioglitazone 10 mg/kg, Sco-Pio 20: scopolamine–pioglitazone 20 mg/
kg, Sco-Pio 30: scopolamine–pioglitazone 30 mg/kg.
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animals (p < 0.05 for both; Figure 5a,b). Pretreatment by 
all doses of Pio including 10, 20, and 30 mg/kg reversed 
the effect of MDA and it was shown that MDA level in 
the hippocampus and cortex of all Sco-Pio 10, Sco-Pio 
20, and Sco-Pio 30 groups was lower than that in the Sco 
group (p  < 0.05 to p  < 0.001). There was no significant 
difference between the effect of three doses of Pio on 
MDA (Figure 6a,b).

Total thiol concentration in both hippocampus and cor-
tex of Sco was lower than the Control group (p < 0.001). 
The highest dose of Pio increased total thiol content in 
the hippocampus of the Sco-Pio 30 group compared to the 
Sco group (p < 0.05). There was no significant difference 
between Sco-Pio 10, Sco-Pio 20, and Control group in the 
total thiol content in the hippocampus. In addition, total 
thiol content in the hippocampus of all Sco-Pio 10, Sco-Pio 

20, and Sco-Pio 30 groups was lower than the Control 
group (p < 0.001). Both 20 and 30 mg/kg of Pio also im-
proved total thiol content in the cortex of Sco-Pio 20 and 
Sco-Pio 30 groups compared to the Sco group (p  < 0.05 
and p  < 0.01, respectively) but 10 mg/kg of Pio was not 
effective (Figure 5a,b). In addition, total thiol content in 
the hippocampus of the Sco-Pio 10 group was lower than 
the Control group (p  < 0.01). Finally, thiol concentra-
tion in both hippocampus and cortex of the Sco-Pio 20 
group was higher than in the Sco-Pio 10 group (p < 0.05) 
(Figure 7a,b).

The results of the study showed that both hippocampal 
and cortical SOD activity was decreased in the Sco group 
compared to the Control group (p  < 0.01 and p  < 0.001, 
respectively). The results also showed that SOD activity 
in the hippocampus of Sco-Pio 20 and Sco-Pio 30 groups 

F I G U R E  4   The results of delay for 
entering the dark (a–c) and the total dark 
time (d–f) in the passive avoidance test. 
*p < 0.05, **p < 0.01, and ***p < 0.001 
present the difference between other 
groups and Control group, +p < 0.05 
and ++p < 0.01 present the difference 
between other groups and the Sco group, 
#p < 0.05 and ##p < 0.01 present the 
difference between Sco-Pio 10, Sco-Pio 
20, and Sco-Pio 30 groups. The data are 
presented as mean ± SEM (n = 7 per 
group). Sco: scopolamine, Sco-Pio 10: 
scopolamine–pioglitazone 10 mg/kg, Sco-
Pio 20: scopolamine–pioglitazone 20 mg/
kg, Sco-Pio 30: scopolamine–pioglitazone 
30 mg/kg.
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and the cortex of all Sco-Pio 10, Sco-Pio 20, and Sco-Pio 30 
groups was higher than that in the Sco group (p < 0.05 to 
p < 0.001) (Figure 8a,b).

The biochemical results also showed that CAT activity 
in both hippocampus and cortex of the Sco group was 
decreased compared to the Control group (p < 0.001 for 
both). Pretreatment by 20 and 30 mg/kg Pio improved 
CAT activity in both hippocampus and cortex of both 
Sco-Pio 20 and Sco-Pio 30 groups compared to the Sco 
group (p  < 0.01 to p  < 0.001). Both hippocampal and 
cortical CAT in Sco-Pio 30 group was higher than that 
of both Sco-Pio 10 and Sco-Pio 20 groups (p  < 0.01 to 
p < 0.001). In addition, CAT activity in both hippocam-
pus and cortex of all Sco-Pio 10, Sco-Pio 20, and Sco-
Pio 30 groups was lower than that in the Control group 
(p < 0.001) (Figure 9a,b).

4   |   DISCUSSION

The results of the present study showed that Pio as an ago-
nist of PPARγ improved the learning and memory of Sco-
injected aged rats. It also attenuated oxidative stress in the 
hippocampus and cortex.

Aging is a complex biochemical phenomenon that can 
contribute to the functional deterioration of different body 
tissues. In addition, it increases the vulnerability to many 
chronic diseases (Ma et al., 2020). Cholinergic dysfunction 
has been repeatedly suggested to be affected by aging to 
contribute to cognitive impairments (Pepeu & Marconcini 
Pepeu, 1994). In the current research, Sco-treated rats had 
weaker performances in the MWM which was indicated by 
longer time and distance for reaching the platform during 
5 days of learning of MWM in the Sco group compared to 

F I G U R E  5   The results of the total 
light time (a–c) and the number of 
entries into the light (d–f) in the passive 
avoidance test. *p < 0.05, **p < 0.01, 
and ***p < 0.001 present the difference 
between other groups and Control group, 
+p < 0.05, ++p < 0.01, and +++p < 0.001 
present the difference between other 
groups and the Sco group, #p < 0.05 
and ##p < 0.01 present the difference 
between Sco-Pio 10, Sco-Pio 20, and 
Sco-Pio 30 groups. The data are presented 
as mean ± SEM (n = 7 per group). Sco: 
scopolamine, Sco-Pio 10: scopolamine–
pioglitazone 10 mg/kg, Sco-Pio 20: 
scopolamine–pioglitazone 20 mg/kg, 
Sco-Pio 30: scopolamine–pioglitazone 
30 mg/kg.
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the Control group. The rats of the Sco group also spent a 
shorter time and traveled a shorter distance in the target 
area in the probe test of MWM. These data confirm that 
Sco administration impaired spatial learning and memory 
of the aged rats. These results were also confirmed by the 
results of the PA test in which the rats of the Sco group had 
a shorter delay for entering the dark and spent a longer time 
in the dark than the animals of the Control group. The rats 
of the Sco group also spent a shorter time in the light seg-
ment of the PA test and had a higher number of entries into 
the dark chamber than the Control group.

The possible molecular pathways involved in cognitive 
deficits due to aging have not been sufficiently understood 
so far. Oxidative stress has been shown to play a key role in 
the progression of aging (Melo et al., 2011). Brain tissue ox-
idative damage accompanied by cholinergic dysfunction 
has been repeatedly considered to have important roles 
in cognitive deficits and learning and memory disabili-
ties, especially during aging (Giudetti et al., 2018). In the 
current study, the poorer performance of the Sco- treated 
rats in MWM and PA tests was accompanied by a higher 
concentration of MDA as an index of lipid peroxidation, 

F I G U R E  6   The results of MDA concentration in the 
hippocampus (a) and cortex (b). *p < 0.05 and **p < 0.01 present 
the difference between other groups and Control group, +p < 0.05, 
++p < 0.01, and +++p < 0.001 present the difference between other 
groups and Sco group. The data are presented as mean ± SEM 
(n = 7 per group). MDA: malondialdehyde, Sco: scopolamine, 
Sco-Pio 10: scopolamine–pioglitazone 10 mg/kg, Sco-Pio 20: 
scopolamine–pioglitazone 20 mg/kg, Sco-Pio 30: scopolamine–
pioglitazone 30 mg/kg.

F I G U R E  7   The results of thiol concentration in the 
hippocampus (a) and cortex (b). **p < 0.01, and ***p < 0.001 present 
the difference between other groups and Control group, +p < 0.05 
and ++p < 0.01 present the difference between other groups and Sco 
group, #p < 0.05 presents the difference between Sco-Pio 10, Sco-Pio 
20, and Sco-Pio 30 groups. The data are presented as mean ± SEM 
(n = 7 per group). Sco: scopolamine, Sco-Pio 10: scopolamine–
pioglitazone 10 mg/kg, Sco-Pio 20: scopolamine–pioglitazone 
20 mg/kg, Sco-Pio 30: scopolamine–pioglitazone 30 mg/kg.
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lower level of thiol, and lower activities of SOD and CAT 
which may imply that oxidative damage in the hippocam-
pus and cortex has an important role learning and mem-
ory impairment.

In support of this idea, aging has been documented 
to induce neurodegeneration (Zhang et al.,  2008), al-
teration of neurotransmission in different areas of the 
brain (Wang et al.,  2018), and oxidative stress (Zhang 
et al., 2008). Other studies have shown that Sco-induced 
memory impairment has been linked to increased ox-
idative stress in the brain, as well as specific regions 

associated with learning and memory (Budzynska 
et al.,  2015). We also previously showed Sco- induced 
learning and memory impairment was accompanied by 
oxidative damage in the hippocampus and cortex which 
was improved by the antioxidant agents (Hejazian 
et al., 2016; Hosseini et al., 2015).

Activating PPAR-γ by other agonists has been fre-
quently examined to treat oxidative stress-related dis-
eases such as diabetes (Chan et al.,  2010; Kleinhenz 
et al.,  2009; Yousefipour et al.,  2010) and some brain 
disease such as AD and Parkinson's disease (Hunter & 

F I G U R E  8   The results of SOD activity in the hippocampus (a) 
and cortex (b). **p < 0.01, and ***p < 0.001 present the difference 
between other groups and Control group, +p < 0.05, ++p < 0.01, 
and +++p < 0.001 present the difference between other groups 
and Sco group. The data are presented as mean ± SEM (n = 7 per 
group). SOD: superoxide dismutase, Sco: scopolamine, Sco-Pio 10: 
scopolamine–pioglitazone 10 mg/kg, Sco-Pio 20: scopolamine–
pioglitazone 20 mg/kg, Sco-Pio 30: scopolamine–pioglitazone 
30 mg/kg.

F I G U R E  9   The results of CAT activity in the hippocampus (a) 
and cortex (b). ***p < 0.001 presents the difference between other 
groups and Control group, ++p < 0.01 and +++p < 0.001 present the 
difference between other groups and the Sco group, ##p < 0.01 and 
###p < 0.001 present the difference between Sco-Pio 10, Sco-Pio 
20, and Sco-Pio 30 groups. The data are presented as mean ± SEM 
(n = 7 per group). CAT: catalase, Sco: scopolamine, Sco-Pio 10: 
scopolamine–pioglitazone 10 mg/kg, Sco-Pio 20: scopolamine–
pioglitazone 20 mg/kg, Sco-Pio 30: scopolamine–pioglitazone 
30 mg/kg.
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Bing, 2007; Lee et al., 2010). It has also been frequently 
shown that PPAR-γ agonists including Pio was able to 
decrease the superoxide anion generation and lipid per-
oxidation while they were able to increase the activities 
of antioxidant enzymes such as SOD and CAT (Girnun 
et al., 2002; Villegas et al., 2004; Yoo et al., 1999). With 
keeping in mind that the antioxidants can reverse learn-
ing and memory deficits induced by Sco we assumed that 
Pio may improve learning and memory impairments. 
Interestingly, pretreatment of the Sco-treated aged rats 
with Pio increased the latency to enter the dark while, 
decreasing the total time spent in the dark chamber, in-
creasing the total time spent in the light, and decreasing 
entries into the dark indicating improvement in learn-
ing and memory. Also in MWM, the rats that received 
Pio have a better function to find the platform in 5 days 
and they had a shorter traveling time and distance to 
reach the platform. They also did better tasks on probe 
day and traveled longer time and distance in the target 
area than the Sco group. The results were in agreement 
with our previous works in which Pio improved learn-
ing and memory impairments induced by lipopolysac-
charide (Beheshti et al., 2019). In our previous studies, 
the beneficial effects of Pio were attributed to antioxi-
dative effects (Beheshti et al., 2019). Other studies also 
confirmed the learning and memory improving effects 
of Pio in other animal models and its beneficial effects 
on cognitive functions including learning and mem-
ory were attributed to the antioxidant effects (McGuire 
et al., 2019).

Other recent studies have suggested that PPARγ ag-
onists have some benefits for the nervous system (62–
64). In particular, Pio supplementation has been capable 
of protecting cultured hippocampal neurons against 

neurotoxic agents (65). Additionally, ROS production 
and brain tissue oxidative damage have been well known 
to play an important role in learning and memory im-
pairments (Beheshti, Hosseini, et al., 2017). Also previ-
ously we showed that Pio had some antioxidant effects 
(Dobrian et al., 2004). The results of the current study 
also showed that Pio decreased MDA while increasing 
thiol, SOD, and catalase. Thus, the ability of Pio to re-
verse Sco-induced learning and memory impairments 
in aged rats which were seen in the present study may 
at least in part be due to enhancement of the antioxi-
dant defense system and attenuation of oxidative stress 
in the hippocampus and cortex (Pathan et al.,  2006). 
This action might result from its ability to overcome 
the pro-oxidant effects of Sco in the hippocampus and 
cortex, through the increase in antioxidant defense sys-
tems including GSH, SOD, and CAT, and a decrease in 
MDA and nitrite levels in the hippocampus and cortex 
(Ciobica et al., 2011). Based on the results obtained from 
the behavioral and biochemical studies, it may be sug-
gested that Pio may act directly as a free radical scav-
enger or regulator to ameliorate oxidative stress in the 
nervous system (Ekladious & El Sayed, 2019). A graph-
ical diagram illustrates the main findings of this study 
and their connection (Figure 10).

5   |   CONCLUSION

In conclusion, the results of the current study showed that 
PPARγ activation by Pio as an agonist improved learning 
and memory in aged rats. It seems that the effect is due to 
its ability in attenuating oxidative stress in the hippocam-
pus and cortex.

F I G U R E  1 0   A graphical diagram 
that illustrates the main findings of this 
study and their connection.
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