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Abstract 

Background:  Multi-locus genotype data are widely used in population genetics and 
disease studies. In evaluating the utility of multi-locus data, the independence of mark-
ers is commonly considered in many genomic assessments. Generally, pairwise non-
random associations are tested by linkage disequilibrium; however, the dependence of 
one panel might be triplet, quartet, or other. Therefore, a compatible and user-friendly 
software is necessary for testing and assessing the global linkage disequilibrium 
among mixed genetic data.

Results:  This study describes a software package for testing the mutual independ-
ence of mixed genetic datasets. Mutual independence is defined as no non-random 
associations among all subsets of the tested panel. The new R package “mixIndependR” 
calculates basic genetic parameters like allele frequency, genotype frequency, het-
erozygosity, Hardy–Weinberg equilibrium, and linkage disequilibrium (LD) by mutual 
independence from population data, regardless of the type of markers, such as simple 
nucleotide polymorphisms, short tandem repeats, insertions and deletions, and any 
other genetic markers. A novel method of assessing the dependence of mixed genetic 
panels is developed in this study and functionally analyzed in the software package. By 
comparing the observed distribution of two common summary statistics (the number 
of heterozygous loci [K] and the number of share alleles [X]) with their expected distri-
butions under the assumption of mutual independence, the overall independence is 
tested.

Conclusion:  The package “mixIndependR” is compatible to all categories of genetic 
markers and detects the overall non-random associations. Compared to pairwise 
disequilibrium, the approach described herein tends to have higher power, especially 
when number of markers is large. With this package, more multi-functional or stronger 
genetic panels can be developed, like mixed panels with different kinds of markers. In 
population genetics, the package “mixIndependR” makes it possible to discover more 
about admixture of populations, natural selection, genetic drift, and population demo-
graphics, as a more powerful method of detecting LD. Moreover, this new approach 
can optimize variants selection in disease studies and contribute to panel combination 
for treatments in multimorbidity. Application of this approach in real data is expected 
in the future, and this might bring a leap in the field of genetic technology.
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Availability:  The R package mixIndependR, is available on the Comprehensive R 
Archive Network (CRAN) at: https​://cran.r-proje​ct.org/web/packa​ges/mixIn​depen​dR/
index​.html.

Keywords:  Linkage disequilibrium, R package, Non-random association, Mutual 
independence, STRs, SNPs

Background
Genetic polymorphisms are commonly classified into different types, such as SNPs, 
InDels, and STRs. Different characteristics, such as mutation rates, deviations, and 
heterozygosity, make those markers isolated in application. However, due to their 
specific advantages, such as the higher power of discrimination of STRs, and the 
important roles of SNPs in application of ancestry informative markers (AIMs) and 
prediction of physical traits [1], mixed multiplex assays are considered more multi-
functional [2–4] in some applications of molecular genetics. While there are many 
studies that compare one marker to others of their kind (SNPs to SNPs, STRs to 
STRS), only rarely are comparisons made between marker classes. A few notable 
exceptions include a 2002 study that noted the linkage disequilibrium (LD) of SNPs 
and microsatellites [5]. Later in 2017, 13 CODIS STR markers were found to be 
matched to genome-wide SNP profiles with median accuracies in excess of 90% [4]. 
Even though the disequilibrium among different markers can be significant and the 
hypothesis of independence may require testing, most of the software available now 
is designed specifically for one kind of those markers. For example, adegenet, which 
analyzes SNPs and STRs separately; BCFTools [6] and SNPrelate [7], both of which 
focus on SNPs; and Genetic Data Analysis (GDA) [8], which targets at STRs specially. 
Therefore, a software compatible with multi-type genetic markers simultaneously that 
can test independence between different type of data is needed.

Another shortcoming of traditional measures of LD is the way it is assessed, that is 
to test pairwise linkage disequilibrium. However, due to more accurate conception, 
non-random associations can be not only pairwise associations, but also triplet, quar-
tet, and higher order associations among all sites, defined as mutual independence. D′ 
is sometimes used to assess the higher-level associations, but it is time consuming to 
obtain due to numerous calculations. Therefore, summary statistics become a choice 
to avoid all these excess and burden.

A new package, mixIndependR, was developed for testing mutual independence 
among all sites of the multi-locus genotypes mixed type of genetic markers for the 
R software. As a larger category of dependency across all over the panel needs to be 
tested, summary statistics, which are able to give a quick and comprehensive descrip-
tion of the dataset, came into consideration. In an early study [9, 10], summary sta-
tistics, such as the number of heterozygous loci (K) and the number of shared alleles 
(X), were used to test the significance of disequilibrium (non-random associations) 
or dependency between loci by comparing the observed and expected distributions 
under the hypothesis of mutual independence. Functions for obtaining basic genetic 
parameters like allele frequency, genotype frequency, heterozygosity, and Hardy–
Weinberg equilibrium (HWE) are also included in mixIndependR to increase its 
versatility.

https://cran.r-project.org/web/packages/mixIndependR/index.html
https://cran.r-project.org/web/packages/mixIndependR/index.html
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Results
Software pipeline

This section presents how a multi-locus genotype panel with mixed genetic markers 
(SNPs and STR) can be tested for its mutual independence using mixIndependR. In 
the following example, a sample with 6 STRs and 94 SNPs (Additional file 8: Table S1) 
was tested using mixIndependR. This panel was designed after variant selection and 
pruning with the threshold r2 < 0.1 by plink (version 1.90), based on the genotypes 
and the reference panel created by Saini et  al. [11]. This reference haplotype panel 
was created by imputing STR genotypes into existing SNPs datasets. The STRs were 
selected from genome-wide catalog of STR variation they generated in Simons Sim-
plex Collection (SSC) cohort, and genotype data for 2504 individuals are from existing 
1000 genome phase 3 [11]. The threshold for independent panels is usually set as 0.2 
[12, 13], but here we narrowed the scope in pruning to get a panel with less possibility 
to carry dependency. In addition, pairwise correlations of this dataset were exported 
and check, and no dependent pairs have been found with the usual threshold of 0.2. 
This dataset is included in the mixIndependR package under the name “mixexample”. 
mixIndependR is compatible with genotype files in a tabular format (e.g., excel, cvs) 
and the variant call format (vcf ) [14]. The allele separator in the genotypes needs to 
be specified using the “sep” parameter.

•	 x <- mixexample # This panel with 96 SNPs and 4 STRs are filtered from a refer-
ence haplotype panel developed by Saini et al. [11]

mixIndependR can be used to estimate basic genetic parameters, such as allele fre-
quencies, tables of heterozygosity and of shared alleles, and to test Hardy Weinberg 
equilibrium in either Pearson’s.

Chi‑squared test.

•	 p <- AlleleFreq(x,sep = "\\|") # calculate the table of allele frequencies and return a 
table with rows of alleles and columns of markers (Additional file  9: Table S2).

•	 G <- GenotypeFreq(x,sep = "\\|",expect = FALSE) # calculate the observed geno-
type frequencies with genotypes in rows and markers in columns.

•	 G0 <- GenotypeFreq(x,sep = "\\|",expect = TRUE) # calculate the expected geno-
type frequencies under Hardy–Weinberg equilibrium (HWE).

•	 h <- Heterozygous(x,sep = "\\|") # obtain the table of heterozygosity with rows 
of individuals and columns of markers, where “1” denotes heterozygous while “0” 
denotes homozygous (Additional file 10: Table S3).

•	 H <- RxpHetero(h,p,HWE = TRUE) # calculate the observed average heterozy-
gosity or the expected heterozygosity on each marker under the assumption of 
HWE.

•	 AS <- AlleleShare(x,sep = "\\|",replacement = FALSE) # calculate the table of 
shared alleles of each pair of individuals for each marker with the rows denot-
ing the pairs of individuals and the columns denoting the variants. If the replace-
ment is TRUE, the pairs are formed with replacement randomly and this table 
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includes all possible pairs; if the replacement is FALSE, the pairs are formed with-
out replacement randomly and the number of pairs equals half of the sample size. 
(Additional file 11: Table S4).

•	 e <- RealProAlleleShare(AS) # calculate the observed proportions of sharing 0, 1 
or 2 alleles on each marker.

•	 e0 <- ExpProAlleleShare(p) # calculate the expected probabilities of sharing 0, 1 
or 2 alleles on each marker for any unrelated individuals. This process is according 
to the functions described by Weirs et al. [15]

•	 HWE_pvalue <- HWE.Chisq(G,G0,rescale.p = T, simulate.p.value = T,B = 2000) 
# test the HWE with Pearson’s Chi-square test and export the p value for each 
marker.

According to the mathematical principles described in previous studies of 
Chakraborty et al. [9, 10], the observed and expected distribution of the number of 
heterozygous loci (K) and number of share alleles (X) can be constructed and visual-
ized (Additional file 1: Figure S1, Additional file 2: Figure S2).

•	 ObsDist_K <- FreqHetero(h) # calculate the observed distribution of K, exporting 
the frequencies of K at the values from 0 to total number of tested markers.

•	 ExpDist_K <- DistHetero(H) # calculate the expected distribution of K, exporting 
the probabilities of K at the values from 0 to total number of tested markers.

•	 ObsDist_X <- FreqAlleleShare(AS) # calculate the observed distribution of X, 
exporting the frequencies of X at the values from 0 to 2 times of total number of 
tested markers.

•	 ExpDist_X <- DistAlleleShare(e) # calculate the expected distribution of X, 
exporting the probabilities of X at the values from 0 to 2 times of total number of 
tested markers.

•	 df_K <- ComposPare_K(h,ExpDist_K,trans = F) #generate comparison data frame 
for observed and expected distributions. If “trans = F”, the table contains a vari-
able “OvE” denoting the category of “observed” or “expected”, and a variable “Freq” 
denoting the frequencies. This format is prepared for visualization in “ggplot2”. If 
“trans = T”, the result is made by two columns- “K_io” and “K_ie” which denoting 
the observed and expected K for each individual, and the number of rows equals 
to the number of individuals of the sample.

•	 df_X <- ComposPare_X(AS,ExpDist_X,trans = F) #generate comparison data 
frame for observed and expected distributions. If “trans = F”, the table contains 
a variable “OvE” denoting the category of “observed” or “expected”, and a vari-
able “Freq” denoting the frequencies. This format is prepared for visualization 
in “ggplot2”. If “trans = T”, the result is made by two columns- “X_io” and “X_ie” 
which denoting the observed and expected X for each pair of individuals, and the 
number of rows equals to the number of pair of individuals of table of number of 
shared alleles AS.

Not only were the visual comparisons made, but statistical tests were also con-
ducted using this package. Considering the expected distributions under assumption 
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of mutual independence follow restricted multinomial distributions with fixed prob-
abilities on each trial, no traditional statistic tests can be applied (e.g. traditional chi-
square test for multinomial distribution). Instead, simulations were conducted to 
obtain null distributions of chi-square values and cumulative probability functions 
were built to find an accurate critical value.

•	 Simu_K <- Simulate_DistK(H,2504,500) #build 500 times of simulations for distribu-
tion of K with the sample size equals to the original data for each simulation, under 
the mutual independence assumption (Additional file 12: Table S5).

•	 Simu_X <- Simulate_DistX(e,1252,500) #build 500 times of simulations for distribu-
tion of X with the sample size equals to the number of pairs composed in “AS” table 
for each simulation, under the mutual independence assumption (Additional file 13: 
Table S6).

•	 x2_K <- Dist_SimuChisq(Simu_K,ExpDist_K$Density,1000) # Calculate 500 Chi-
square values for K with 1000 times of replicates in each and export the set of p val-
ues.

•	 x2_X <- Dist_SimuChisq(Simu_X,ExpDist_X$Density,1000) # Calculate 500 Chi-
square values for X with 1000 times of replicates in each and export the set of p val-
ues.

•	 P1 <- ecdf(x2_K) #Build the cumulative probability of function for the set of Chi-
square values. Note: this is the function in the package of “stats”.

•	 P2 <- ecdf(x2_X) #Build the cumulative probability of function for the set of Chi-
square values. Note: this is the function in the package of “stats”.

If the significant level is 0.05, the critical value of the chi-square value for each specific 
expected distribution is the value when cumulative probability equals 95%. In Additional 
file 3: Figure S3 and Additional file 4: Figure S4, the cross points of vertical and horizon-
tal line are the critical values. In this example, the critical value for K is 112.9 and the 
test chi-square value equals 77.417; while 115.0 as critical value for X and test statistic 
is 62.229. In both statistics, we fail to reject the null hypothesis and may conclude the 
panel is mutual independent. This results also agree with the selection rules in the pro-
cess of variant pruning on plink that the pairwise squared correlation between genotype 
allele counts “--indep-pairwise” is smaller than 0.1 [16, 17]. However, the result in this 
section represents a single analysis, and the results can vary among different trials.

Statistical analysis

Both simulation and real data have been tested with this approach. We simulated 
unlinked and linked data under the Wright-Fisher neutral model using the software ms 
[18]; the microsatellite data were converted by microsat [19] from ms format. In the sin-
gle-comparison example, we used the simulated panel with 20 STRs and 10 SNPs for 
unlinked and fully-linked scenarios and the sample size is 500 in each case. The compar-
isons of the single-run for unlinked data and fully-linked data were made and presented 
in Figs. 1 and 2.

Consistent with expectations, the unlinked STR-SNP panel shows significant differ-
ence neither for K (p value = 0.26) (Fig. 1a) or X (p value = 0.13) (Fig. 1b). At the same 
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time, significant LD is detected for both of K (p value < 0.0001) and X (p value < 0.0001) 
at the fully linked STR-SNP panels (Fig. 1c, d). It is contrastive that, for the simulated 
unlinked panel, the observed distribution of K and X matched the expected one visually 
under the assumption of mutual independence while, for the fully-linked panel, there is 
significant offset between the observed and expected distributions.

For the unlinked panel, the test statistic of K is 19.40 and that of X is 33.31, both 
smaller than the critical value 39.00 and 50.00, respectively (Fig. 2a, b). However, the test 
values (1,559,984 and 6.8834 × 1012 for K and X, respectively) for the fully linked panel 
are much larger than the critical values (35.00, 52.00 for K and X, respectively) (Fig. 2c, 
d).

Simulated data with different levels of linkage were tested to determine the type I error 
and power of the method. Figures 1 and 2 presents the results for completely unlinked 
and fully linked panels (20 STRs and 10 SNPs). To test different extents of LD more ade-
quately, different numbers of random selected genetic unlinked and fully linked mark-
ers were imported to the package and tested for mutual independence. p-value, which 
equals to one minus the cumulative probability was chosen as the statistic. Among the 
1000 in silico replicates, the percentages of significant cases are recorded in Table 2 for 
different levels of linkage. In this process, mixed panels made up with equal numbers of 

Fig. 1  Distribution of number of heterozygous loci and shared alleles for unlinked vs fully linked data. The 
simulated dataset is a mixed genetic panel with 20 STRs and 10 SNPs for 500 random individuals. a, b are 
the distribution comparisons of number of heterozygous loci and Shared Alleles (non-overlapped pairs) for 
unlinked data. All STRs and SNPs were generated from different chromosomes randomly. c, d are distribution 
comparisons of number of heterozygous loci and Shared Alleles (non-overlapped pairs) for linked data. All 
STRs were from the same chromosome, and all SNPs were from the same chromosome. However, STRs and 
SNPs were randomly grouped. Red line in plots are curves of expected probabilities



Page 7 of 21Song et al. BMC Bioinformatics           (2021) 22:12 	

SNPs and STRs were simulated, and each level of linkage was set up in three ways: biased 
to SNPs, biased to STRs, and unbiased. For example, in a panel of 20 markers, 10 SNPs 
and 10 STRs were selected; if the linkage is set as half-linked in the SNP-biased panel, 
there would be 10 linked SNPs and 10 unlinked STRs. In contrast, if the panel is STR-
biased, 10 linked STRs and 10 unlinked SNPs would be chosen. In the unbiased group, 
the linked STRs and linked SNPs are always of the same number, which is 5 linked SNPs, 
5 linked STRs, 5 unlinked SNPs, and 5 unlinked STRs in the unbiased half-linked panels 
of 20 markers (Details in Tables 1, 2 and Additional file 14: Table S7).

For the unlinked panels, the proportion of p values smaller than 0.05 was approxi-
mately 50 out of 1000 times. As the number of markers increased, the proportions 
of significant results became closer to 0.05 (Table 2 and Additional file 14: Table S7). 
The significant cases in the unlink panel are the Type I errors, which indicates the 
significance level is about 0.05 for this method. In a fully linked dataset, the power of 
this test was over 50% when one panel had more than 20 markers, and as the sizes of 
panels increase, the power of K and X is stronger and stronger.

As the visualization of Table 2 and Additional file 14: Table S7, comparison of dif-
ferent levels of linked data is presented in Fig. 3 (Fig. 3). In addition, three linkage bias 
scenarios were also compared at each level of linkage (Additional file  5: Figure S5), 
and the comparisons of K and X are shown in Additional file 6: Figure S6.

Fig. 2  Curve of cumulative probability of Chi-square values for number of heterozygous loci or shared alleles. 
Red line is where the critical value lies for the confidence level of 95%; while the blue one is the test statistic. 
a, b are figures for unlinked data; c, d are figures for fully linked data. In (c) and (d), the test statistic is far larger 
than the critical value, and beyond the limit of x-axis
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The power of mixIndependR appears to follow three basic trends: (1) when the number 
of markers increases, the power of testing increases (Fig. 3); (2) compared to STRs, link-
age in SNPs gives more power for linkage tests (Additional file 5: Figure S5); (3) between 
the two summary statistics, the number of heterozygous loci (K) can detect dependency 
more often than the number of shared alleles (X) for the same panel (Additional file 6: 
Figure S6).

When there is only one pair of genetic markers linked, neither of the two methods 
detected the dependency effectively. In half-quarter-linked panels, the SNP-biased 
group has a little higher power than STR-biased group- around 10–40% on K and 6% 
to 18% on X; and power of the unbiased group is between SNP-biased and STR-biased 
groups, but none of the three groups present a strong enough power in half-quarter-
linked panels. However, for quarter- or higher-levels of linkage both K and X yield 
power greater than 50% when the number of parkers is no less than 60 in SNP-biased 
group. In contrast, only the three-quarter of linkage and almost-linkage (one pair of 
markers not linked) can be detected in the STR-biased group. Only with more than 
40 markers can the power of STR-biased panels reach 50% and more. In the unbi-
ased group where the number of linked SNPs and linked STRs are equal, K presented 

Table 1  The rules of panel design for power test of simulation

The “PanelSize” is the number of markers in each panel and in each panel, half markers are SNPs and the other half markers 
are STRs. In this table to illustrate the rules of design, “PanelSize” is set to “x”

The variable “Linkage” is defined as the percentage of linked markers among the total. For example, if the “PanelSize” is x, the 
number of linked markers is 0.5x, then the “Linkage” equals to “Half-Linked”. The “OnePair-Linked” and “Almost-Linked” have 
unfixed percentage of linked markers but hold the numbers of linked or unlined markers. If there are only 2 linked markers, 
the “Linkage” is defined as “OnePair-Linked”; if there are only 2 unlinked markers and all others are linked, the “Linkage” is 
defined as “Almost-Linked”

The variable “Bias” is defined as the distribution of linked markers. If the number of linked SNPs is larger than linked of STRs, 
the “Bias” equals to “SNP”; in contrast, if the number of linked SNPs is smaller than linked STRs, the “Bias” equals to “STR”; 
but if the number of linked SNPs and STRs are the same, “Bias = Both”. When the linked markers are less than 50% of total 
markers, in the biased groups, all linked markers are the same type of markers- the biased one. When the linkage is higher 
than “Half-Linked”, all the biased markers are linked, and the unlinked markers are found on the other type

Panel size Number of linked 
markers

Number 
of linked SNPs

Number 
of linked STRs

Linkage Bias

x 0 0 0 Unlinked Both

x 2 2 0 OnePair-Linked SNP

x 2 0 2 OnePair-Linked STR

x 0.125x 0.125x 0 HalfQuarter-Linked SNP

x 0.125x 0 0.125x HalfQuarter-Linked STR

x 0.125x 0.0625x 0.0625x HalfQuarter-Linked Both

x 0.25x 0.25x 0 Quarter-Linked SNP

x 0.25x 0 0.25x Quarter-Linked STR

x 0.25x 0.125x 0.125x Quarter-Linked Both

x 0.5x 0.5x 0 Half-Linked SNP

x 0.5x 0 0.5x Half-Linked STR

x 0.5x 0.25x 0.25x Half-Linked Both

x 0.75x 0.5x 0.25x ThreeQuarter-Linked SNP

x 0.75x 0.25x 0.5x ThreeQuarter-Linked STR

x 0.75x 0.375x 0.375x ThreeQuarter-Linked Both

x x-2 0.5x 0.5x-2 Almost-Linked SNP

x x-2 0.5x-2 0.5x Almost-Linked STR

x x 0.5x 0.5x Fully-Linked Both
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Table 2  Proportion of p values < 0.05 in  1000 times  for  different levels of  linkage using 
summary statistics (only “Bias = Both” is  shown, more details in  Additional file  14: 
Table S7)

For both number of heterozygous loci and number of shared alleles, the proportions of detecting dependency in unlinked 
dataset are approximately less than 5%; in fully linked dataset, is over 70% when the number of markers is larger than 10. 
When the percentage of linked markers increases, the power of test increases

X.1 Panel size Number 
of linked 
markers

Linkage Bias Total number 
of heterozygous 
loci (K)

Total number 
of shared alleles 
(X)

1 10 0 Unlinked Both 0.047 0.039

2 20 0 Unlinked Both 0.05 0.036

3 30 0 Unlinked Both 0.051 0.048

4 40 0 Unlinked Both 0.055 0.038

5 50 0 Unlinked Both 0.045 0.053

6 100 0 Unlinked Both 0.047 0.051

31 16 2 HalfQuarter-Linked Both 0.045 0.044

32 32 4 HalfQuarter-Linked Both 0.069 0.041

33 48 6 HalfQuarter-Linked Both 0.072 0.063

34 64 8 HalfQuarter-Linked Both 0.082 0.065

35 80 10 HalfQuarter-Linked Both 0.094 0.068

36 96 12 HalfQuarter-Linked Both 0.109 0.069

53 8 2 Quarter-Linked Both 0.015 0.047

54 16 4 Quarter-Linked Both 0.03 0.058

55 24 6 Quarter-Linked Both 0.057 0.074

56 32 8 Quarter-Linked Both 0.052 0.094

57 40 10 Quarter-Linked Both 0.186 0.09

58 64 16 Quarter-Linked Both 0.303 0.137

59 80 20 Quarter-Linked Both 0.382 0.154

60 96 24 Quarter-Linked Both 0.421 0.209

81 8 4 Half-Linked Both 0.011 0.116

82 12 6 Half-Linked Both 0.29 0.15

83 16 8 Half-Linked Both 0.326 0.171

84 20 10 Half-Linked Both 0.388 0.221

85 24 12 Half-Linked Both 0.419 0.242

86 32 16 Half-Linked Both 0.513 0.297

87 40 20 Half-Linked Both 0.638 0.374

88 60 30 Half-Linked Both 0.83 0.516

89 80 40 Half-Linked Both 0.934 0.687

90 100 50 Half-Linked Both 0.982 0.819

105 16 12 ThreeQuarter-Linked Both 0.582 0.372

106 24 18 ThreeQuarter-Linked Both 0.738 0.499

107 32 24 ThreeQuarter-Linked Both 0.845 0.635

108 40 30 ThreeQuarter-Linked Both 0.914 0.719

109 64 48 ThreeQuarter-Linked Both 0.986 0.943

110 80 60 ThreeQuarter-Linked Both 0.997 0.974

111 96 72 ThreeQuarter-Linked Both 0.999 0.995

124 10 10 Fully-Linked Both 0.604 0.404

125 20 20 Fully-Linked Both 0.835 0.691

126 30 30 Fully-Linked Both 0.957 0.849

127 40 40 Fully-Linked Both 0.989 0.936

128 50 50 Fully-Linked Both 0.997 0.973

129 100 100 Fully-Linked Both 1 1



Page 10 of 21Song et al. BMC Bioinformatics           (2021) 22:12 

more than 50% power when panel sizes were greater than 32 in half-linked panels and 
greater than 16 in three-quarter-linked panels; the power of X is not as strong as K, 
only greater than 50% when panel sizes are over 60 in half-linked panels and over 32 
in three-quarter-linked panels. In another direction, the number of shared alleles (X) 
has a lower power than the number of heterozygous loci (K), but the type-I error is 
larger for K when the panel size is small (Fig. 3 and Additional file 6: Figure S6).

Fig. 3  Power and significance level (proportion of p values < 0.05) for different levels of linkage. X-axis 
denotes the number of markers in one panel; Y-axis denotes the proportion of cases when p values < 0.05 
out of 1000 cases. For the completely unlinked panels, this proportion means significance level (Type I error) 
in null hypothesis; for other panels with linkages, this proportion means power (1- type II error) of these 
two methods. a–c are figures of K and d–f are figures of X. a, d are panels with all linked markers are SNPs; 
b, e are panels with all linked markers on STRs; c, f are panels with equal number of linked SNPs and STRs. In 
condition, power increases with panel size extends; linkage on SNPs contributes more power than STRs; and 
K shows more power than X. For SNP-biased (linkage on SNPs) panels, dependency can be detected when 
linkage is quarter-linked or more; but for STR-biased panels, only three-quarter-linked and almost -linked 
panels can be tested as dependent panels. In unbiased panels, half-quarter-linkage are also hardly to be 
detected
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Afterwards, pure SNP panels were chosen tested to compare summary statistics and 
other methods. When the panels have more than 10 SNPs the power of both methods are 
larger than 50%, even in quarter-linked scenarios. For little-linked panels where only one 
pair of SNPs in linkage, summary statistics are able to detect with power of about 10–20% 
when panel size are smaller than twenty SNPs, which is much more powerful than pair-
wise LD. For quarter and half-linked panels, summary statistics presented their advantage 
with distinguished power for larger panels. In half-linked panels, summary statistics can 
detect linkage disequilibrium with power of approximately 75–80% when the sample size 
is larger than 20 and more than 40–50% in quarter-linked panels when the panel sizes are 
not smaller than 30. For panels with more than 30 SNPs, the power of summary statistics is 
larger than 40% and increases with the panel size. When there are more than 20 SNPs, the 
power is estimated to be 100% for fully linked loci, more than 50% for quarter-linked pan-
els, and nearly 90% for half-linked panels (Additional file 7: Figure S7).

Real data analysis

Furthermore, having been used in the tests on simulated panels, mixIndependR was applied 
to panels with real data. Based on the SNP + STR reference haplotype panel which was gen-
erated by imputing STRs to SNPs [11, 20], a mix panel of 2067 variants including 47 STRs 
and 2020 SNPs, with a threshold 0.2 for squared pairwise correlation -r2 (Details of vari-
ants selection in Methods). In PCA panel design, this is a threshold for “independent” vari-
ants. Refer to the output of r2 table from plink, 0.36% of pairs are detected as pairwise LD 
( r2 > 0.2 ) in this panel though. Therefore, we expect detecting this level of linkage disequi-
librium with K and X. With a sample size of 2504 individuals, p values of mutual independ-
ence test were calculated by K and X. Controlling the panel size for easy comparison in later 
research, panel size was defined as 100. In other words, 100 markers of the 2067 variants 
were selected randomly as a sample panel to test, and the process of choose and test was 
repeated in 1000 times.

As a results, in the 1000 trials 76.1% of p values of K and 19.0% of p values for X are 
smaller than 0.05, which indicates that the markers of this panel are not mutual independ-
ent. In contrast, the number of significant pairwise LDs calculated by GDA is 218 out of 
4950 pairs of markers (100 markers were selected randomly in one sample), which is 4.40%. 
The large difference between the power of X compared to K might result from the fact that 
majority of the markers are SNPs, the heterozygosity of which data carries more informa-
tion than number of sharing alleles. In contrast, the pairwise LDs between these markers 
gave a result of r2 < 0.2, which is the selection rule for this panel. Our new approach with 
summary performed better than the traditional methods in the panels with little linkage in 
the real world. In addition, more panels with different threshold of r2 have been designed 
and the comparison is presented in the section of Discussion.

Discussion
Compared to traditional LD tests (e.g., D′), the approaches presented herein appear to 
become more powerful as the size of the panel increases. In Fig. 4 presented the com-
parisons of power between summary statistics and pairwise LD on simulated pure 
SNP panels with different levels of linkage (Details of calculation in Methods). K and X 
showed shows more powerful with 10% than pairwise LD in half-linked panels and holds 
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a stronger advantage in quarter-linked panels, where pairwise LD loss its power. For lit-
tle-linked panels where there is only one pair of SNPs in linkage, summary statistics can 
detect linkage with about 20% power for small panel size.

On the other hand, the tests of real data panels have also been completed and com-
pared between the pairwise correlation and summary statistics- K and X. With the 
threshold for r2 set in 4 groups: < 0.2, < 0.4, < 0.6 and < 0.8, four panels in Table  3 were 
designed. With the threshold lifting, the number of markers selected increase from 2067 

Fig. 4  Power and significance level comparison between summary statistics and traditional LD test. 
Comparison among K, X, and pairwise LD calculated by R package genetics. K denotes number of 
heterozygous loci; X denotes number of shared alleles; Pairwise LD denotes the results from the function LD 
of package genetics 

Table 3  Summary of panels designed from real data

This is the summary for panels designed out of real data. On the chromosome 22, 4 mixed panels have been generated from 
the SNP-STR reference haplotype panel of Gymrek’s lab [20]. The pruning was completed on plink/1.90 with threshold of 
pairwise correlation 0.2, 0.4, 0.6 and 0.8, with the code “--indep-pairwise”. The second part of Table 3 presents the summary 
of r2 values for each panel. The lists of r2 were calculated and exported with the code “ –r2 –ld-window-r2 0”.

LD (r2 threshold) < 0.2 < 0.4 < 0.6 < 0.8

Number of different type of markers

Number of Markers 2067 3157 4278 5754

Number of STRs 47 64 83 115

Number of SNPs 2020 3093 4195 5639

Summary of r2

Min 0.000 0.000 0.000 0.000

1st Qu 0.000 0.002 0.003 0.006

Median 0.000 0.009 0.018 0.037

Mean 0.020 0.042 0.074 0.124

3rd Qu 0.020 0.042 0.084 0.159

Max 0.990 0.991 0.991 0.991
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to 5754, among which the number of STRs increases from 47 to 115. The percentage of 
variant pairs with significant LD in each group increases from 0.36 to 21.43%. Though 
the maximum of correlation was setting higher, the means of r2 and 3rd quarters of r2  
remain below 0.2 (Table 3 and Fig. 5a). Using the software GDA, a set of p-values for 
pairwise LD were calculated (Fig. 5b). After the Bonferroni correction, about 3–5% pairs 
of variants are found significant dependent in each test of a panel with 100 variants. 
Holding the panel size as 100 constant, 10 times of analysis were repeated with different 
100 variants which were chosen randomly from each group, and the power of method 
GDA has been assessed using the formula explained in Methods. Due to the few repeats 
of experiments, most of the power is below 20%. Though 7 of the 10 repeats at the group 
of 0.6 have been found as significance, the average of proportion of significant p val-
ues after Bonferroni correction is 0.054. The seven proportions defined as dependency 
panel are range of 0.05 and 0.06. This result might be explained by not enough times of 
experiments. More trials can be tested, but this method is time-consuming as one single 
calculation for pairwise LD of a 100-variant-panel needs 1 h and 8 min, without the time 
of generating and formatting samples. However, in the tests using K and X, linkage dis-
equilibrium was detected. Controlling panel size as 100 markers, the proportion of sig-
nificant p values (< 0.05) is 96.35% on average for K and 23.80% for X. Across four groups 
with different threshold of r2 and total panel size, the power of K or X fluctuate in a small 
scale ( sdK = 0.016.sdX = 0.029) . The reason why K shows a much stronger power than 
X also lies in the large proportion of SNPs in panels. Also, K or X can conduct a single 
test in 100 times with different random samples selected each time in only 12 and a half 
minutes for panels with 100 markers.

Therefore, both in simulation and real data, this approach presented a stronger power 
on detecting linkage disequilibrium in a manner of testing the linkage more than pair-
wise of a whole panel, regardless of the types of genetic markers.

Conclusions
The R package mixIndependR is available on the Comprehensive R Archive Network 
(CRAN) at: https​://cran.r-proje​ct.org/web/packa​ges/mixIn​depen​dR/index​.html [21] and 
the development version can be found on Github: https​://githu​b.com/ice4p​rince​/mixIn​
depen​dR.git [22]. This package contributes to the LD test of mixed panels with different 
types of genetic markers. It permits several new approaches to estimating LD, with the 
described method permitting LD estimation between heterogeneous marker types (e.g., 
SNPs and STRs). Instead of pairwise LD, the method tests mutual independence across 
all the markers of one panel. With new test statistics, this approach improved the power 
of dependency testing, and succeeded in testing the overall linkage disequilibrium across 
all sites simultaneously.

Methods
Data representations

In mixIndpendR, dataset to import can be an “. xslx” “.csv” or “vcf” file, with the marker 
names in the first row, and sample ID in the first column like the example (Table 4). “vcf” 
file can be imported with the function read_vcf_gt. Allele files where alleles are separated 

https://cran.r-project.org/web/packages/mixIndependR/index.html
https://github.com/ice4prince/mixIndependR.git
https://github.com/ice4prince/mixIndependR.git
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Fig. 5  Comparison of K or X and pairwise LD in real data. Four panels designed from real dataset by variant 
pruning with threshold 0.2, 0.4, 0.6 and 0.8 are tested in pairwise LD and summary statistic K and X. In 
each panel, there are 2067, 3157, 4278 and 5754 variants, respectively. a is the boxplot excluding outliers 
of r2 values for each panel. With the threshold increasing (x-axis denotes the groups), the boxplot lifts but 
major parts remain under 0.2. b is the power of pairwise LD by GDA, K, and X in multiple trials (10 trials for 
GDA, 1000 trials for K or X) for 100 random markers from each panel. On each new trial, the markers were 
re-selected. Y-axis shows the proportion of significant p values on each panel. The number of trials for GDA is 
small due to the time-consuming of this software. The power in this method might not be accurate. Average 
proportions for significant p values in method GDA is: 0.047 (0.2 group); 0.041 (0.4 group), 0.054 (0.6 group), 
0.040 (0.8 group)
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in two different cells needs a conversion by function “makeGenotypes” in genetics[23, 
24].

We simulated unlinked and linked data under the Wright-Fisher neutral model using 
the software ms [18]; the microsatellite data were converted by microsat [19] from ms 
format. For data simulation, we chose the average mutation rate ( µ ) 1.3 × 10–3 [25] and 
an effective population (N) size of 3100, the latter of which was estimated from linkage 
disequilibrium [26]. Thus, to simulate the unlinked STR data the mutation parameter 
θ(θ = 4Nµ) is equal to 16.12. In contrast, to simulate SNPs a fixed number of segregat-
ing sites was simulated for both unlinked data and linked data.

Real data was downloaded and filtered from the reference panel of Dr. Saini et  al. 
[11] using plink 1.90 [16, 17]. Chromosome 22 was chosen so that fewer variants needs 
to import, and less time will be spent. Before selecting for different levels of pairwise 
dependence, variants and samples with more than 1% missing data, with minor allele 
frequency lower than 0.1, and those who fail in Hardy–Weinberg test at 5%, and with 
Mendel error rate higher than 0.1 at family level or higher than 0.2 for SNPs, had been 
filtered out. As to the different levels of linkage panels, selection rules were set using 
the pairwise correlation-r2. Four groups were formed with pairwise correlation (win-
dow size 50 kb and step size 10 variants) < 0.2 (2067 variants), < 0.4 (3157 variants), < 0.6 
(4278 variants) and < 0.8 (5754 variants), and in each panel there are 47 STRs, 64 STRs, 
83 STRs, and 115 STRs, respectively. The LD significant pairs of variants in these groups 
make up 0.36%, 5.71%, 12.21%, and 21.43% among all variants in each panel, respectively. 
Furthermore, the pairwise r2 values for each group were exported by plink.

The example dataset attached in the package “mixexample” was filtered from chromo-
some 4 with the same selection rule but with a threshold 0.1 for r2 . Among the panel of 
7413 variants, 100 markers were selected randomly to make up the example dataset.

Functionalities
The package mixIndependR is made up of two main sections—basic genetic parameters 
calculation and mutual independence testing. Parameters obtained in the first part can 
be used in the second section. The software pipeline presented a structure of all the 
functions (Fig. 6).

Table 4  Example of imported data

Each row denotes each individual sample; each column denotes each marker. The format of csv file can be imported directly 
by “read.csv” and the vcf file can be imported with the function “read_vcf_gt” in this package. The allele separator is not 
restricted to “|”. It can be specified in the following functions

Sample ID STR1 SNP1

1 12|12 A|A

2 13|14 T|T

3 13|13 A|T

4 14|15 A|T

5 15|13 T|A

6 13|14 A|T

7 14|3 A|A

8 12|2 T|A

9 14|14 T|T

10 15|15 A|T
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Basic genetics

The first part of this package was developed to calculate the basic genetic parameters of 
a mixed or non-mixed panel, including the allele frequencies (AlleleFreq), the genotype 
frequencies or expected genotype probabilities (GenotypeFreq), and the Hardy–Wein-
berg Equilibrium (HWE.Chisq) [8, 27]. Different from other packages or software, these 
functions for basic genetic parameters can ignore the types of genetic markers and do 
not need to input the list of marker names, but the separator between alleles needs to be 
specified.

Mutual independence

Summary statistics design

In traditional statistics, non-random associations were tested from pairs. However, 
mutual independence also included other subsets, like triplets and quartets. As the num-
ber of subsets increases, large quantities of free parameters will be generated. For exam-
ple, for independence of two loci, there would be 3 free parameters if the heterozygosity 
were chosen as the tested statistics. But for 5 loci where the number of pair comes to 32, 
there would be 25 − 1 = 31 free parameters in only pairwise independence testing, not to 
mention more subsets like triplets and quartets. When tens of loci were imported, the 

Fig. 6  Pipeline of mixIndependR. Functions are presented in the grey boxes, and the results are in dark 
red boxes. The same function in different paths use different logic parameters. Crossed paths share input 
parameters
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parameters would increase to thousands, where even the sample size might not be that 
large sometimes.

In order to break the large barrier that the number of free parameters might exceed 
the relatively small number of observations/subjects for the traditional statistic method 
when the sample size is not big enough, to avoid numerous calculations, and to reduce 
time consumption, two summary statistics were designed—the number of heterozygous 
Loci (K) and the number of shared alleles (X) [10].

Under the assumption of mutual independence, the distribution of these summary 
statistics follows a restricted multinomial distribution. By comparing the observed and 
expected distribution, the hypothesis for mutual independence could be tested [10].

For the number of heterozygous loci (K), the distribution follows an appropriate bino-
mial distribution of 0 and 1, with the fixed but different probabilities on each trial. Simi-
larly, the distribution of the number of shared alleles(X) follows a “skewed” multinomial 
distribution of 0, 1, and 2, where the probabilities are specified on each trial.

The number of heterozygous loci (K)

The number of heterozygous loci (K) is the sum of the number of heterozygous loci for 
each individual, which was denoted as

With the dataset imported, a table for heterozygosity was built by Heterozygous. This 
function exported a table of 0 and 1, where 0 denoted homozygous and 1 denoted het-
erozygous, with each row for each individual and each column for each marker. With the 
table of heterozygous status, the function FreqHetero obtained the observed distribution 
of number of heterozygous loci for the targeted dataset.

The expected distribution was built according to a recurrence formula with a specially 
assigned “Start” and “End” [9]. For the first m-th loci, there were two possible scenarios 
to discover r heterozygous loci: 1. the last locus is homozygous and there were r het-
erozygous loci on the first (m − 1) loci; 2. the last locus is heterozygous and there were 
(r − 1) heterozygous loci on the first (m − 1) loci.

The vector of heterozygosity was calculated with function RxpHetero in case of Hardy–
Weinberg Equilibrium or Disequilibrium with the logic parameter HWE true or false. 
The heterozygosity was saved into the vector H in the order of loci, and the expected 
distribution of K was calculated by DistHetero(H).

The number of shared alleles (X)

Similarly, the number of shared alleles (X) is the summation of the number of shared 
alleles on each locus obtained by comparing each two individuals.

K = K1 + K2 + K3 + · · ·Ki + · · · + Km where m is the number of loci;

Ki denotes the status of heterozygosity of the ith loci,

0 as homozygous, and 1 as heterozygous;

when m is the number of loci, K belongs to (0,m)

Pm
x=r = Pm−1

x=r (1− hm)+ Pm−1
x=r−1hm

where hm is the heterozygosity of the m-th locus
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A table of  Xi was built by AlleleShare, where a logic parameter “replacement” defin-
ing the type of “pick pairs” needs to be clarified as TRUE for pairs with replacement or 
FALSE for pairs without replacement.

The observed distribution of Xi was built by FreqAlleleShare from the result of Allele-
Share. As for the expected distribution, the probability for sharing 0, 1, or 2 alleles on 
each locus was needed. According to Weir, the expected probabilities of sharing 0, 1, 
or 2 alleles for two unrelated individuals could be obtained by ExpProAlleleShare, with 
the allele frequency table from AlleleFreq. On the other hand, for non-ideal samples, the 
real proportions of sharing alleles were also suitable to use, which could be calculated by 
RealProAlleleShare. With the probability table, an expected distribution of Xi was built 
by DistAlleleShare by the principles of multinomial distribution

Significance test

With the distributions built, two functions were designed for data visualization: 
ComposPare_K and ComposPare_X. These functions generated expected frequencies 
from the probabilities and converted the dataset into a form suitable to ggplot2 [28] or 
plot in R.

The null hypothesis was that all markers, regardless of which type, are independent 
from each other. To test the null hypothesis, making comparisons between observed 
and expected distribution was required. Generally, a multinomial distribution has a 
fixed probability for each trial. However, in genetics, we cannot predict the distribution 
of heterozygosity or probability of sharing alleles for an unknown panel under testing. 
Thus, there were no perfect statistical methods designed for this special problem at this 
moment.

Despite the lack of existed methodology, with the fixed probability, it was not difficult 
to find the distribution of the test statistics by large sample simulation.

In this research, chi square value was chosen as the test statistic since the test was for 
fit of goodness and the distribution was similar to multinomial distribution. To ensure a 
good approximation for the chi square distribution, the expected numbers of each cat-
egory were restricted to no less than five. Functions Simulate_DistK and Simulate_DistX 
built the simulation for K and X, respectively. For each new panel, each new bundle of 
simulation needs to be built. Via the basic equation of calculating the Chi-square value, 
a set of Chi-square values were generated by function Dist_SimuChisq. With the set 
of Chi-square values, a plot of cumulative distribution of χ2 were drawn clearly, from 
which the critical value of Chi-square statistic was specified.

X = X1 + X2 + X3 + · · ·Xi · · · + Xm where m is number of loci

Xi denotes the number of shared alleles on the ith locus; belongs to (0, 1, 2)

X belongs to (0, 2m)

Pm
x=r = Pm−1

x=r ∗ pm0 + Pm−1
x=r−1 ∗ p

m
1 + Pm−1

r−2 ∗ pm2

where pmk denotes the probability of have k shared alleles on the m-th locus
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Comparison with other software

The R package genetics provides a function LD to test the linkage disequilibrium for all 
possible pairs of loci in one panel. This function can output D, D′, Pearson’s correlation 
coefficient, Chi-square statistic for linkage equilibrium (D = D′ = 0) and the p value of 
Chi-square test for independence. Using the unlinked data and linked data simulated 
above, a distribution of the proportion of p values smaller than significance level after 
Bonferroni correction can be obtained. The null hypothesis is that there is no significant 
LD among all the pairs for unlinked panel, which is Pr

(

p-values < 0.05
number of pairs

)

= 0 . 

Under the null hypothesis, even though the markers were simulated on different chro-
mosomes and there should be no association between any pair of them, some random 
associations may still be generated. In this program, no more than 5% random associa-
tions among the 1000 runs was allowed. In other words, if the percentage of significant p 
values is larger than 0.05, the null hypothesis would be rejected.

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-020-03945​-0.

Additional file 1: Figure S1. Distribution of number of heterozygous loci (K) for the example dataset. The X-axis is 
the number of shared alleles from 0 to 100, and the Y-axis is the observed density or expected probability of each 
K. The red bar is the expected distribution, and the green bar denotes the observed distribution. The red line is the 
expected spline for probability of K.

Additional file 2: Figure S2.  Distribution of number of shared alleles (X) for the example dataset. The X-axis is the 
number of shared alleles from 0 to 200, and the Y-axis is the observed density or expected probability of each X. 
The red bar is the expected distribution, and the green bar denotes the observed distribution. The red line is the 
expected spline for probability of X.

Additional file 3: Figure S3. Cumulative probability function of Chi-square values for number of heterozygous loci 
(K) of the example dataset. The Y-axis is the cumulative probability (1- p-value) for the chi-square value at X-axis. In 
this example, the tested chi-square value of K is 77.417 (blue line), with a cumulative probability of 0.924. In contrast, 
the critical value for p-value = 0.05 (cumulative probability = 0.95) is 112.9 (red line).

Additional file 4: Figure S4. Cumulative probability function of Chi-square values for number of shared alleles (X) 
of the example dataset. The Y-axis is the cumulative probability (1- p-value) for the chi-square value at X-axis. In this 
example, the tested chi-square value of X is 62.299 (blue line), with a cumulative probability of 0.778. In contrast, the 
critical value for p-value = 0.05 (cumulative probability = 0.95) is 115 (red line).

Additional file 5: Figure S5. Summary of power tests for simulated data at different linkage levels for K and X- 
comparison between ‘Bias’. The X-axis denotes the number of markers in each panel, and the Y-axis is the propor-
tion of significant cases whose p-value is smaller than 0.05. The colors present different categories of ‘Bias’- when 
‘Bias’ = Both, the types of linked markers are both SNPs and STRs with equal numbers; when ‘Bias’ = SNP, the most or 
all linked markers are SNPs; when ‘Bias’ = STR, the most or all linked markers are STRs. In Fig. 5, the left plots are those 
for number of heterozygous loci (K) and the right plots are number of shared alleles (X). From the top to the bottom, 
the levels of linkage increase from “OnePair-Linked” to “Almost-Linked”. In the “Onepair/Little-Linked” level, only one 
pair of markers are linked in each panel; in the “HalfQuarter-Linked” level, 12.5% SNPs are linked; in the “Quarter-
Linked” level, 25% SNPs are linked; in the “ThreeQuarter-Linked” level, 75% SNPs are linked; in the “Almost-Linked” 
level, all except one pair of markers are linked.

Additional file 6: Figure S6. Comparison of Power for mixed simulated data (‘Bias’ = Both) between number of 
heterozygous loci (K) and number of shared alleles (X). The X-axis denotes the number of markers in each panel, and 
the Y-axis is the proportion of significant cases whose p-value is smaller than 0.05. “Linkage on Both” means half of 
the linked markers are SNPs and the other linked markers are STRs. The solid lines are presented the power trends 
of K, and the dotted lines are the power trends of X. Different colors are different linkage levels: red lines are half-
linked panels (50% markers are linked); green lines are Quarter-Linked panels (25% markers are linked); blue lines are 
ThreeQuarter-Linked panels (75% markers are linked).

Additional file 7: Figure S7. Power and significant level of K and X for simulated SNP panels at different linkage 
levels. The proportions of significant cases out of 1000 trials along different panel size for simulated SNP panels at 
different linkage levels. In the “Unlinked” level, all markers in each panel are unlinked; in the “Onepair/Little-Linked” 
level, only one pair of markers are linked in each panel; in the “HalfQuarter-Linked” level, 12.5% SNPs are linked; in the 
“Quarter-Linked” level, 25% SNPs are linked; in the “ThreeQuarter-Linked” level, 75% SNPs are linked; in the “Almost-
Linked” level, all except one pair of markers are linked; in the “Fully-Linked” level, all markers in each panel are linked. 
The axis “Panel Size” denotes the number of the SNPs in each panel.

https://doi.org/10.1186/s12859-020-03945-0
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Additional file 8: Table S1. Genotypes of example dataset—‘mixexample’. The raw genotypes of the example data. 
Each row denotes each individual and each column denotes each marker.

Additional file 9: Table S2. Table of allele frequency (expected) for example dataset- ‘mixexample’. Each column 
denotes each marker. The first column lists all alleles appeared at all loci-0, 1, 2, 3, 4, and 5. There is the probability of 
the allele of this row at the locus of this column.

Additional file 10: Table S3. Table of heterozygosity for example dataset- ‘mixexample’. In each cell, the status of 
heterozygosity -0 (homozygous) or 1 (heterozygous), for the individual of this row at this locus is presented. Column 
names are markers’ names, and the row names are individuals.

Additional file 11: Table S4. Table of shared alleles for example dataset- ‘mixexample’. In each cell, the number of 
shared alleles -0 or 1 or 2, for the pair of individuals of this row at this locus is presented. Column names are markers’ 
names, and the row names are pairs of individuals.

Additional file 12: Table S5. Simulations for expected number of heterozygous loci (K) for the example dataset- 
‘mixexample’. The first row (also the column names) is the number of heterozygous loci (K) from 0 to 100; and the 
first column is the index of simulations 1 to 500. Each row denotes each simulation and shows one distribution of K.

Additional file 13: Table S6. Simulations for expected number of shared alleles (X) for the example dataset- ‘mixex-
ample’. The first row (also the column names) is the number of shared alleles from 0 to 200; and the first column is 
the index of simulations- 1 to 500. Each row denotes each simulation and shows one distribution of X.

Additional file 14: Table S7. Summary of power test for simulated mix panels. Full version of Table 2. The first sheet 
includes all designed panels; and sheet 2 ~ 4 filtered on variable ‘Bias’. Sheet 2 presents the panels when half of linked 
markers are SNPs and the other half of linked markers are STRs; Sheet 3 presents the panels with more linked SNPs 
than linked STRs; Sheet 4 presents the panels with more linked STRs than linked SNPs.
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