
DrugE-Rank: improving drug–target interaction

prediction of new candidate drugs or targets by

ensemble learning to rank

Qingjun Yuan1,2, Junning Gao1,2, Dongliang Wu1,2, Shihua Zhang3,

Hiroshi Mamitsuka4,5 and Shanfeng Zhu1,2,6,*

1School of Computer Science, Fudan University, Shanghai, China, 2Shanghai Key Lab of Intelligent Information

Processing, Fudan University, Shanghai, China, 3National Center for Mathematics and Interdisciplinary Sciences,

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, 4Bioinformatics

Center, Institute for Chemical Research, Kyoto University, Uji, Japan and 5Department of Computer Science, Aalto

University, Finland and 6Centre for Computational System Biology, Fudan University, Shanghai, China

*To whom correspondence should be addressed

Abstract

Motivation: Identifying drug–target interactions is an important task in drug discovery. To reduce

heavy time and financial cost in experimental way, many computational approaches have been

proposed. Although these approaches have used many different principles, their performance is

far from satisfactory, especially in predicting drug–target interactions of new candidate drugs or

targets.

Methods: Approaches based on machine learning for this problem can be divided into two types:

feature-based and similarity-based methods. Learning to rank is the most powerful technique in

the feature-based methods. Similarity-based methods are well accepted, due to their idea of con-

necting the chemical and genomic spaces, represented by drug and target similarities, respect-

ively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely

combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for

which multiple well-known similarity-based methods can be used as components of ensemble

learning.

Results: The performance of DrugE-Rank is thoroughly examined by three main experiments using

data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved

drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii)

independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outper-

forms competing methods significantly, especially achieving more than 30% improvement in Area

under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs.

Availability: http://datamining-iip.fudan.edu.cn/service/DrugE-Rank

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The identification of drug–target interactions is a crucial process in

drug discovery, which can facilitate the understanding of drug ac-

tion mechanism, disease pathology and drug side effect (Keiser

et al., 2009; Lounkine et al., 2012; Nunez et al., 2012). Using bio-

chemical experiments to identify these interactions is a reliable, yet

expensive and time-consuming approach. In fact, the cost of

developing a new FDA approved drug has doubled every 9 years

since 1950, with only around 20 drugs approved by FDA per year

(Scannell et al., 2012). Furthermore, there exist a huge number of

unexplored compounds and human proteins, which makes it impos-

sible to examine their interactions effectively by experimental

approaches. For instance, there are over 35 million chemical com-

pounds in PubChem database, and only less than 7000 have protein
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target information (Bolton et al., 2008). On the other hand, more

than 140 000 human proteins are recorded in UniProtKB database

(Boutet et al., 2007). It is estimated that the number of possible tar-

gets is between 6000 and 8000 (Overington et al., 2006), whereas

only around 1300 known drugs are in DrugBank (Law et al., 2014).

To reduce the huge time and financial cost of experimental

approaches, many computational approaches have been proposed to

select a small number of most promising candidate drug–target

interactions for further experimental validation (Ding et al., 2014;

Mousavian and Masoudi-Nejad, 2014; Yamanishi, 2013).

Traditional computational approaches for identifying drug–tar-

get interactions usually focus on a particular target of interest. These

approaches can be divided into two categories, target-based meth-

ods (Lyne, 2002) and ligand-based methods (Acharya et al., 2011).

The target-based methods rely on known 3D structure of targets and

use docking techniques to simulate the interactions between targets

and candidate drugs. However, the 3D structures of many important

targets, especially G-protein coupled receptors and ion channels, are

unavailable. On the other hand, ligand-based methods rely on the

known interacting ligands of target proteins to define a pharmaco-

phore model that describe the common characteristic of binding lig-

ands. In this case, if the number of known binding ligands is very

small, ligand-based methods cannot work well.

To overcome the limitation of traditional approaches and also

realize large-scale prediction, machine learning has attracted lots of

attention (Ding et al., 2014; Mousavian and Masoudi-Nejad, 2014;

Yamanishi, 2013). This approach can use not only known drug–tar-

get interactions, but also various types of information on drug and

targets, implementing the idea of integrating the chemical space of

drugs and genomic space of targets. The methods of this approach

can be roughly divided into two groups: feature-based methods

(Nagamine and Sakakibara, 2007; Yabuuchi et al., 2011; Tabei

et al., 2012) and similarity-based methods (Ding et al., 2014).

In feature-based methods, drugs and targets are represented by

feature vectors, which are derived from their properties, such as

drug fingerprints and the sequence descriptors of targets. Currently,

the most high performance approach in this direction uses ‘Learning

To Rank (LTR)’ (Agarwal et al., 2010; Rathke et al., 2010; Zhang

et al., 2015), a rather new paradigm in machine learning. In prin-

ciple, LTR is very powerful. For example, in binary classification,

positive examples ranked lower and negative examples ranked

higher are more penalized, while examples are rather treated equally

in any classification method (Li, 2011). LTR has been originally de-

veloped in information retrieval for ranking web pages, according to

multiple users’ queries, meaning that LTR is considered for

‘multilabel classification’, in which each instance is labeled by mul-

tiple labels (Liu, 2009). Identifying drug–target interactions can also

be multilabel classification, in the sense that drugs can be interacted

(labeled) by multiple targets. In fact, statistics from DrugBank (be-

fore March 2014) shows 4.58 interacting targets on average for

each FDA approved small molecule drug, and 4.5 interacting FDA

approved small molecule drugs on average for each target protein.

So each drug (target) is labeled around 4.5 times on average, and

LTR is perfectly fitted to drug–target interaction prediction.

In similarity-based methods, different types of similarity among

drugs (e.g. chemical structure similarity) and among targets (e.g.

protein sequence similarity) can be used to learn models to predict

the interaction between drug and targets. A common assumption of

these methods is that similar drugs will interact with similar targets

and vice versa. A distinct advantage of similarity-based methods is

that this assumption can be explicitly incorporated into the predic-

tion model for identifying novel drug–target interactions. Following

the pioneering work of (Yamanishi et al., 2008), a lot of similarity-

based methods have been developed by using different techniques,

such as kernel learning (Bleakley and Yamanishi, 2009; Jacob and

Vert, 2008; Mei et al., 2013; van Laarhoven et al., 2011; van

Laarhoven and Marchiori, 2013), matrix factorization (Gönen,

2012; Zheng et al., 2013), regularized least squares (Xia et al.,

2010) and multilabel k-nearest neighbor (Shi et al., 2015). These

methods are thought to be reasonable and valid, because the drug

and target similarities generate the chemical space of drugs and gen-

omic space of targets, respectively, and the methods try to under-

stand the connection between the two spaces. This point leads to the

high-performance of similarity-based methods.

We address the problem of predicting drug–target interactions

for new drugs or new targets, which is especially challenging (Ding

et al., 2014), due to three main reasons. First, new drugs or targets

do not have known interactions, which makes the training of predic-

tion models difficult. Second, the connections among different drugs

or targets are not well considered in the existing computational

models. Third, given a new drug (or target), there are many possible

interacting targets (or drugs). Until December 2015, there are at

least approximately 1200 FDA approved small molecule drugs and

also at least 1300 target human proteins in DrugBank (Law et al.,

2014). To this end, we propose a new method, DrugE-Rank, to take

the most advantage of both the feature-based and similarity-based

machine learning methods. First, DrugE-Rank uses LTR, which

provides currently the most powerful performance and is totally

suitable for this problem. Second, in the framework of LTR, DrugE-

Rank performs an ensemble learning, that is integrating the predic-

tion by diverse cutting-edge techniques. It has adopted different

prediction methods as well as regular inputs (i.e. features of drug

and targets). Third, in the ensemble framework, LTR has only the

top promising drugs (or targets) suggested by each component meth-

ods as the input, instead of considering all possible chemical com-

pounds. This manner avoids using irrelevant chemical compounds

and eventually reduces computational burden heavily.

We examined the performance of DrugE-Rank by using manu-

ally annotated drug–target interactions in DrugBank (Law et al.,

2014). We generated three different datasets from DrugBank:

(i) FDA approved drugs appeared in DrugBank before March 2014;

(ii) new targets and FDA approved targets appeared in DrugBAnk

after March 2014; and (iii) FDA experimental drugs. We first com-

pared the performance of DrugE-Rank with competing methods by

cross-validation on the first dataset. Experimental results on this

cross-validation show that DrugE-Rank outperformed all competing

methods, being statistically significant. The improvement when hav-

ing new drug was especially promising, where DrugE-Rank achieved

an Area under Prediction Recall curve (AUPR) of 0.4917, 27.3%

higher than that by the best component method (an AUPR of

0.3864). The performance of DrugE-Rank was further validated by

two different independent tests using the second and third datasets.

For example, for the new FDA approved drugs appearing in

DrugBank after March 2014, DrugE-Rank achieved an AUPR of

0.2031, 60.8% improvement against that by the best component

method (an AUPR of 0.1263). Also we analyzed top predicted drugs

and targets from a variety of viewpoints, giving several insights on

the data of drug–target interactions.

2 Related work

Feature-based learning is a general framework of machine learning,

especially classification, for which various approaches have been
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proposed and successfully used in a wide variety of applications.

LTR is a rather new paradigm in machine learning, which is moti-

vated by information retrieval, where with respect to users’ queries,

more relevant web pages should be ranked higher (Li, 2011). LTR is

powerful for binary classification in the sense that lower ranked

positive examples and higher ranked negatives are penalized more,

while general classification methods treat all examples equally.

Already a variety of methods for LTR have been proposed. One of

such method is LambdaMART (Burges, 2010), which has been used

in many applications (Liu et al., 2015b). Currently, LTR has proven

to be a powerful approach not only in information retrieval, but

also in many other applications, even in computational biology,

such as protein remote homology detection (Liu et al., 2015a), pep-

tide identification from proteomics data (Qeli et al., 2014) and bio-

medical semantic indexing (Liu et al., 2015b). In particular, recently

LTR has been applied to ligand-based virtual screening (Agarwal

et al., 2010; Rathke et al., 2010; Zhang et al., 2015). Initially, a

pair-wise LTR method, SVMRank, was rather straightforwardly

applied to rank chemical structures for drug discovery, showing

higher performance than support vector regression (SVR) (Agarwal

et al., 2010). Then this method with SVMRank was outperformed

by StructRank (Rathke et al., 2010). Also in a more application-

oriented manner, six already available software/algorithms of LTR

were compared for ligand-based virtual screening (Zhang et al.,

2015). In this line of work, we emphasize that our proposed method,

DrugE-Rank, has several unique points, to outperform the existing

work: (i) DrugE-Rank can use ensemble learning or information

from multiple component methods, for which cutting-edge similar-

ity-based machine learning methods can be used. In addition, in

training, we filter candidate drugs (or targets) by using component

methods, and this step works well to remove irrelevant drugs (false

positives) and as a result reduce the entire computational cost. (ii)

The focus of DrugE-Rank is on predicting new drugs (or new tar-

gets), while the existing work are for ligand-based virtual screening

(to rank the candidate chemical compounds), where the target is not

necessarily new. (iii) DrugE-Rank uses all known drug–target inter-

actions in DrugBank, meaning that this work is a thorough study,

while the data used in existing work are interactions of a single tar-

get or a small number of targets only.

One uniqueness of the problem of predicting drug–target inter-

actions is that given data are not only interactions between drugs

and targets, but also similarities between drugs (and those of tar-

gets), which can be thought to represent the chemical and genomic

spaces, respectively. This is a well-advocated paradigm in chemoge-

nomics. Thus, similarity-based approaches are well accepted by

pharmacologists and relevant methods have been widely proposed,

achieving high predictive performance (Ding et al., 2014). DrugE-

Rank uses cutting-edge similarity-based methods as components of

ensemble learning. See Section 3.3 for their schemes which are ex-

plained as component methods of DrugE-Rank.

3 Methods: DrugE-Rank

3.1 Notations
We use D ¼ fdignd

i¼1 to represent drug set, and T ¼ ftjgnt

j¼1 for target

set. Y is the drug–target interaction matrix, where Yij ¼1 if there is

interaction between di and tj, otherwise Yij ¼0. Let ydi
be a binary

vector, called interaction profile of drug di, where the j-th element of

ydi
is 1 if drug di interacts with target tj; otherwise 0. Similarly let ytj

be a binary vector, called interaction profile of target tj. St is the gen-

omic similarity matrix of targets, and stðti; tjÞ is genomic similarity

between ti and tj in St ; Sd is the chemical similarity matrix of drugs,

and sdðdi;djÞ is the genomic similarity between di and dj in Sd ; xt is

the feature vector of target t, and XT is the feature matrix of T. xd is

the feature vector of drug d, and XD is the feature matrix of D.

3.2 Overview
The framework of DrugE-Rank is to predict drugs (or targets) given

a new target (or a new drug). For simplicity, in this section, we ex-

plain our method by the case that a new target is given (and then

ranking drugs). We note that the reverse case can be easily explained

by replacing drugs and targets with targets and drugs, respectively.

Given a new target, each target can be viewed as an instance, and all

drugs can be viewed as labels. That is, given a new target t 2 T,

identifying relevant drugs is to predict the labels of instance t, which

can be considered as a multilabel classification, since not only one

label (drug) but also multiple labels (drugs) are considered. To solve

this problem, DrugE-Rank uses LTR, which is originally developed

in information retrieval for ranking web pages with respect to user’

query. That is, in information retrieval, t and D can be a query and a

set of web pages, respectively, and predicting drugs interacting with

t can be solved by ranking drugs in D by LTR.

The procedure of DrugE-Rank has four steps. Before explaining

the detail of the four steps, we will briefly explain the six component

methods of DrugE-Rank.

3.3 Component methods
We select six well-known, cutting-edge similarity-based methods as

component methods: k-nearest neighbor (k-NN), Bipartite Local

Model with support vector classification (BLM-svc) (Bleakley and

Yamanishi, 2009), Bipartite Local Model with support vector re-

gression (BLM-svr) (Bleakley and Yamanishi, 2009), Laplacian

regularized least squares (LapRLS) (Xia et al., 2010), Network-

based Laplacian regularized least squares (NetLapRLS) (Xia et al.,

2010), Weighted Nearest Neighbor-based Gaussian Interaction

Profile classifier (WNN-GIP) (van Laarhoven et al., 2011; van

Laarhoven and Marchiori, 2013).

(i) k-NN

Given a new target tnew, we select a set of top k most similar tar-

gets, M by using St. Then the interaction profile of tnew can be

computed as follows: ytnew
¼
P

t2M
stðtnew ;tÞytP

t2M
stðtnew ;tÞ

k-NN uses the closest

instances (targets) to estimate interaction profile of a given new

target, meaning that k-NN only uses local information of drug–

target interactions.

(ii) BLM-svc

Given a new target tnew, to predict the interaction between tnew

and drug d, BLM generates a prediction model by regarding

each of other targets as one instance. That is, each instance (tar-

get) has one binary label showing if the corresponding target is

interacting with drug d. The prediction model of BLM-svc is

support vector classification, for which the kernel is generated

from drug similarities Sd.

(iii) BLM-svr

BLM-svr uses the framework of BLM-svc, just by replacing svc

with svr.

(iv) LapRLS

LapRLS minimizes the squared loss between Y and F (inter-

action score matrix:parameter) with a regularized term of using

St and F. This minimization leads to an analytical solution, by

which F can be obtained easily by a rule consisting of St and Y.

(v) NetLapRLS
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NetLapRLS is an extension of LapRLS by incorporating the net-

work information of drug–target interaction into the regularizer

under the same regularized least squares framework.

(vi) WNN-GIP

Gaussian interaction profile (GIP) generates a Gaussian kernel

for drug pairs using the similarity of interaction profiles of drugs

and also a Gaussian kernel for target pairs from those of targets.

From these kernels, GIP then generates a kernel between drug–

target pairs, which is used for predicting drug–target inter-

actions by regularized least squares. KNN-GIP is a slight exten-

sion of GIP by using k-NN for computing Gaussian interaction

profiles.

3.4 Entire procedure of DrugE-Rank
Figure 1 shows the entire procedure of DrugE-Rank, with four

steps.

3.4.1 Step 1: preprocessing data

For a given new target tnew, we generate 147-dimension feature vec-

tor xtnew
(target feature vector or TFV) by Composition, Transition

and Distribution (CTD), which is extensively used and sequence-

derived physicochemical features. We obtain this data from a web

server, PROFEAT (Rao et al., 2011). The genomic similarity be-

tween tnew and a target t in T, that is stðtnew; tÞ, is computed by nor-

malized Smith–Waterman score on sequence similarity (Yamanishi

et al., 2008).

For the drug side, each drug d is represented by a 36-dimension

GD (general descriptors) feature vector xd
0 (drug feature vector or

DFV), which is generated by an open-source Chemoinformatics soft-

ware, RDKit.1 The GD features are, for each chemical compound, a

set of physical molecular properties, such as van der Waals surface

area, molar refractivity, log P (octanol/water), and partial charge.

The chemical similarity between d and drug d0 in D, that is sdðd;d0Þ,
is calculated by Tanimoto coefficient over 2D chemical substruc-

tures of drugs.

Table 1 summarizes the information on drug and target feature

vectors.

3.4.2 Step 2: running component methods

We run six component methods to predict the score of drug–target

interaction between any drug d and the given new target tnew, f iðd;
tnewÞ for i-th component, using the similarity between new target

tnew and another target t, that is stðtnew; tÞ, as the input. The ob-

tained score is further normalized to be a value between 0 and 1 as

follows:

bf iðd; tnewÞ ¼
f iðd; tnewÞ �mini

maxi �mini
;

where maxi and mini are the maximum and minimum prediction

scores of i-th component method. This means, for a given new target

tnew and a drug d, we can have a 6-dimension vector xðd;tnewÞ (pair

feature vector or PFV), where the i-th element of this vector is
bf iðd; tnewÞ.

3.4.3 Step 3: setting up feature vector

We generate the final feature vector for any pair of drug d and a

newly given target tnew, by concatenating the following three types

of features:

TFV: target feature vector

As described in Step 1, target tnew is represented by a 147-dimen-

sion feature vector, xtnew
.

DFV: drug feature vector

Also as mentioned in Step 1, each drug d is represented by a 36-

dimension feature vector, xd.

PFV: pair feature vector

As described in Step 2, each drug–target pair ðd; tnewÞ can be rep-

resented by a 6-dimension feature vector dðd;tnewÞ, showing the

strength of interaction between d and tnew.

Fig. 1. A four-step procedure of DrugE-Rank for predicting drugs’ interactions with a given target t 0 : (1) DrugE-Rank first computes feature vectors of target t 0 and

arbitrary drug d and also similarity of targets and that of drugs, (2) DrugE-Rank runs six component methods by using similarities computed in Step 1 and the re-

turning scores are generated as pair features, (3) A feature vector for drug d is generated from drug and target features, generated in Step 1 and pair features in

Step 2, (4) Finally, the features are input into LTR and the resultant ranked drug list for t 0 can be returned

Table 1. Drug and target feature vectors

DFV TFV

Name General descriptor CTD

Dimension 36 147

Calculation RDKit PROFEAT

Description PEOE_VSA1 - PEOE_VSA14,

SMR_VSA1 - SMR_VSA10,

SlogP_VSA1 - SlogP_VSA12

Composition, transition

and distribution

1 http://www.rdkit.org/.
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Thus, each drug–target pair is represented by 189 features,

which are the input of Step 4 for ranking drugs to interact with tnew.

3.4.4 Step 4: ranking drugs by LTR

We use LambdaMART (Burges, 2010) for training LTR. Given a

new target tnew, we can have the feature vector of a drug, according

to Step 3, by which for drugs, we can generate multiple feature vec-

tors, which are given as the input to the trained LTR. A ranked list

of drugs is then returned as the final prediction result.

We note that when training LTR, we do not use all possible

drug–target pairs, and instead for each target, we use only top K

drugs highly predicted to be interacting with the target by each com-

ponent method. In fact drug–target interaction is highly sparse data,

by which false positives can occur easily. So this manner of using

only top K drugs is highly effective to avoid this type of false posi-

tives and eventually reduce the computational cost in training LTR.

4 Experiments

4.1 Data
Drug–target interaction (binary) data are obtained from DrugBank,

a high-quality human annotated database (Law et al., 2014), in

which drugs are labeled with protein targets. In the data of

DrugBank, we used only small molecules (FDA approved or experi-

mental drug) and human proteins for targets. We first focused on

FDA approved drugs and then conducted preliminary data analysis

over the drug–target interactions with FDA approved drugs. In total,

this data consists of 1242 drugs, 1324 targets and 5701 interactions

(0.4% of all possible drug–target pairs).

4.1.1 Promiscuity of drugs and targets

Figure 2 shows the distribution of the number of (a) drugs and (b)

targets when they are classified by the number of interactions. The

result shows that more than 95% drugs/targets are involved in less

than 20 interactions, meaning the sparseness and unbalancedness of

the data, while in both drugs and targets, around half of them have

more than one interactions, implying high promiscuity of those

drugs and targets.

4.1.2 Correlation between #shared drugs/targets and similarity

A hypothesis of similarity-based methods is that similar drugs will

interact with similar or the same targets, and vice versa. Figure 2

shows the average similarity between (c) drugs due to the number of

shared targets and (d) targets due to the number of shared drugs

(both by the solid lines). The dashed lines show trend lines, which

indicates the rather positive correlation between the similarity and

the number of shared drugs/targets, confirming the hypothesis of

similarity-based methods,that is component methods in DrugE-

Rank.

4.1.3 Generating subsets

We divided the entire DrugBank data into five subsets, named by

Data-1 to Data-5, where Data-1 to Data-4 have FDA approved

drugs and Data-5 has experimental drugs. Data-1 and Data-3 are

distinct from Data-2 and Data-4 by the time (March, 2014) when

drugs appear in DrugBank. Similarly, Data-1 and Data-2 are distinct

from Data-3 and Data-4 by when (also March, 2014) targets appear

in DrugBank. Table 2 shows the summary of this classification of

subsets, and Table 3 shows the information on these datasets.

4.2 Experimental procedures
4.2.1 Competing methods

We compared DrugE-Rank with six component methods which are

cutting-edge similarity-based machine learning methods for predict-

ing drug–target interactions. Also we used two feature-based ma-

chine learning methods, that is random forest (RF) and gradient

boosting decision tree (GBDT) as competing methods, where only

the DFV and TFV were used for RF and GBDT. Furthermore, within

DrugE-Rank, we tested three different sets of feature vectors includ-

ing: (i) DFV and TFV, (ii) PFV and (iii) all features (¼ DFV, TFV

and PFV), to check the contribution of the feature vectors to the per-

formance improvement. We note that DrugE-Rank with DFV and

(a) (b) (c) (d)

Fig. 2. Analysis on drug–target interactions with FDA-approved drugs consisting of 5701 known interactions between 1242 FDA approved drugs and 1324 human

protein targets. (a) #interactions versus #drugs, (b) #interactions versus #targets, (c) #shared targets versus average similarity between drugs and (d) #shared

drugs versus average similarity between targets. In (c) and (d), the dashed lines show the trend lines, being fitted on a logarithmic function, and the two outside

lines show the confidence interval of the estimation ((c): P ¼ 0.046, R2 ¼ 0.19 and (d): P ¼ 0.001, R2 ¼ 0:57)

Table 3. Information on data subsets

Data-1 Data-2 Data-3 Data-4 Data-5

#Targets 1200 1200 124 124 1324

#Drugs 1178 64 1178 64 1753

#Interactions 5400 149 147 5 2094

Interaction rate (%) 0.382 0.194 0.101 – 0.09

#Interactions per target 4.5 – 1.19 – 1.58

#Interactions per drug 4.58 2.33 – – 1.19

Table 2. Binary drug–target interaction datasets from DrugBank

FDA drugs

(before

03/2014)

FDA drugs

(after

03/2014)

Experimental

drugs

Targets (before 03/2014) Data-1 Data-2
Data-5Targets (after 03/2014) Data-3 Data-4
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TFV only is substantially equivalent to the existing work of using

LTR, which is one of the most powerful feature-based machine

learning approaches.

4.2.2 Evaluation criteria

Drug–target interactions are really sparse, by which false positives

should be punished more in evaluation. Thus, we use AUPR, instead

of AUC (Area Under the receiver operator characteristics curve),

which treats all examples equally (Davis and Goadrich, 2006). Note

that precision is the ratio of the correctly predicted positives to all

predicted positives, and recall is the ratio of predicted positives to all

positives.

4.2.3 Three types of experimental settings

Cross-validation over Data-1. We conducted 10 times 5-fold cross-

validation over Data-1, thinking about new drugs or new targets,

meaning repeating randomly dividing drugs or targets of Data-1

into five parts (one for testing, one for training LTR and the rest for

training component models) for 10 times. Paired t-test was used to

confirm the statistical significance of performance differences.

Independent test on Data-2 1 Data-3 (new targets or new FDA

approved drugs (appearing in DrugBank after March 2014)). We

used Data-1 for training and Data-2 and Data-3 for testing. In train-

ing, all targets (or drugs) in Data-1 were randomly divided into five

subsets, four out of the five for training component models and the

rest one for training LTR. We repeated this procedure 10 times and

reported the average prediction performance.

Independent test on Data-5 (interactions with experimental drugs).

We used all Data-1 to Data-4 for training and Data-5 for testing.

The procedure is the same as the above independent test setting.

4.3 Parameter setting
4.3.1 Choosing parameter values

For k-NN, k was selected from {5,7,9,11,13,15,17} to maximize

AUPR under cross-validation. BLM-svc, BLM-svr, LapRLS,

NetLapRLS and WNN-GIP were implemented exactly following

their publications, where LibSVM was used for BLM-svc and BLM-

svr, with regularization coefficient C of 1. RF, GBDT and

LambdaMART were implemented by RankLib.2 The default param-

eter setting was used for LapRLS and NetLapRLS. The decay rate T

of WNN-GIP was selected from {0.7, 0.8, 0.85, 0.9, 0.95} by 5fold

cross-validation to maximize AUPR. For RF, the number of bags

was selected from {8,16,32,64,128} to maximize AUPR in cross-

validation. Also for LambdaMART and GBDT, the number of trees

and the number of leaves for each tree were selected from

{8,16,32,64,128} and {4,8,16}, respectively, in a similar manner.

Component methods were used in DrugE-Rank, and also for

comparing their performances with that of DrugE-Rank. Please note

that data are different between the above two cases. For example,

in DrugE-Rank, only a part of data was used, like in 5-fold

cross-validation over Data-1, three among five folds for training

component methods, one for training LTR and the last one for per-

formance evaluation, while in performance comparison, the same

last one for performance evaluation and the rest are for training the

component method.

4.3.2 Selecting K, the number of labels

As shown by data analysis, drug–target interactions are very sparse

and likely to cause false positives, meaning that reducing possible

labels would be very useful. So we did a preliminary experiment to

decide the number of K, that is possible number of labels or candi-

date drugs (for a given new target), by dividing Data-1 into five

parts, one for training LTR, one for prediction and the rest for train-

ing component models. After prediction, we checked the precision

and recall of top K prediction results by component models and the

union of their prediction results, changing K ¼ 5 to 100. Fig. 3(a)

and (b) show that the recall values obtained by the results of this

preliminary experiment. The union of the results obtained by com-

ponent models reached 0.75 by integrating top 30, that is around

3% of all possible labels (drugs). This is much higher than that of

each component model, implying that focusing on most confidently

predicted drugs/targets is very useful. Finally, we computed F-meas-

ure, the harmonic mean of precision and recall, for predicting new

drugs or targets. Fig. 3(c) shows the F-measure against the number

of label candidates, indicating that the F-measure can be maximized

for K ¼ 35, which we used for all experiments in this article.

4.4 Experimental results
4.4.1 Cross-validation over Data-1

Table 4 shows the performance results (AUPR) by six similarity-

based methods, two feature-based methods and DrugE-Rank with

three different sets of features. Among six similarity-based methods,

BLM-svr was the best in both new drugs and new targets, being es-

pecially significant in new target prediction. On the other hand,

feature-based methods gave worse results than BLM-svr. For ex-

ample, for predicting new drugs, BLM-svr achieved an AUPR of

(a) (b) (c)

Fig. 3. Selecting the number of labels by 10� 5-fold cross-validation over Data-1. (a) Recall values by the prediction of component models and the union of their

results, changed by the candidate drugs. (b) Also recall values, changed by the candidate targets. (c) F-measure values for predicting drugs/targets, obtained by

the union of prediction results

2 http://sourceforge.net/p/lemur/wiki/RankLib/.
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0.3864, outperforming an AUPR of 0.3418 by RF and of 0.3328 by

GBDT. DrugE-Rank, when all features were used, achieved the

highest AUPR of 0.4917 for predicting new drugs and 0.5906 for

new targets, being statistically significant against all other cases ex-

cept DrugE-Rank with pair features. In particular, the AUPR of

0.4917 for new drugs is around 27% higher than that by BLM-svr,

the best similarity-based prediction method. On the other hand,

DrugE-Rank with drug and target features only showed comparative

performance with BLM-svr, being much worse than DrugE-Rank

with pair features or all features. This result indicates that pair fea-

tures are much more important than drug and target features. Also

integrating pair features into drug and target features is important,

confirming the usefulness of our idea.

Furthermore, by using the 10 trained models of DrugE-Rank, we

predicted unknown drug–target interactions (for Data-1) and checked

if they are in the latest DrugBank. The interactions were sorted by

how many times they are predicted in the top ten out of the 10 mod-

els. Tables 5 and 6 show the results obtained by target-based and

drug-based cross-validation, respectively. Surprisingly, six out of the

top seven predicted interactions in Table 5 and five out of the seven

predicted interactions in Table 6 can be found in the latest DrugBank

(see supplementary materials for more results). This result also indi-

cates the high predictive performance of DrugE-Rank.

4.4.2 Independent test on Data-2 and Data-3

Table 7 shows the AUPR results obtained by applying models

trained by Data-1 to independent datasets, Data-2 and Data-3. We

can first see that the performance of all methods dropped signifi-

cantly from the cross-validation results of Table 4. This implies that

the data distribution drastically changed between training and test-

ing, being different from cross-validation. However, the relative per-

formance order of different methods were still kept. First, BLM-svr

achieved the higher AUPR than all other similarity-based methods

and also two feature-based methods. Second, two feature-based

methods did not perform well, against not only BLM-svr but also

most of other similarity-based methods. Third, DrugE-Rank with all

features was the best performer among all methods, being followed

by DrugE-Rank with pair features. For example, for new drug pre-

diction, DrugE-Rank with all features achieved the highest AUPR of

0.2031 with standard deviation of 0.0127, which is amazingly 61%

higher than that by the best similarity-based method, BLM-svr with

0.1263. Again this result confirmed the importance of pair features

and the advantage of DrugE-Rank.

We further checked the performance of the competing methods

in more details, using AUPR by each method for one drug (in Data-

2) and that for one target (in Data-3). That is, for example, in Data-

2, we checked the method which gave the highest AUPR for each

drug and then, for each method, counted the number of drugs to

Table 5. New interactions predicted by using target-based 10� 5-fold cross validation results (models) on Data-1

UniProt ID (Target name) DrugBank ID (Drug name) #Times Found?

Q8N1C3 (Gamma-aminobutyric acid receptor subunit gamma-1) DB00898 (Ethanol) 8 Yes

Q99928 (Gamma-aminobutyric acid receptor subunit gamma-3) DB00898 (Ethanol) 8 Yes

P78334 (Gamma-aminobutyric acid receptor subunit epsilon) DB00898 (Ethanol) 8 Yes

Q13639 (5-hydroxytryptamine receptor 4) DB00408 (Loxapine) 7 No

O94956 (Solute carrier organic anion transporter family member 2B1) DB01045 (Rifampicin) 7 Yes

Q9UM07 (Protein-arginine deiminase type-4) DB00759 (Tetracycline) 7 Yes

P19320 (Vascular cell adhesion protein 1) DB00898 (Ethanol) 7 Yes

Note: Predicted (top 7) interactions were sorted by how many times they are predicted out of 10 times (shown by #times), and the last column shows Yes or

No, indicating if the interaction was found in the latest DrugBank database or not.

Table 4. AUPR for 10� 5-fold cross-validation over Data-1 (P-values

of paired t-test against DrugE-Rank with all features)

Method Drug-based interactions Target-based interactions

k-NN 0:3490 ð1:97� 10�34Þ 0:4569 ð2:24� 10�14Þ
BLM-svc 0:3712 ð7:69� 10�32Þ 0:5138 ð6:23� 10�09Þ
BLM-svr 0:3864 ð7:25� 10�30Þ 0:5631 ð1:30� 10�03Þ
LapRLS 0:3848 ð1:01� 10�33Þ 0:5517 ð9:55� 10�04Þ
NetLapRLS 0:3769 ð2:10� 10�34Þ 0:5124 ð8:84� 10�10Þ
WNN-GIP 0:3641 ð1:38� 10�29Þ 0:5281 ð2:03� 10�05Þ
RF 0:3418 ð8:35� 10�29Þ 0:5014 ð1:80� 10�10Þ
GBDT 0:3328 ð1:07� 10�29Þ 0:5278 ð1:09� 10�06Þ
DrugE-Rank 0:3874 ð1:44� 10�21Þ 0:5427 ð7:57� 10�05Þ
(DFV and TFV)

DrugE-Rank 0:4853 ð0:065Þ 0:5841 ð0:51Þ
(PFV only)

DrugE-Rank 0:4917 0:5906

(all features)

The AUPRs achieved by the best model, DrugE-Rank (all features), are

highlighted in bold face.

Table 6. New interactions found by using drug-based 10� 5-fold cross validation on Data-1

UniProt ID (Target name) DrugBank ID (Drug name) #Times Found?

Q16850 (Lanosterol 14-alpha demethylase) DB01045 (Rifampicin) 10 Yes

O94956 (Solute carrier organic anion transporter family member 2B1) DB01045 (Rifampicin) 10 Yes

P48051 (G protein-activated inward rectifier potassium channel 2) DB00898 (Ethanol) 10 Yes

P20309 (Muscarinic acetylcholine receptor M3) DB01339 (Vecuronium) 10 No

P21728 (D(1A) dopamine receptor) DB00933 (Mesoridazine) 10 No

Q12809 (Potassium voltage-gated channel subfamily H member 2) DB00537 (Ciprofloxacin) 10 Yes

Q02641 (Voltage-dependent L-type calcium channel subunit beta-1) DB00898 (Ethanol) 9 Yes
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which the highest AUPR was given. Table 8 shows the results. Both

for drugs and targets, DrugE-Rank achieved the highest number.

For example, DrugE-Rank performed the best in 74 out of all 124

targets, being followed by k-NN and BLM-svr, both having

achieved the highest AUPR for 36 targets (please note that two or

more methods may have achieved the same highest AUPR). This re-

sult also confirmed the performance advantage of DrugE-Rank.

We finally explored the complementarity between different

similarity-based methods, since they are used as component methods

for ensemble learning of DrugE-Rank. We selected top 200 drugs

predicted by each method, and plotted the rank of true interacting

drugs by each method for a pair of two component methods, such as

k-NN versus BLM-svr. Figure 4 shows the results by (a) k-NN

versus BLM-svr, (b) NetLapRLS versus BLM-svr, (c) WNN-GIP

versus NetLapRLS and (d) BLM-svr versus WNN-GIP. So each

point in the figure is a drug ranked higher than 200 in at least either

of the competitive two methods, where red and blue points show

those ranked lower than 200 by only one method. The points close

to the diagonal line are the drugs for which two competing methods

perform similarly, while the points far from the diagonal line are the

drugs for which one method performs much better than the other

method. Figure 4 shows that no methods can beat other methods

clearly. Even between the worst component method k-NN and the

best component method BLM-svr, shown in (a), there are a few true

interacting drugs on the side of BLM-svr, meaning that they are

ranked higher by k-NN than BLM-svr. Also shown in (c),

NetLapRLS and WNN-GIP, which achieved almost similar AUPR

values of around 0.167 in Table 7, have very few drugs close to the

diagonal line, meaning that their rankings are totally different. All

these results confirm the complementarity of different component

methods, which must bring diverse effects to allow DrugE-Rank to

improve the predictive performance by their ensemble.

4.4.3 Independent test on Data-5

Table 7 shows the AUPR results obtained by applying models

trained by Data-1 to Data-4 to independent dataset Data-5. The val-

ues are further decreased from those obtained when Data-2 and

Data-3 were used for independent test sets. This indicates that inter-

actions with experimental drugs in Data-5 have totally different na-

ture from interactions in other subsets. However, the performance

order was again kept the same as that in the cross-validation experi-

ment over Data-1. Concretely, BLM-svr achieved the best perform-

ance among six similarity-based methods, and DrugE-Rank

outperformed BLM-svr. In particular DrugE-Rank with drug and

target features outperformed BLM-svr rather clearly, and are rather

close to the other two DrugE-Rank settings. Overall we can say that

the framework of DrugE-Rank is useful for predicting unknown, in-

dependent drug–target interactions with new drugs (or targets).

4.5 Two cases
We present two specific cases with sample drugs and targets, which

are correct and were ranked high by DrugE-Rank, with their rank-

ings by other competing methods. Table 9 shows the top three drugs

ranked by DrugE-Rank, meaning that they were predicted to inter-

act with a given new target, ‘inhibitor of nuclear factor kappa-B kin-

ase subunit alpha’. Also Table 10 shows the top five targets,

predicted by DrugE-Rank, and the rankings obtained by other com-

peting methods. We can see that even if the rankings of drugs (or

targets) by component methods were very low by multiple compo-

nent methods, DrugE-Rank could identify these drugs successfully.

For example, in Table 10, given Nintedanib, DrugE-Rank success-

fully identify the targets which interact with Nintedanib, such as

Table 7. AUPR for independent testing data (FDA approved, new

drugs and experimental drugs)

Methods Data-2 Data-3 Data-5

new drugs new targets new drugs

k-NN 0.0783 0.1046 0.0173

BLM-svc 0.1064 0.1955 0.0316

BLM-svr 0.1263 0.2096 0.0405

LapRLS 0.1155 0.1454 0.0262

NetLapRLS 0.1244 0.1667 0.0278

WNN-GIP 0.1081 0.1680 0.0338

RF 0.1192 0.1314 0.0512

GBDT 0.1168 0.1577 0.0392

DrugE-Rank 0.1329 0.1810 0.0717

(DFV and TFV)

DrugE-Rank 0.1803 0.2658 0.0732

(PFV only) (0.0123) (0.0113) (0.0029)

DrugE-Rank 0:2031 0:2831 0:0997

(all features) (0.0127) (0.0078) (0.0205)

Table 8 The number of drugs and targets, for which each method

achieved highest AUPR.

Methods Drugs (Data-2) Targets (Data-3)

k-NN 9 36

BLM-svc 14 35

BLM-svr 14 36

LapRLS 13 26

NetLapRLS 13 32

WNN-GIP 17 34

DrugE-Rank 24 74

(a) (b) (c) (d)

Fig. 4. Complementarity between component methods. The 200 drugs correctly predicted for a new given target by each method is compared with that of an-

other. The comparison is between (a) k-NN versus BLM-svr, (b) NetLapRLS versus BLM-svr, (c) WNN-GIP versus NetLapRLS and (d) BLM-svr versus WNN-GIP
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Vascular endothelial growth factor receptor 3, which was ranked

out of top 50 by four component methods, k-NN, BLM-svc, BLM-

svr and WNN-GIP. Overall, this result also shows the good predict-

ive ability of DrugE-Rank.

5 Discussion

Identifying drug–target interactions of new, unknown drugs or tar-

gets is a very challenging task, where interactions of new drugs or

targets are unavailable. Previous methods can be divided into two

groups, feature- and similarity-based methods. DrugE-Rank incorp-

orates the outputs of similarity-based methods as features to im-

prove the prediction performance. This point has not been

considered in any existing work including those using LTR. Our ex-

perimental results clearly demonstrated that the novel combination

of similarity- and feature-based methods such as DrugE-Rank is

significantly better than independent approaches. Moreover, DrugE-

Rank provides a robust framework to integrate other types of infor-

mation to improve the accuracy of drug–target interaction

prediction.

Compared with drug and target features, pair features from the

similarity based component methods are the key to improve the per-

formance of DrugE-Rank. A common assumption behind similarity-

based methods is that similar drugs (targets) are likely to interact

with similar targets (drugs). We validated this assumption in

DrugBank data analysis. In addition, we compared the drugs highly

predicted by component methods directly, confirming that compo-

nent methods in DrugE-Rank can provide diverse results and are

complement to each other. This must contribute to the performance

improvement of DrugE-Rank. Currently we select the component

methods by considering their accuracy, diversity and efficiency.

With the increase of possible component methods, an interesting

problem would be how to automatically choose the most suitable

component methods.

We found that identifying interactions of new drugs is more diffi-

cult than the one of new targets, which is consistent with previous

study (Ding et al., 2014). This suggests that the action mechanism of

drug is complicated, where one drug may have multiple types of tar-

gets and sometimes similar drugs may have different mechanisms. In

this case, DrugE-Rank would be particularly useful since DrugE-

Rank can integrate the diverse component methods effectively for

better performance. In fact, the performance improvement over the

component methods by DrugE-Rank for a new drug is much higher

than the one for a new target. Another interesting discovery is that

relative low prediction performance on FDA experimental drugs.

One main reason is that the ratio of drug–target interaction for ex-

perimental drugs is much lower than the one for FDA approved

drugs (training data). Many non-interaction pairs might be false

negatives. DrugE-Rank can be used to predict top drug–target pairs

as the promising candidates for further experimental verification.

6 Conclusion

We have developed DrugE-Rank to improve the performance of pre-

dicting drug–target interactions of new drugs or targets. The idea of

DrugE-Rank are three folds: (i) the problem of predicting drug–tar-

get interactions can be modeled as a multilabel classification task;

(ii) this problem can be suitably solved by using LTR, a powerful

feature-based machine learning approach, which converts multilabel

classification to label ranking; (iii) the outputs of cutting-edge simi-

larity-based machine learning methods can be features like drug and

target features, all being able to be the input of LTR. DrugE-Rank

outperformed all competing methods, in both cross-validation and

several independent test scenarios, which demonstrate the predictive

advantage of DrugE-Rank. In addition, in contrast to previous stud-

ies with a small number of targets, all known interactions in

DrugBank have been used in this work, indicating the thoroughness

and validity of our results. Overall we believe that this high-

performance software, DrugE-Rank will contribute to the develop-

ment of pharmaceutical sciences and relevant industry.
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