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ABSTRACT Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a
secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic
(microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a
tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice.
Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and
10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic
locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary
metastatic colonization (15 increased and 19 decreased; P , 0.005 and genotype effect ,-55 or .+55).
While several of these genes have known roles in immune system regulation (Bach2, Cyba,Cybb,Cybc1, Id2,
Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes,
ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30
and Fgd4), with no previous reports of a role in the regulation of metastasis. Thus, we have identified
numerous novel regulators of pulmonary metastatic colonization, which may represent potential therapeutic
targets.
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Metastasis is the spread of cancer cells to a secondary site within the
body, and is the leading cause of death for cancer patients. This is a
multi-step process that is initiated when the tumor cells breach the
basement membrane, that separate them from the other tissue layers,
and enter the circulatory or lymphatic system, where they are known
as ‘circulating tumor cells’ (CTCs) and are able to travel all over the
body. The CTCs must leave the circulation (‘extravasate’) at a distant
site, where they are known as ‘disseminated tumor cells’ (DTCs). The
DTCs need to overcome numerous barriers to survive in the ‘foreign’
environment and be able to proliferate (‘colonization’), before

developing into overt metastases and becoming a clinical problem.
CTCs can be found in the patient’s blood at the time of diagnosis of a
primary tumor, and thus it is highly likely that the early stages of
metastasis (the presence of DTCs) has already occurred in these
patients, especially since surgical excision of a primary tumor does
not always prevent metastasis (Talmadge and Fidler 2010). Indeed,
studies have demonstrated that the early steps of the metastatic
process are relatively efficient, with the post-extravasation regulation
of tumor growth (‘colonization’) being critical in determining met-
astatic outcome (Chambers et al. 2001). Thus, the prevention of
primary tumor cells from entering the circulation is unlikely to be of
therapeutic benefit, and a focus on preventing the survival of the
CTCs and/or subsequent growth of the DTCs would seem a more
feasible approach (Fidler and Kripke 2015).

The survival and growth of metastatic cells involves contributions
from both tumor cell- intrinsic factors and tumor cell- extrinsic
factors such as the microenvironment (‘host’), which includes stromal
cells and the immune system (Quail and Joyce 2013). In recent years
there has been a revolution in our understanding of the role that
host factors, such as the immune system, stroma and vasculature
play in the process of cancer progression. This is evidenced by the
development of agents, such as checkpoint inhibitors, that provoke
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the immune system to identify and eliminate cancer cells. Impor-
tantly, studies in mice have made a significant contribution to
these breakthroughs, such as with the clinically relevant PD-1
(Zago et al. 2016) and CTLA4 receptors (Leach et al. 1996), which
were first identified and functionally characterized using mouse
model systems. For this reason we sort to develop a genetic screen
to identify new genes as tumor cell- extrinsic regulators of met-
astatic colonization.

In designing our screen we aimed to, where possible, unbiasedly
screen mouse mutants to identify new genes involved in colonization
of the lung, a common site of metastatic seeding for many tumor
types. To this end, we used the ‘experimental metastasis assay’, which
we have previously demonstrated is a sensitive, robust, and high-
throughput method for in vivo quantification of the ability of
metastatic tumor cells to colonize a secondary organ (Speak et al.
2017), to screen mutant mouse lines generated as part of the
International Mouse Phenotyping Consortium (Meehan et al.
2017). In this paper we describe a collection of mutants identified
over 7 years of screening (1,344 mutant mouse lines). This study
reveals previously unappreciated pathways and processes that
regulate this biology.

MATERIALS & METHODS

Mice
The mutant mice were generated as part of the International Mouse
Phenotyping Consortium (Meehan et al. 2017), using either targeted
embryonic stem cell clones obtained from the European Conditional
Mouse Mutagenesis (EUCOMM) Program/Knockout Mouse Project
(KOMP)-CSD collection or EUCOMMTools or CRISPR/Cas9 tech-
nology to either genetrap the target transcript or disrupt a critical
exon or to create a point mutation, as detailed previously (van der
Weyden et al. 2017b). The vast majority of lines (.98%) were on the
C57BL/6 background, with other strain backgrounds including
129 and FVB (strain-matched control mice were always used for
each mutant line). The care and use of all mice in this study were in
accordance with the Home Office guidelines of the UK and proce-
dures were performed under a UK Home Office Project license (PPL
80/2562 or P6B8058B0), which was reviewed and approved by the
Sanger Institute’s Animal Welfare and Ethical Review Body. All mice
were housed in individually ventilated cages in a specific pathogen
free environment. The diet, cage conditions and room conditions of
the mice were as previously reported (van der Weyden et al. 2017a).

Cells for tail vein injection
The B16-F10 mouse melanoma cell line was purchased from ATCC
(CRL-6475), genetically validated, and maintained in DMEM with
10% (v/v) fetal calf serum and 2 mM glutamine, 100 U/mL penicillin/
streptomycin at 37�, 5% CO2. The cell line was screened for the
presence of mycoplasma and mouse pathogens (at Charles River
Laboratories, USA) before culturing and never cultured for more than
five passages.

Experimental metastasis assay
B16-F10 (4-5 · 105) cells resuspended in 0.1 mL phosphate buffered
saline (PBS) were injected into the tail vein of 6- to 12-week-old sex-
matched syngeneic control and mutant mice. After 10 (6 1) days the
mice were humanely killed, their lungs removed and washed in PBS
and the number of metastatic foci counted macroscopically. The use
of the experimental assay as a screen for metastatic colonization
ability has been previously described (Speak et al. 2017).

Statistics and bioinformatic analysis
The raw data (number of metastatic foci counted in each mutant
mouse relative to the wildtype controls) from each cohort of mice was
subjected to the non-parametric Mann-Whitney U-test. An inte-
grative data analysis (mega-analysis) was performed on the results
from all mutant mouse lines that had been tested in $ 3 indepen-
dent cohorts, and was completed using R (package nlme version
3.1) as previously described (van der Weyden et al. 2017b). Using
the Mouse Genome Database Informatics (MGI) portal (http://
www.informatics.jax.org, v6.14), all 1,300 mutant lines screened
were separated into unique symbols and annotated with molecular
function using the Gene Ontology (GO) chart tool (Bult et al. 2019)
excluding annotations that were Inferred from Electronic Annotation
(IEA). Phenotypic information (MP-to-genotype) was pulled from
MGI using MouseMine (Motenko et al. 2015) and the phenotypes
collapsed to the parental term of the mouse phenotype hierarchy.

Data availability
Table S1 lists the targeted genetic regions that were mutated in the
genetically modified mice used in the screened. Table S2 is the
complete data set (number of metastatic colonies) for all the mice
comprising the 1,344 alleles screened (consisting of 23,975 individual
mice). Table S3 explains how to interpret the data for the screen
supplied in Table S2. Supplemental material available at figshare:
https://doi.org/10.25387/g3.11815296.

RESULTS
Tail vein injection of mouse melanoma B16-F10 cells primarily
results in pulmonary colonization (due to the capillary beds in the
lungs being the first ones encountered by the cells in the arterial blood
after leaving the heart). As these cells are pigmented (melanin
granules) their colonization of the lungs can be determined by
macroscopic counting of the number of black metastatic foci on
the lungs (Figure 1A). Sex- and age-matched wildtype mice were
concomitantly dosed with the cohorts of mutant mice (Figure 1B),
and the results frommutant mice were only compared to the wildtype
mice dosed at the same time (due to day-to-day variations in the
assay, and factors such as sex and age of the mice affecting metastatic
burden (Speak et al. 2017)). A ‘metastatic ratio’ (MR) was determined
for each mutant mouse line, which was calculated as the average
number of metastatic colonies for the mutant line relative to the
average number of metastatic colonies for concomitantly dosed
wildtype mice. If a mutant mouse line showed a MR of ,0.6
or .1.4 (and Mann-Whitney P , 0.05), additional cohorts were
assayed (n $ 2, assayed on independent days). An integrative data
analysis (IDA) was performed on the whole dataset and those
with P , 0.005 (Hochberg) and a biological effect (‘genotype effect’)
of # -55 or $ +55 were classified as ‘hits’. A biological filter was
applied as we were only interested in determining robust (strong)
regulators of metastatic colonization.

We used Entpd1 and Hsp90aa1 mutant mice as positive controls,
as the literature suggested they should show altered metastatic
burden. Entpd1 (ectonucleoside triphosphate diphosphohydrolase 1)
encodes the plasma membrane protein CD39. The enzymatic activity
of CD39 (NTPDase I), together with CD73 (ecto-59-nucleotidase),
result in the phosphohydrolysis of extracellular ATP into adenosine,
which acts as an immunosuppressive pathway through the acti-
vation of adenosine receptors (Stagg and Smyth 2010). Entpd1-
deficient mice that were administered B16-F10 mouse melanoma
cells and MC-38 mouse colon cancer cells via the hepatic portal
vein (experimental metastasis assay) were found to develop
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significantly fewer hepatic metastases than wildtype (control) mice
(Sun et al. 2010). In agreement with this, we found that Entpd1
mutant mice showed significantly reduced numbers of pulmonary
metastatic colonies after tail vein dosing with B16-F10 cells, relative
to wildtype mice. Hsp90aa1 (heat shock protein 90 alpha family
class A member 1) encodes a molecular chaperone that functions to
aid in the proper folding of specific target proteins (“clients”),
including numerous kinases, transcription factors and steroid
hormone receptors (Li et al. 2012). Systemic administration of a
mitochondrial-targeted, small-molecule Hsp90 inhibitor (Gamitrinib)
to Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice
inhibited the formation of localized prostate tumors, as well as the
spread of metastatic prostate cancer to abdominal lymph nodes and
liver (Kang et al. 2011). In agreement with this, we found thatHsp90aa1
mutant mice showed significantly reduced numbers of pulmonary
metastatic colonies after tail vein dosing with B16-F10 cells, relative to
wildtypemice. Both Entpd1 andHsp90aa1were classified as ‘hits’ using
the integrated data analysis (IDA) approach, thus we were confident
that our screening methodology was robust.

We have previously published the results of screening 810 mutant
mouse lines and showed that endothelial SPNS2 can regulate met-
astatic colonization by sphingosine-1-phosphate (S1P)-mediated
control of lymphocyte trafficking (van der Weyden et al. 2017a;
van der Weyden et al. 2017b). Here we have included an additional
534 mutant mouse lines, to make a total of 1,344 mutant mouse lines
(1,300 unique genes/genetic loci) screened. The mutant mouse lines
were randomly selected and the genes/genetic loci (Table S1) cover a
diverse range of molecular functions (Figure 2A) and are involved in
many different biological processes (Figure 2B). Of the 1,300 mutant
lines screened (representing unique genes/genetic loci), 1,247 lines
(96%) carried alleles that targeted single protein coding genes, with
the other alleles targeting lncRNAs (21 lines), miRNAs (8 lines), CpG
islands (13 lines), pseudogenes (3 lines), complexes/clusters/regions
(3 lines), multiple protein coding genes (3 lines) or gene segments
(2 lines). The raw data for each individual mouse (number of metastases
counted) is listed in Table S2. The mutant mice tested were
predominantly homozygotes (880 lines, 68%), with heterozygotes
generally only being tested (356 lines, 27%) if the line was lethal or
sub-viable (i.e., where 0 or #13% of homozygote offspring were
obtained from heterozygous intercrosses, respectively) and in a
small number of cases both heterozygotes and homozygotes were
assessed (64 lines, 5%). An IDA was performed on the data from
the 256 mouse lines that showed evidence of a phenotype in initial
screening and for which at least 3 independent cohorts were tested,
and the 34 mutant lines classified as ‘hits’ are shown Table 1.

DISCUSSION
We have characterized the mechanism of action for several genes that
showed a decreased metastatic colonization phenotype in our screen,
specifically Spns2 (van der Weyden et al. 2017a), Nbeal2 (Guerrero
et al. 2014), Cybc1 (Thomas et al. 2017) and the 5 members of the
NOX2 complex (van der Weyden et al. 2018). These genes regulate
pulmonary metastatic colonization primarily by impacting on the
function of the hematopoietic/immune system (lymphocytes, gran-
ulocytes/monocytes and platelets). In addition, Bach2 was also a ‘hit’
in our screen, showing decreased metastatic colonization, and Bach2
is a key regulator of CD4+ T-cell differentiation (Roychoudhuri et al.
2013), with Bach2 mutant mice recently being shown to have in-
creased CD8+ T-cell cytotoxic activity (Abeler-Dörner et al. 2020).
Indeed, phenotypic analysis of the 34 metastatic colonization regu-
lating genes detailed in this study show a strong enrichment for genes

involved in immune/hematopoietic system development and func-
tion with phenotypes in those categories representing 88% of all the
reported phenotypes associated with those genes.

As we have previously predominantly focused our attention genes
positively regulating metastatic colonization (i.e., mutant mice show-
ing decreased metastasis), we will now turn our focus to discussing
negative regulators of metastatic colonization (i.e., mutant mice
showing increased metastasis).

Duoxa2
The strongest biological phenotype we observed, in terms of in-
creased numbers of pulmonary metastatic colonies relative to
controls, was with Duoxa2 mutant mice. The Dual oxidase mat-
uration factor 2 (DUOXA2) gene encodes an endoplasmic reticu-
lum protein that is necessary for the maturation and cellular
localization (transport from the endoplasmic reticulum to the
plasma membrane) of dual oxidase 2 (DUOX2) (Grasberger and
Refetoff 2006). The NADPH oxidases, DUOX1 and DUOX2, are
critical for the production of extracellular hydrogen peroxide that
is required for thyroperoxidase-mediated thyroid hormone syn-
thesis in the thyroid gland; as a result, mutations in DUOX2 and/or
DUOXA2 result in thyroid dyshormonogenesis and congenital
hypothyroidism (De Deken and Miot 2019). Indeed, Duoxa2
mutant mice were significantly smaller than their wildtype or
heterozygous littermates. A smaller body size (and thus total blood
volume) undoubtedly contributed to the increased pulmonary
metastatic burden we observed, as well as the presence of extrap-
ulmonary metastases (bone marrow, liver, kidney). However, it was
recently shown that Duoxa2 mutant mice have alterations in key
immune cell subsets (CD4+ T-cells, neutrophils, monocytes and
NK cells) (Abeler-Dörner et al. 2020), which could also account for
their increased metastatic colonization. Thus, generation of an
inducible Duoxa2mutant mouse, wherein Duoxa2 could be deleted
in an adult mouse, will be required to disentangle any effects that
loss of DUOXA2 may be having on metastatic colonization aside
from a smaller body size.

Rnf10
The Ring finger protein 10 (Rnf10) gene encodes a protein with a
ring finger motif (a C3HC4-type zinc finger). Rnf10/RNF10 has
been shown to be important for key neurobiology functions, in-
cluding myelin formation (Hoshikawa et al. 2008), neuronal cell
differentiation (Malik et al. 2013) and synaptonuclear messaging
(Carrano et al. 2019). It has also been reported to play a role in
vascular restenosis (Li et al. 2019) and a SNP in RNF10 has been
associated with adiposity and type 2 diabetes (Huang et al. 2014).
We found that Rnf10-deficient mice showed increased pulmonary
metastatic colonization, with males having a consistently higher
metastatic burden than females (290 6 26 vs. 153 6 31, respec-
tively); this is the only mutant line in which we observed a sexually
dimorphic effect. Further investigations are required to provide
mechanistic insight as to how Rnf10 may be regulating metastatic
colonization, and why it has a stronger effect in males.

Slc9a3r2
The Slc9a3r2 (SLC9A3 regulator 2) gene encodes a member of the
Na(+)/H(+) exchanger regulatory factor (NHERF) family of PDZ
scaffolding proteins. All NHERF proteins are involved with anchor-
ing membrane proteins that contain PDZ recognition motifs to
form multiprotein signaling complexes. SLC9A3R2 (also known as
NHERF2) has been shown to form complexes with a diverse range of
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proteins depending on tissue context, including complexing with the
lysophosphatidic acid (LPA) receptor and the epithelial anion chan-
nel, cystic fibrosis transmembrane conductance regulator (CFTR) in
airway and gut epithelia (Zhang et al. 2017), the P2Y1 nucleotide and
mGluR5 glutamate receptors to different ion channels in neurons
(Filippov et al. 2010) and megalin and ClC-5 in proximal tubule cells
(Hryciw et al. 2012). However, it is not yet clear how loss of Slc9a3r
results in increased metastatic colonization.

Ankhd1 and Fzd6
The Ankhd1 (ANKHD1 ankyrin repeat and KH domain containing
1) gene encodes a protein with multiple ankyrin repeat domains
and a single KH-domain. ANKHD1 is the mammalian homolog of
Mask1 in Drosophila (which is required for the activity of the
Hippo pathway effector, Yorkie) and promotes YAP1 activation
and cell cycle progression (Machado-Neto et al. 2014). Studies have
demonstrated a role for ANKHD1 in promoting cell cycle pro-
gression/proliferation in renal, multiple myeloma and prostate
cancer cells (Dhyani et al. 2012; Machado-Neto et al. 2014;
Fragiadaki and Zeidler 2018) and in promoting hepatocellular
carcinoma metastasis (Zhou et al. 2019). The Fzd6 (frizzled class
receptor 6) gene is a member of the ‘frizzled’ gene family, which
encode 7-transmembrane domain proteins that are receptors for
Wnt signaling proteins. FZD6 has a known role in non-canonical
WNT/PCP signaling in cancer (Corda and Sala 2017), including
mediating transformation, increased invasiveness of tumor cells
and metastasis (Cantilena et al. 2011; Corda and Sala 2017; Corda
et al. 2017). In agreement with this, increased expression of FZD6
has been reported in many cancer types, and correlates with poor
prognosis in patients with breast, brain and esophageal cancer
(Corda et al. 2017; Huang et al. 2016; Zhang et al. 2019). Thus, both
ANKHD1 and FZD6 have well-characterized tumor cell-intrinsic
roles, however, how they mediate their role in regulating tumor
cell- extrinsic metastasis is not clear.

Regulation of the immune system
Five genes with known roles in regulating immune cell function were
identified; the immune cell types included NK cells, lymphocytes

(T- and B-cells) and granulocytes/macrophages, which have all been
shown to play critical roles in regulating metastasis (reviewed in
(Blomberg et al. 2018)). Thus genes that interfere with their pro-
duction, maturation and/or function could understandably result in
increased levels of metastatic colonization.

Irf1: The Interferon regulatory factor 1 (IRF1) gene encodes a
transcription factor that is one of 9 members of the interferon
regulatory transcription factor (IRF) family. IRF1 stimulates both
innate and acquired immune responses by regulating target genes
through binding to an interferon-stimulated response element (ISRE)
in their promoters and inducing either transcriptional activation or
repression (Ikushima et al. 2013). Irf1 null mice are immunodeficient,
characterized by a marked reduction in CD8+ T cells (Penninger et al.
1997) and a decrease in NK cell numbers with associated impaired
cytolytic activity (Taki et al. 1997).

Irf7: The Interferon regulatory factor 7 (IRF7) gene is another
member of the IRF family and plays a critical role in the innate
immune response against viruses. Irf7-null mice are highly suscep-
tible to H1N1 infection (Wilk et al. 2015) and secrete decreased levels
of IFN-a/b in response to stimulation (Honda et al. 2005).

Id2: The ID2 (inhibitor of DNA binding 2) gene encodes a helix-loop-
helix-containing protein that lacks a DNA-binding domain and is
one of the four members of the ID family (ID1–ID4). ID proteins
dimerize with E protein, RB and Ets transcription factors, prevent-
ing the formation of DNA-binding transcription complexes. Id2
null mice show a greatly reduced population of natural killer (NK)
cells, as Id2 plays a role in NK cell maturation (Yokota et al. 1999;
Boos et al. 2007).

Igh-6: The IGH-6 (immunoglobulin heavy constant mu) gene
encodes a protein that is important for the production of the
heavy chain of IgM antibodies and maturation of pre-B cells, the
precursors of B-lymphocytes. Igh-6 null mice are B-cell-deficient,
with their development arrested at the stage of pre-B-cell mat-
uration (Kitamura et al. 1991). Igh-6 null mice also show

Figure 1 The metastatic colonization assay. (A) Rep-
resentative macroscopic image of lungs from wild-
type (+/+) and mutant (Tbc1d22atm1b/tm1b and
Rnf10tm1b/tm1b) mice 10 days after tail vein dosing
with B16-F10 melanoma cells, demonstrating exam-
ples of decreased and increased metastatic coloni-
zation, respectively. (B) Schematic of the B16-F10
pulmonary metastasis screen, showing that a cohort
of mice consists of wildtype mice and groups of
different mutant mice, all of which are tail vein dosed
with the B16-F10 melanoma cells, and then the
number of pulmonary metastatic colonies counted
10 days later (the ‘metastatic ratio’ of a mutant line is
derived by dividing the average of themetastases for
a mutant group by the average number of metasta-
ses for the wildtype group).
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impaired Th1 T-cell responses to Salmonella antigens/infections
(Mastroeni et al. 2000; Ugrinovic et al. 2003) demonstrating a role
for B cells in the establishment and/or persistence of a stable
T-cell memory pool.

Pik3cg: The PIK3CG (phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit gamma) gene encodes a class I catalytic subunit of
phosphoinositide 3-kinase (PI3K), known by many names, including
p110-g and PI3Kg. Like other class I catalytic subunits (p110-a,
p110-b, and p110-d), p110-g binds a p85 regulatory subunit to form
PI3K, which phosphorylate inositol lipids and is involved in the
immune response. p110-g is highly expressed in leukocytes and is
important for restraining inflammation and promoting appropriate
adaptive immune responses in both humans and mice (Takeda et al.
2019). p110-g null mice show defective thymocyte development and
T cell activation, as well as neutrophil migration and oxidative burst
(Sasaki et al. 2000).

Protein modification
A number of genes encoding protein modifiers were identified; these
included a ubiquitin-related protein, a serine hydrolase and a protein
involved in amidation. How the targets of these proteins can regulate
metastatic colonization is still unclear.

Herc1: The HERC1 (HECT and RLD domain containing E3 ubiquitin
protein ligase family member 1) gene encodes an E3 ubquitin ligase
protein. In humans, six HERC genes have been reported which
encode two subgroups of HERC proteins: large (HERC1-2) and small
(HERC3-6). The HERC1 protein was the first to be identified and has
been found to play numerous roles, including membrane trafficking,
protein stability and DNA damage repair, through its interactions
with clathrin, TSC2 and pyruvate kinase (M2 isoform), respectively
(reviewed in (García-Cano et al. 2019)). Tambaleante (tbl) mice,
which carry a spontaneous missense mutation in Herc1, show

neurological phenotypes including, Purkinje cell degeneration, hind
limb clasping and impaired rotarod performance (Mashimo et al.
2009).While mutations/loss ofHERC1 expression have been reported
in some cancers (reviewed in (García-Cano et al. 2019)), it is not clear
how tumor cell-extrinsic loss ofHerc1 resulted in increased metastatic
colonization.

Abhd17a: The ABHD17A (abhydrolase domain containing 17A)
gene encodes a member of the ABHD17 family of proteins that are
membrane-anchored serine hydrolases which can accelerate pal-
mitate turnover on PSD-95 and N-Ras. The catalytic activity of
ABHD17 proteins are required for N-Ras depalmitoylation and
re-localization to internal cellular membranes (Lin and Conibear
2015) and ABHD17 proteins finely control the amount of synaptic
PSD-95 by regulating PSD-95 palmitoylation cycles in neurons
(Yokoi et al. 2016). More recently, regulation of the palmitoylation
status of the transcription factor TEAD, which is depalmitoylased by
ABHD17A, has been suggested to be a potential target for controlling
TEAD-dependent processes, including cancer cell growth (Kim and
Gumbiner 2019).

Dph6: The Dph6 (diphthamine biosynthesis 6) gene encodes a
protein that is required for the amidation step of the diphthamide
pathway in yeast. Diphthamide is a highly modified histidine
residue in eukaryotic translation elongation factor 2 (eEF2) and
diphthamide synthesis is required for optimal translational accu-
racy and cell growth (Uthman et al. 2013). In eukaryotes, the
formation of diphthamide involves a conserved biosynthetic path-
way involving 7 members, DPH1-7 that has been predominantly
studied in yeast (reviewed in (Schaffrath et al. 2014)). However,
they do play an import role in mammalian cells as Dph1 null mice
display multiple developmental defects that parallel Miller-Dieker
syndrome (MDS) (Yu et al. 2014), associated with deletions on
chromosome 17p13.3, Dph3 null mice are embryonically lethal (Liu
et al. 2006) and Dnajc24 (Dph4) null mice almost always die before
birth with the few that do survive showing severe developmental
defects reminiscent of Dph1 null mice (Webb et al. 2008). Recently,
Dph6mutant mice were shown to have an immune phenotype with
alterations in many innate and adaptive cell lineages (Abeler-
Dörner et al. 2020), and it is possible that these may be affecting
metastatic colonization. Thus, as very little is known aboutABHD17A
and DPH6 in the context of cancer, it is difficult to precisely speculate
how they may be playing a role in tumor cell extrinsic regulation of
metastatic colonization.

Rho GTPase regulating proteins
Rho GTPases are molecular switches that control a wide variety of
signal-transduction pathways, including regulation of the cytoskel-
eton, migration, and proliferation. Rho GTPases can be regulated by
GTPase-activating proteins (GAPs) and Rho GDP/GTP nucleotide
exchange factors (Rho GEFs). We identified one of each of these
family members.

Arhgap30: The ARHGAP30 (Rho GTPase activating protein 30)
gene encodes a Rho GTPase-activating protein, with a role in
regulating cell adhesion (Naji et al. 2011), as well as suppressing
lung cancer cell proliferation, migration and invasion (Mao and
Tong 2018). In colorectal cancer (CRC), ARHGAP30 levels
correlate with p53 acetylation and functional activation (Wang
et al. 2014), and ARHGAP30 has been proposed as a prognostic
marker for CRC (Wang et al. 2014), early-stage pancreatic ductal

Figure 2 Gene Ontology annotation of the 1,300 mutant mouse lines
screened as detailed in Methods. A) Molecular functions of genes
screened and B) Biological processes of genes screened.
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adenocarcinoma (Liao et al. 2017) and lung adenocarcinoma
(Li et al. 2018).

Fgd4: The FGD4 (FYVE, RhoGEF And PH Domain Containing 4) gene
encodes a GEF specific to the RhoGTPase, CDC42. FDG4, also known as
FRABIN, contains an actin filament-binding domain (ABD), an Dbl
homology domain (DHD), a cysteine rich-domain (CRD), and two
pleckstrin homology domains (PHD), which are involved in binding
to the actin and activating CDC42 at that vicinity, resulting in actin
cytoskeleton reorganization (allowing for shape changes such as the
formation of filopodia and lamellipodia) (Nakanishi and Takai 2008).
FGD4 overexpression has been observed in pancreatic neuroendocrine
neoplasms (Shahid et al. 2019) and expression of FGD4 positively
correlates with the aggressive phenotype of prostate cancer (Bossan
et al. 2018). Mutations in this gene can cause Charcot-Marie-Tooth
(CMT) disease type 4H (CMT4H), characterized by heterogeneous
hereditary motor and sensory neuropathies as a result of demyelination
of peripheral nerves (Delague et al. 2007).

Although much is known about these two genes and they have
well established roles in tumor cell-intrinsic roles in cancer, it is not

clear at this stage how they may be mediating an increased metastatic
colonization phenotype.

CONCLUSION
In summary, we have used the experimental metastasis assay to screen
1,300 genes/genetic loci to identify novel host/microenvironmental
regulators of metastatic colonization. We have identified 34 genes
whose loss of expression results in either an increased or decreased
ability for mouse melanoma cells to undergo metastatic coloni-
zation of the lung following tail vein injection. Some of these genes
regulate key pathways in immune cell development or function,
however many have only been shown to play a role in tumor cell-
intrinsic pathways with no known tumor cell-extrinsic functions
reported, thus, we have identified numerous novel regulators of
pulmonary metastatic colonization, which could represent poten-
tial therapeutic targets.
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GENE ALLELE COHORTS GENOTYPE ESTIMATE P VALUE

Duoxa2� ,tm1b(KOMP)Wtsi. 5 +721 6 21 2.02E-15
Irf1 ,tm1a(EUCOMM)Wtsi. 4 +246 6 32 1.12E-04
Rnf10�� ,tm1b(KOMP)Wtsi. 5 +221 6 28 1.74E-08
Pik3cg ,tm1a(EUCOMM)Wtsi. 6 +198 6 14 7.20E-12
Herc1 ,em1Wtsi. 4 +178 6 27 2.75E-04
Arhgap30 ,tm1a(EUCOMM)Wtsi. 5 +178 6 11 2.25E-31
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Fzd6 ,tm2a(EUCOMM)Wtsi. 6 +59 6 10 7.70E-07
Grsf1 ,tm1b(EUCOMM)Wtsi. 7 255 6 5 6.36E-12
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Cyba ,tm1a(EUCOMM)Wtsi. 6 299 6 6 1.18E-17
Arhgef1 ,tm1a(EUCOMM)Wtsi. 6 2100 6 6 7.03E-14
Fbxo7 ,tm1a(EUCOMM)Wtsi. 4 2100 6 15 7.63E-08
Tbc1d22a ,tm1b(KOMP)Wtsi. 6 2102 6 9 5.12E-22
Hsp90aa1 ,tm1(KOMP)Wtsi. 3 2103 6 13 6.37E-06
Entpd1 ,tm1a(EUCOMM)Wtsi/Hmgu. 4 2106 6 16 9.13E-08
Nbeal2 ,tm1a(EUCOMM)Wtsi. 4 2124 6 14 9.79E-09
Spns2 ,tm1a(KOMP)Wtsi. 10 2160 6 6 2.81E-37
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