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Abstract: Cell-to-cell communication is a fundamental process in every multicellular organism.
In addition to membrane-bound and released factors, the sharing of cytosolic components represents
a new, poorly explored signaling route. An extraordinary example of this communication channel
is the direct transport of mitochondria between cells. In this review, we discuss how intercellular
mitochondrial transfer can be used by cancer cells to sustain their high metabolic requirements and
promote drug resistance and describe relevant molecular players in the context of current and future
cancer therapy.
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1. Introduction

The majority of human cells use mitochondria as the main source of energy and metabolites.
A typical cancer cell, however, tends to upregulate glycolysis, as postulated by Otto Warburg more than
100 years ago [1,2]. At first glance, this might seem counterproductive, as glycolysis produces fewer
ATP molecules and causes constant acidification of the extracellular space by increased production of
lactate [3]. On the other hand, an enhanced glycolytic rate contributes to the development of several
cancer hallmarks, such as the ability to evade apoptosis by inhibition of oxidative phosphorylation
(OXPHOS) [4] and the promotion of metastatic dissemination by the degradation of the extracellular
matrix and tissue outgrowth [5]. Moreover, tumor cells often reside in a hypoxic environment that
favors the use of anoxygenic production of energy. Therefore, the idea of forcing tumor cells to use
OXPHOS instead of glycolysis has emerged as a promising therapeutic strategy [6,7].

Even though most cancers have impaired mitochondrial respiration, recent discoveries indicate
that certain solid tumors, such as pancreatic ductal adenocarcinoma and endometrial carcinoma,
and many hematological neoplasms rely heavily on OXPHOS and upregulated mitochondrial
metabolism [8,9]. In line with these observations, a number of studies highlighted the importance of
mitochondria-dependent metabolic reprogramming in boosting proliferation and in the development
of drug resistance in several types of cancers [6,10]. Consequently, the clinical relevance of biological
processes involving active and healthy mitochondria, initially meant to have a rather tumor suppressive
role, is now being revised.
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Historically, cancer research has been mostly done by using 2D in vitro models of established cell
lines [11,12]. Although this is a powerful and valuable approach, it completely neglects the presence
of neighboring non-tumor cells supporting or suppressing the cancer tissue. The influence of the
microenvironment on tumor cells is very complex and often includes the direct involvement of tumor
mitochondria. Cancer cells can release (e.g., upon necrosis) entire mitochondria or their components,
such as mitochondrial DNA (mtDNA), ATP, cytochrome C, or formylated peptides, to the extracellular
space [13]. These then serve as Damage-Associated Molecular Patterns (DAMPs) that activate the
immune cells [14,15]. Resulting pro-inflammatory and immunosuppressive responses then either
inhibit or stimulate the growth and/or metastatic capacity of the tumor [16,17].

The modulation of tumor mitochondria is an important mechanism that aids cancer cells to escape
from the immune system control and develop drug resistance [6,10]. In addition to neoplastic and
immune cells, the tumor microenvironment contains many different cell types that can control the state
of the mitochondria in a tumor both directly, by cell–cell contacts [18], and indirectly, by secretion of
soluble factors and a variety of extracellular vesicles [19]. Recently, a novel mechanism of intercellular
communication based on a horizontal transfer of mitochondria between non-tumor and malignant
cells was described [20–24]. This paradigm-breaking discovery has led to the question of whether the
phenomenon of direct mitochondria sharing could also contribute to the aversion of malignant cells to
existing drug combinations and possibly further promote tumor growth. We still know very little about
this new, exciting way of sharing intracellular molecules and organelles. A deeper understanding of
the underlying molecular mechanisms and consequences on cell physiology will likely explain many
therapeutic failures and ultimately lead to novel, more efficient drug combinations.

In this review, we provide an overview of the current knowledge of intercellular mitochondrial
transfer, with a particular focus on its relevance in cancer initiation, progression, and drug resistance.
We present a summary of the known molecular players involved in sharing mitochondria and show
examples of mitochondrial exchange in both solid and hematological tumors. Finally, we place all
findings in the context of the current therapeutic strategies.

2. Means of Mitochondrial Transfer

The first observation of mitochondrial transfer in 2006 demonstrated that mitochondria from
bone marrow stromal cells (BMSCs), but not free mitochondria or mtDNA from the medium,
were able to relocate to mitochondria-deficient A549 lung cancer cells and rescue their aerobic
respiration [18]. A follow-up study further supported the regulated directionality of the exchange
as donor, non-irradiated PC12 cells with faulty mitochondria could not nourish recipient PC12 cells,
leading them back to life [25]. Importantly, the transfer of mitochondria was also observed in vivo in
mouse melanoma cells injected into mice expressing a fluorescently labelled mitochondrial protein [24].

Fundamental research on the physiological relevance of mitochondrial transfer suggested its
importance in the regeneration of damaged or infected tissue [26,27]. The “mito-healing” theory was
subsequently supported by additional studies in a variety of tissues, including vascular [28], brain [19],
lung [29], cornea [30], and several other tissues. Transfer of mitochondria was also described in the
immune system to combat bacterial infections [31]. The presence of pathogens inside immune cells is
usually accompanied by a switch from glycolytic metabolism to OXPHOS as a means of triggering a
fast anti-microbial response [32]. A striking example of infection-induced metabolic switch is seen
in macrophages during acute respiratory distress syndrome, when macrophages are fed additional
mitochondria by surrounding mesenchymal stem cells (MSCs), boosting their anti-inflammatory
and phagocytic capacity [31]. Thus, the importance of mitochondria exchange in maintaining tissue
homeostasis is clearly not disputable. However, the shuttling of mitochondria between cells could
also have severe pathological consequences, particularly in cancer, where malignant cells tend to take
advantage of the surrounding environment (Figure 1) [23,33,34].
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Figure 1. Putative effects of mitochondrial transfer on an injured cell and a cancer cell. ROS, reactive 

oxygen species. 

The precise mechanism of mitochondrial transfer remains unknown, and so far, only a few 
crucial molecules involved in the process have been described. High OXPHOS demand and/or severe 
mitochondria damage are typical features of the recipient cells [23,35,36]. To initiate the transfer, the 
providing cells should not only possess non-damaged, healthy mitochondria [37] but also be 
specifically activated [22]. Metalloproteinase-1 (MMP-1), nestin, and proinflammatory cytokines 
have been identified as essential factors stimulating donor cells to dispatch mitochondria [22]. When 
cultured with leukemic cells, donor BMSCs exhibited increased levels of PGC1α, a master regulator 
of mitochondrial biogenesis necessary for efficient mitochondrial transfer [38]. The activation of 
donor functions often correlates with a rise in intracellular reactive oxygen species (ROS) [22,37] 
generated by the recipient cells [33]. The main trigger regulating the directional release of 
mitochondria is still unknown, but the signal is likely multifactorial and, at least partially, mediated 
by ROS. 

3. Tunneling Nanotubes Are the Main Delivery Route for Mitochondria  

Neighboring cells can share mitochondria through several mechanisms, including i) the 
formation of extracellular vehicles (EVs), ii) tunneling nanotubes (TNTs) formed at the sites of 
physical contact, iii) mitochondrial ejection, or iv) cytoplasmic fusion [39]. Multiple studies have 
shown that TNTs, ultrafine cytoplasmic bridges between cells, are the main delivery system for 
mitochondria in both healthy and tumor tissues (Figure 2) [23,33]. TNT-independent mitochondria 
sharing in certain tumors was also described [19,29,37]. However, there seems to be a rather scarce 
number of examples, and more investigation of the transfer mechanisms is needed. 

Figure 1. Putative effects of mitochondrial transfer on an injured cell and a cancer cell. ROS, reactive
oxygen species.

The precise mechanism of mitochondrial transfer remains unknown, and so far, only a few
crucial molecules involved in the process have been described. High OXPHOS demand and/or severe
mitochondria damage are typical features of the recipient cells [23,35,36]. To initiate the transfer,
the providing cells should not only possess non-damaged, healthy mitochondria [37] but also be
specifically activated [22]. Metalloproteinase-1 (MMP-1), nestin, and proinflammatory cytokines
have been identified as essential factors stimulating donor cells to dispatch mitochondria [22].
When cultured with leukemic cells, donor BMSCs exhibited increased levels of PGC1α, a master
regulator of mitochondrial biogenesis necessary for efficient mitochondrial transfer [38]. The activation
of donor functions often correlates with a rise in intracellular reactive oxygen species (ROS) [22,37]
generated by the recipient cells [33]. The main trigger regulating the directional release of mitochondria
is still unknown, but the signal is likely multifactorial and, at least partially, mediated by ROS.

3. Tunneling Nanotubes Are the Main Delivery Route for Mitochondria

Neighboring cells can share mitochondria through several mechanisms, including (i) the formation
of extracellular vehicles (EVs), (ii) tunneling nanotubes (TNTs) formed at the sites of physical contact,
(iii) mitochondrial ejection, or (iv) cytoplasmic fusion [39]. Multiple studies have shown that TNTs,
ultrafine cytoplasmic bridges between cells, are the main delivery system for mitochondria in both
healthy and tumor tissues (Figure 2) [23,33]. TNT-independent mitochondria sharing in certain tumors
was also described [19,29,37]. However, there seems to be a rather scarce number of examples, and more
investigation of the transfer mechanisms is needed.
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Figure 2. Schematic representation of mitochondrial transfer via tunneling nanotubes. The donor cell, 
usually a non-cancerous cell, sends mitochondria to the recipient cell. In certain cases, the transfer is 
possible in both directions. Key regulatory molecules and triggers are listed. 
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to TNTs have not been identified. TNTs lack any attachment to the substrate, but their structure is 
enforced by actin [40] and microtubule filaments [25,41]. In experimental settings, the actin-
disrupting drug cytochalasin B is often used as an efficient inhibitor of TNTs formation [23,33]. 

For the efficient transport of mitochondria, the presence of functional microtubules and 
associated molecular motors seems to be required [25]. Specifically, Myosin X and Myosin Va have 
been co-localized with mitochondria inside TNTs [40,42,43]. Some donor cells exhibit high expression 
of the small GTPase Miro1 localized on the outer mitochondrial membrane [44]. When Miro1 was 
depleted in MSCs cultured with LA-4 epithelial cells, mitochondrial transfer was ineffective, whereas 
Miro1 overexpression increased the ability of MSCs to donate mitochondria [45]. Mechanistically, 
Miro1 seems to co-ordinate mitochondrial movement along microtubules by promoting the assembly 
of a complex molecular motor machinery [46]. 

The role of TNT-localized actin in mitochondria exchange is less clear. It is known that 
filamentous actin impedes the passive transfer of soluble cytoplasmic molecules through TNTs [40] 
and serves as a scaffold that stabilizes TNT structure [47]. The actin-binding protein M-Sec has been 
shown to be important for the formation of TNTs and the intercellular propagation of calcium (Ca2+) 
in macrophages [48,49]. Increased levels of Ca2+ activate mitochondria-localized Miro1 that further 
binds to microtubule-associated motor proteins [46]. 

Recently, CD38, an ectoenzyme involved in transmembrane signaling and cell adhesion, was 
identified as one of the key players in mitochondrial transfer [19,23]. In addition to its receptor 
function, CD38 modulates intracellular Ca2+ levels by generating cyclic ADP-ribose [50,51]. The Ca2+ 
regulatory role of CD38 seems important for mitochondrial delivery from BMSCs to myeloma cells 
[23] and from astrocytes to neurons in brain tissue damaged by stroke [19], even though the transfer 
occurs via a different mechanism (TNTs vs. EVs, respectively). Thus, an increase in intracellular Ca2+ 
might be a general mechanism priming mitochondria for transfer. However, it is unclear how CD38 
enzymatic activity is initiated to raise cytosolic Ca2+ levels and further promote mitochondrial 
transfer. It is possible that an increase in extracellular NAD+, the substrate of CD38, induced by 
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Figure 2. Schematic representation of mitochondrial transfer via tunneling nanotubes. The donor cell,
usually a non-cancerous cell, sends mitochondria to the recipient cell. In certain cases, the transfer is
possible in both directions. Key regulatory molecules and triggers are listed.

TNTs, discovered by Rustom et al. in 2004, serve as direct communication channels between
neighboring cells to exchange a wide variety of molecules and organelles [40]. Their diameter ranges
from 50 to 200 nm, and their length may reach up to 150 µm. TNTs are formed de novo in a matter
of minutes and can connect multiple cells at once. Specific structural features or biomarkers unique
to TNTs have not been identified. TNTs lack any attachment to the substrate, but their structure is
enforced by actin [40] and microtubule filaments [25,41]. In experimental settings, the actin-disrupting
drug cytochalasin B is often used as an efficient inhibitor of TNTs formation [23,33].

For the efficient transport of mitochondria, the presence of functional microtubules and associated
molecular motors seems to be required [25]. Specifically, Myosin X and Myosin Va have been
co-localized with mitochondria inside TNTs [40,42,43]. Some donor cells exhibit high expression
of the small GTPase Miro1 localized on the outer mitochondrial membrane [44]. When Miro1 was
depleted in MSCs cultured with LA-4 epithelial cells, mitochondrial transfer was ineffective, whereas
Miro1 overexpression increased the ability of MSCs to donate mitochondria [45]. Mechanistically,
Miro1 seems to co-ordinate mitochondrial movement along microtubules by promoting the assembly
of a complex molecular motor machinery [46].

The role of TNT-localized actin in mitochondria exchange is less clear. It is known that filamentous
actin impedes the passive transfer of soluble cytoplasmic molecules through TNTs [40] and serves
as a scaffold that stabilizes TNT structure [47]. The actin-binding protein M-Sec has been shown
to be important for the formation of TNTs and the intercellular propagation of calcium (Ca2+) in
macrophages [48,49]. Increased levels of Ca2+ activate mitochondria-localized Miro1 that further binds
to microtubule-associated motor proteins [46].

Recently, CD38, an ectoenzyme involved in transmembrane signaling and cell adhesion, was
identified as one of the key players in mitochondrial transfer [19,23]. In addition to its receptor function,
CD38 modulates intracellular Ca2+ levels by generating cyclic ADP-ribose [50,51]. The Ca2+ regulatory
role of CD38 seems important for mitochondrial delivery from BMSCs to myeloma cells [23] and from
astrocytes to neurons in brain tissue damaged by stroke [19], even though the transfer occurs via a
different mechanism (TNTs vs. EVs, respectively). Thus, an increase in intracellular Ca2+ might be a
general mechanism priming mitochondria for transfer. However, it is unclear how CD38 enzymatic
activity is initiated to raise cytosolic Ca2+ levels and further promote mitochondrial transfer. It is
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possible that an increase in extracellular NAD+, the substrate of CD38, induced by changes in the
cellular redox state could play a role [52].

Interestingly, the presence of gap junction (GJ) proteins, especially connexin 43 [53], in TNTs
has been confirmed [54]. Connexins are important for Ca2+ propagation between neighboring cells
via TNTs [48,55,56]. Similarities in the composition of GJ and TNTs have also been pointed out [40].
In spite of this, GJ have been functionally distinguished from TNTs [55]. While GJ perform short-range
cell-to-cell interactions and allow the transfer of molecules up to 1.2 kDa only [57,58], TNTs mediate
long-range cell-to-cell interactions and allow the transfer of significantly bigger cargos [59,60]. More
research will be needed to fully understand the contribution of GJ proteins to TNT formation and
mitochondrial transfer.

4. Mitochondrial Transfer in Solid Cancers

The current knowledge on mitochondrial transfer in solid cancers is limited, and the results
of various studies are often difficult to compare due to the use of different experimental systems
(Table 1). Cells of mesenchymal origin or fibroblasts are the most commonly used mitochondria
donors [18,21,36]. However, the tumor tissue is a complex environment composed of many different
cell types, and competition between cells could have a significant effect on mitochondrial transfer [61].
Indeed, in the co-culture of BMSCs, endothelial cells, and MCF7 cells, the formation of TNTs between
the three cell types was observed, but mitochondria were sent only from endothelial cells to MCF7
cells [21]. Recently, TNT-mediated mitochondrial transfer was also observed between natural killer T
cells and breast cancer cells [62]. These studies indicate that the ability to donate mitochondria might be
affected by the presence of a particular cell type in the tumor microenvironment. Therefore, results of
mitochondrial transfer experiments using cells usually not present in the solid tumor microenvironment
(e.g., BMSCs or umbilical cord Wharton’s jelly cells) should be carefully interpreted. Nevertheless,
the current data still provide interesting views of the general mechanisms of mitochondria shuttling.

Table 1. Mitochondrial transfer studies.

Donor Cells Recipient Cells Mechanism of
Transport Triggers Cellular Effect Reference

NON-TUMOR CELLS

cardio-myocytes cardio-fibroblasts TNTs ND Transfer in both
directions [56]

MSCs vascular smooth
muscle cells TNTs ND Stimulation of MSCs

proliferation [28]

BMSCs alveolar epithelium microvesicles LPS-induced lung
injury

Protection against
acute lung injury [29]

MSCs HUVEC TNTs Hypoxia Rescue of injured
endothelial cells [26]

MSCs Epithelial cells TNTs Miro1 overexpression ND [45]

iPSC-MSCs epithelial cells TNTs Cigarette smoke Repair of damaged
cells [27]

PC12 cells PC12 cells TNTs
Damaged

mitochondria in
receiver cells

Rescue from apoptosis [25]

astrocytes neurons microvesicles Damage by stroke Neuroprotection/
recovery [19]

MSCs corneal epithelial
cells TNTs OXPHOS inhibition Protection from

oxidative damage [30]

BM-MSCs macrophage TNTs Acute respiratory
distress syndrome

Enhanced
phagocytosis [31]

iPSC-MSCs/
BM-MSCs cardio-myocytes TNTs Anthracycline Increased

mitochondrial transfer [44]

BMSCs hematopoietic stem
cells not specified Bacterial

infection-induced ROS
Granulocytes

activation [32]



Cancers 2020, 12, 1787 6 of 12

Table 1. Cont.

Donor Cells Recipient Cells Mechanism of
Transport Triggers Cellular Effect Reference

SOLID TUMORS

BMSCs A549 cells not specified Non-functional
mitochondria

Rescue of aerobic
respiration [18]

BMSCs 143B cells not specified Restrictive media
Rescue of

mitochondria
functions

[35]

MSCs/
epithelial cells

ovarian and breast
cancer cells TNTs ND Specific selection of

donor cells [21]

MSCs
lung

adeno-carcinoma
cells

TNTs
Miro1 increased

mitochondrial donor
capacity

ND [45]

Wharton’s
jelly-derived MSCs 143B not specified Absence of

mitochondria

Rescue of
mitochondria

functions
[36]

mouse tissue melanoma cells not specified Absence of
mitochondria

Rescue of
mitochondria

functions and tumor
formation

[24]

Prostate
cancer-associated

fibroblasts
prostate cancer cell TNTs ND

Enhanced lactate
metabolism and

mitochondria motility
[63]

NKT cells breast cancer cells TNTs ND ND [62]

HEMATOLOGICAL TUMORS

BMSCs AML endocytosis Chemotherapy agents Increased viability [37]

BMSCs AML TNTs NOX2-derived ROS ND [33]

BMSCs AML TNTs ND ND [38]

BMSCs T-ALL TNTs ND Chemoresistance [64]

MSCs ALL TNTs ROS rescue from
chemotheraphy [22]

BMSCs MM TNTs ND Metabolic switch [23]

ND: not defined; iPSC: induced pluripotent stem cell; BM-MSCs: bone marrow mesenchymal stem cells; NKT:
natural killer T cell; AML: acute myeloid leukemia; T-ALL: T cell acute lymphoblastic leukemia; ALL: acute
lymphoblastic leukemia; MM: multiple myeloma; TNTs: tunneling nanotubes; MSCs: mesenchymal stem cells;
BMSCs: bone marrow stromal cells; OXPHOS: oxidative phosphorylation; ROS: reactive oxygen species.

Investigations of the mechanism of intercellular mitochondrial transfer in solid tumors point to
TNTs as the main delivery route [21,45,63]. The very first mitochondrial transfer was seen between
mesenchymal and lung cancer cells with severely damaged or completely missing mitochondria [18].
To promote mitochondrial transfer, many studies used inhibitors such as rotenone to block the electron
transport in the respiratory chain [23,33,37,45,65]. Thus, the OXPHOS status in the recipient cells seems
to be a crucial factor mediating mitochondrial transfer. However, no mitochondrial transfer occurred
between BMSCs and osteosarcoma cells with pathogenic mutations in mtDNA, which encodes critical
components of the OXPHOS system [35]. Moreover, BMSCs were shown to donate mitochondria to
ovarian and breast cancer cells [21], lung adenocarcinoma cells [45], and prostate cancer cells [63] with
no apparent mitochondrial damage. This suggests that not only the state of mitochondria but also
specific metabolic requirements could play a role in promoting mitochondrial transfer.

5. Mitochondrial Transfer in Hematological Malignancies

The tumor microenvironment is critical for progression and drug resistance also in hematological
cancers [11,59,60]. Acquiring new mitochondria in the bone marrow niche was recently suggested as a
way by which leukemic cells can achieve drug resistance [22,23,37]. Up to date, mitochondrial transfer
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was observed in several types of hematological malignancies, where it seems to have a pro-tumor
function [32,33,61].

6. Mitochondrial Transfer in Acute Lymphoblastic Leukemia

The cross-talk between acute lymphoblastic leukemia (ALL) cells and their niche proved that
mitochondria are delivered via TNTs from MSCs to primary B-cell precursor ALL cells [22]. The presence
of TNTs facilitated the signaling from ALL cells towards MSCs, affecting the release of cytokines and
chemokines in the microenvironment, supporting the survival and chemoresistance of ALL cells [34].
In addition to B-cell ALL, transport of mitochondria from MSCs was later shown in T-cell ALL (T-ALL),
where mitochondrial transfer was mediated by T-ALL cell/MSC adhesion and occurred through TNTs.
However, in contrast to B-ALL cells, mitochondria were exported from malignant T-ALL cells to the
surrounding MSCs, probably due to the preferential use of glycolysis in T-ALL cells [64]. This example
provides a unique model that can help to uncover the signals and mechanisms driving the transfer
directionality. Moreover, it would be interesting to see whether T-ALL cells could donate mitochondria
to other cell types and whether the increase in mitochondria number in MSCs would directly support
the tumoral properties of T-ALL cells.

7. Mitochondrial Transfer in Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a typical hematological malignancy highly dependent on
OXPHOS [66]. Not surprisingly, AML cells are more prone to receive new mitochondria as compared
to healthy CD34+ hematopoietic stem/progenitors or lymphoid CD3+ cells [37]. When co-cultured
with human BMSCs, AML cells can gain additional mitochondria in a TNT-dependent process [33].
However, in other study, endocytic inhibitors blocked the mitochondria exchange between murine
MS-5 BMSCs and human AML cells [37], suggesting a TNT-independent delivery.

Commonly used chemotherapeutics such as cytarabine [67], etoposide [68], and doxorubicin [69]
are factors that promote mitochondrial uptake by AML cells [70]. Consequently, the treatment could
have a pro-tumor effect by stimulating oxidative metabolism in resistant AML clones [12]. The surface
molecule CD38 is another clinically relevant target in AML, critical for the transport of mitochondria
from BMSCs to AML cells [71]. Daratumumab, a monoclonal anti-CD38 antibody approved for the
treatment of multiple myeloma (MM) [72,73], was shown to block the delivery of mitochondria to
AML cells under both in vitro and in vivo conditions, decrease the oxygen consumption rate (OCR),
and inhibit the growth of leukemic cells [74,75]. These studies suggest a novel, previously unexpected
anti-tumor mechanism of anti-CD38 therapy.

8. Mitochondrial Transfer in Multiple Myeloma

Aberrant myeloma cells reside in the hypoxic environment of the bone marrow [76]. Unexpectedly,
primary multiple myeloma (MM) cells isolated from patients’ biopsies were shown to have a
higher basal OCR compared to long-term in vitro cultured MM cell lines [23]. Similarly, when
established MM cell lines were injected into a mouse or co-cultured with BMSCs, their OCR
and ATP production significantly increased [23]. Moreover, the presence of BMSCs enhanced
mitochondrial metabolism and drug resistance in MM cells [23]. This suggests that the bone marrow
microenvironment might stimulate aerobic respiration in MM cells. A deeper investigation of
the responsible mechanism indicated the presence of TNT-mediated mitochondrial transfer from
BMSCs to MM cells, and ROS-inducing compounds, including commonly used proteasome inhibitors,
significantly potentiated this process [23,77].

CD38, a crucial player in mitochondrial transfer, is currently one of the most attractive molecules for
targeted therapy in MM patients [74,78–80]. Treatment with an anti-CD38 antibody or genetic deletion
of CD38 were shown to inhibit mitochondrial transfer from BMSCs to MM cells and induce tumor
shrinkage in xenografts models [23]. Lower mitochondrial activity, particularly a drop in OXPHOS,
was previously associated with increased sensitivity of MM cells to proteasome inhibitors [77]. In line
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with these observations are clinical data indicating high efficacy of a combinatory therapy using an
anti-CD38 antibody and proteasome inhibitors [81]. On the other hand, proteasome inhibitors were
shown to downregulate the expression of vascular cell adhesion molecule 1 (VCAM-1) on BMSCs [82],
a major ligand for VLA-4 on MM cells, and thus impede the binding of BMSCs and MMs [83], that is
required for efficient mitochondrial transfer.

9. Conclusions

The direct transfer of mitochondria from one cell to another has emerged as a thrilling mechanism,
whose potential targeting offers great opportunities for both cancer therapy and tissue regeneration.
The fact that mitochondrial transfer seems to be executed in a similar way in both solid and hematological
cancers further multiplies the importance of this process. It also underlines the significance of tumor
microenvironment and cellular plasticity in cancer progression and drug resistance. Furthermore,
the involvement of mitochondrial transfer may offer an explanation for the yet unclear mechanisms of
action of certain anti-cancer drugs. Although the entire signaling machinery driving mitochondrial
transfer is still unknown, the discovery of key molecular players such as Miro1, connexin 43, and CD38
has already opened the doors for possible therapeutic targeting. Future research of the molecular
processes governing mitochondria shuttling in both normal and pathological settings will likely bring
many exciting discoveries and provide new therapeutic possibilities to improve tissue regeneration
and cancer therapy.
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