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ABSTRACT The concept of original antigenic sin (OAS) was put forth many years
ago to explain how humoral memory responses generated against one set of anti-
gens can affect the nature of antibody responses elicited to challenge infections or
vaccinations containing a similar but not identical array of antigens. Here, we high-
light the link between OAS and the germinal center reaction (GCR), a process unique
to activated B cells undergoing somatic hypermutation and class switch recombina-
tion. It is the powerful response of activated memory B cells and the accompanying
GCR that establish the foundations of OAS. We apply these concepts to the current
COVID-19 pandemic and put forth several possible scenarios whereby OAS may
result in either beneficial or harmful outcomes depending, hypothetically, on prior
exposure to antigens shared between SARS-CoV-2 and seasonal human coronaviruses
(hCoVs) that include betacoronaviruses (e.g., HCoV-OC43 and HCoV-HKU1) and alpha-
coronaviruses (e.g., HCoV-NL63 and HCoV-HKU1) (E. M. Anderson, E. C. Goodwin, A.
Verma, C. P. Arevalo, et al., medRxiv, 2020, https://doi.org/10.1101/2020.11.06.20227215;
S. M. Kissler, C. Tedijanto, E. Goldstein, Y. H. Grad, and M. Lipsitch, Science 368:860–868,
2020, https://doi.org/10.1126/science.abb5793).
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The speed and specificity of immunological memory are the basis of long-term,
acquired immunity and of vaccinology. The power of memory, however, comes at

a price. The cost? A memory response triggered to a similar but not identical array of
antigens (e.g., a new exposure to a related but antigenically distant pathogen) can
potentially be less effective than a response elicited in the absence of memory (1–4).
This is possible because memory B cells producing antibodies of high affinity and spec-
ificity established following a primary exposure to one subset of antigens can prevent
or significantly dampen responses by naive B cells to new antigens if they are part of a
profile that includes antigens present during the primary exposure (5, 6). This is not a
problem if the memory response produces neutralizing antibodies to antigens associ-
ated with the secondary exposure; however, problems do arise if memory B cells pro-
duce nonneutralizing antibodies to the antigens shared between primary and second-
ary exposures as reported recently in humans exposed to related human coronaviruses
(hCoVs) and later infected with SARS-CoV-2 (7, 8). In such a scenario, not only can the
memory response be ineffective, it can significantly attenuate the response of newly
activated B cells that could have responded effectively to new antigens absent from
the original priming event. The overwhelming response of memory B cells to cognate
antigens that can hinder naive B cells of different and possibly neutralizing specificities
from effectively responding to a new stimulus is known as the original antigenic sin
(OAS), a biblical reference suggesting that the immune system is bound by the “sin” of
its first imprinting to a target (1, 2). For example, people infected with H1N1 influenza
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viruses during childhood (and thus imprinted with that set of antigens/epitopes) were
protected later in life against infections with a related virus such as H5N1 but not infec-
tions with more distantly related H3N2 (3, 9, 10).

Recently, a hypothesis referred to as “antigenic seniority” has been proposed as an
alternative to OAS (11). Antigenic seniority explains dominant antibody responses as a
consequence of repeat exposures to the same antigen(s) rather than to the first anti-
genic exposure or imprinting that is the core tenet of OAS (6). These differences, how-
ever, are not important to the present discussion as both OAS and antigenic seniority
are bound by their common denominator: the germinal center reaction (GCR). Here,
we discuss the immunological foundations of OAS, particularly with respect to the gen-
eration and subsequent selection of high-affinity B cells during GCRs and how these
processes could be beneficial or harmful in the context of COVID-19, keeping in mind
that without the power of immunological memory OAS would not exist.

WHATMAKES THE GENERATION OF B CELL AND T CELL RESPONSES DIFFERENT?
THE GERMINAL CENTER REACTION (GCR)

It’s important to note that early development of B cells and T cells, the pillars of
acquired immunity, follow parallel paths (12). Both cell types derive from a common
pluripotent progenitor cell, and after “choosing” their respective developmental paths,
both rearrange genes to produce either antigen-specific B cell receptors (BCRs or anti-
bodies in their secreted form; recognizing three-dimensional structures) or T cell recep-
tors (TCRs; recognizing peptides in the context of major histocompatibility molecules)
(12). Furthermore, both cell types undergo similar selection processes to ensure that
most cells emerging from the bone marrow (B cells) and the thymus (T cells) are pri-
marily reactive to yet-to-be-encountered, pathogen-derived antigens (13–17). The simi-
larities end there.

First, naive T cells that emerge from the thymus are present for life, so thymectomy
after puberty does not significantly affect a person’s T cell repertoire (12). In contrast,
most naive B cells emerging from the bone marrow each day do not survive in the pe-
riphery, and those that do will survive for only a short period if they do not encounter
their cognate antigen (12, 18). The B cell repertoire is therefore continually refreshed.
Second and most relevant to OAS, T cells successfully emerging from the rigorous thy-
mic selection process never again have to survive a second rearranging of their TCR
genes (12).

In contrast, naive B cells activated following ligation of their cognate antigens via
the BCR (and further activated by signals received by helper T cells) enter the GCR to
undergo affinity maturation, a process designed to increase activated B cells’ affinity to
their cognate antigens (6, 19). Here, B cells undergo repeated rounds of somatic hyper-
mutation, driven by the enzyme activation-induced cytidine deaminase (AID), which
introduces mutations at cytidine hot spots located primarily within the variable do-
main gene sequences of the BCR in hopes of introducing favorable mutations to
increase the affinity of the antibody to its activating antigen (6, 20). After each attempt
at somatic hypermutation, B cells within the GCR compete against each other, and
only those clones that repeatedly acquire favorable mutations to their BCR will survive
multiple rounds through the GCR gauntlet (19). In the end, only the few select survi-
vors of this harrowing Darwinian selection process will emerge to produce high-affinity
antibodies. Following any subsequent exposure(s) to their cognate antigen, these B
cells will reactivate and respond rapidly but oftentimes not before surviving a new
GCR and further rounds of selection (19), resulting in a new subset of B cells expressing
BCRs of even higher affinity than before. Thus, the affinity of BCRs to specific antigens
changes following postprimary exposures to the same antigen while the affinity of a T
cell clone to its cognate antigen never does. This is observable in the increased num-
ber of mutations, compared to that of the germ line sequence, within variable domain
sequences of BCR genes following repeated rounds of vaccination or infection (12, 20).
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THE DOWNSIDE OF MEMORY: THE ORIGINS OF ORIGINAL ANTIGENIC SIN (OAS)

Memory is never cast as a “bad guy”; after all, it is the power of immunological
memory that keeps us safe from reinfection with the same pathogen if neutralizing im-
munity is elicited following primary exposure or vaccination. The problems with OAS
begin following exposure to a related strain of a pathogen that possesses a similar but
not identical panel of antigens (i.e., greater antigenic distance/difference) (3). It is im-
portant to remember that OAS cannot occur without the GCR: OAS exists because B
cells surviving the GCR express BCRs of such high affinity that naive B cells with specif-
icities to new antigens receiving activating signals via their BCR for the first time will
stand little chance of competing successfully against seasoned memory B cells that
activate at lower signaling thresholds following reexposure to their cognate antigen,
independent of the fact that the memory and naive B cells in this scenario likely have
BCRs with different specificities (4, 19). Therefore, if memory B cells respond to an
infection with a related but antigenically distant pathogen, the memory response can
not only be ineffective but possibly diminish the effectiveness of naive B cells capable
of producing neutralizing antibodies (5). This potential downside of memory must be
considered when attempting to design vaccines lest a vaccine formulation induce an
immunological setback that precludes the elicitation of protective immunity or to
understand the production of protective or nonprotective immunity to a new strain of
a pathogen. This scenario recently played out following the release of the human pap-
illomavirus (HPV) vaccine Gardasil 9 that contains four antigens present in the original
Gardasil vaccine plus an additional five new antigens. Individuals previously immu-
nized with Gardasil who were later vaccinated with Gardasil 9 mounted poor responses
to the five new antigens present in the Gardasil 9 vaccine compared to individuals vac-
cinated with Gardasil 9 who had no prior exposure to Gardasil (21).

In the context of vaccine design, the antigenic distance hypothesis was put forth to
explain how differences in vaccine efficacy were impacted by the distance or related-
ness of prior vaccine strains (22). That is, if the antigenic distance of respective vaccines
is greater than that of circulating virus strains, efficacy is compromised (3, 22). A recent
example occurred during the 2014–2015 influenza season when a new glycosylation
site acquired by the circulating H3N2 strain was absent from the vaccine strains (3).
Adults previously infected during childhood with influenza strains deficient in this gly-
cosylation elicited strong responses against the vaccine strain but were poorly
equipped immunologically to prevent infections with the glycosylated 2014–2015
H3N2 isolate (23–25).

ROLE OF OAS IN SARS-CoV-2 INFECTION AND IMMUNITY

Figure 1 illustrates three hypothetical scenarios that could play out following a
SARS-CoV-2 infection in the context of a prior exposure to a related hCoV. First expo-
sure to hCoVs (e.g., betacoronaviruses such as HCoV-OC43 and HCoV-HKU1 or alpha-
coronaviruses HCoV-NL63 and HCoV-HKU1 shown to possess degrees of antigenic sim-
ilarity) will result in the activation of B cell clones reactive, respectively, to the Blue,
Purple, and Green antigens unique to hCoVs (26). Each of these B cell clones will have
been activated simultaneously and survived their respective GCRs, resulting in three
distinct memory B cell lineages.

The best-case scenario involves previous exposure to hCoVs sharing a protective
epitope (Green) identical to or very similar to that expressed by SARS-CoV-2 (Fig. 1A).
The anti-Green response elicited here by a respective hCoV confers some level of pro-
tection because anti-Green antibodies are neutralizing against a SARS-CoV-2 infection.
For example, antibodies generated against a conserved domain, such as the spike gly-
coprotein S2 subunit, could confer cross-protective immunity across hCoVs and SARS-
CoV-2 (26). In this context, Ng et al. (26) demonstrated a scenario similar to that
described in Fig. 1A whereby SARS-CoV-2 was neutralized in vitro using antibodies
present in the serum of SARS-CoV-2-uninfected individuals previously exposed to
hCoVs (21). Because of OAS, no significant responses will likely be generated against
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the SARS-CoV-2 Red and Yellow antigens since the anti-Green memory response is so
overwhelming that elicitation of a natural anti-Red and anti-Yellow response is pre-
vented or significantly diminished. For the purposes of this discussion, it does not mat-
ter if the Red or Yellow antigens are conserved or not, nor does it matter if antibodies
generated to the Red or Yellow antigens are neutralizing or not since the tenet of
Fig. 1A is the dominant and overwhelming memory/GCR response to the Green anti-
gen. As shown here, for OAS to be of benefit exposure to antigens eliciting protective
immunity must be the same or similar between primary and secondary exposures and
beyond (3). Had exposure to the Red and Yellow antigens occurred in the absence of
the Green antigen, an immune response spearheaded by naive B cells unimpeded by
an anti-Green memory B cell response would enter the GCR followed by the establish-
ment of anti-Red and -Yellow memory.

The scenario depicted in Fig. 1B represents a worst case in the context of immunity
against a SARS-CoV-2 infection for two reasons: (i) the antibodies produced by memory
B cells reactive to the SARS-CoV-2 Green antigen are not protective, and (ii) the
strength of the memory response stimulated by the Green antigen may hinder the elic-
itation of potentially neutralizing antibodies to SARS-CoV-2-specific Red and Yellow
antigens. This scenario is of particular concern if a potentially protective response to
the receptor binding domain (RBD) of SARS-CoV-2 (e.g., the Red or Yellow antigens in

FIG 1 The impact of OAS on the efficacy of the immune response. OAS is affected not only by the temporality of an antigenic exposure but also by the
“collection” of antigens associated with the exposure. (A) Exposure to hCoVs (related viruses such as HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-
HKU1) primes the immune system to the Blue, Purple, and Green antigens. This will result in long-lived memory B cells with specificities to these
antigens, respectively. Reexposure to hCoVs will result in a robust antibody response to each of these antigens. SARS-CoV-2 expresses the same hCoV
Green antigen and two new antigens, Yellow and Red. The memory anti-Green B cell response will prevent or significantly limit the ability of naive B
cells with specificities to Yellow and Red antigens from developing. In this scenario, the anti-Green antibody is protective; so, while OAS prevented/
diminished the elicitation of antibodies with specificities to the Yellow and Red antigens, the anti-Green antigen memory response confers some level of
protection against a SARS-CoV-2 infection. (B) This scenario is identical to that described for panel A with the exception that the anti-Green response
elicited against hCoV is nonneutralizing for SARS-CoV-2. In this example, the memory response to Green is nonprotective while simultaneously inhibiting/
interfering with the ability to mount a new response to the Yellow and Red antigens that could potentially provide protection. (C) This scenario depicts
two separate exposures. Since no antigens are shared between hCoVs and SARS-CoV-2, the anti-SARS-CoV-2 response will be a primary exposure,
unaffected positively or negatively by prior exposure to hCoVs.
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Fig. 1B) is dampened as a result of OAS (27). Furthermore, so long as the unprotective
Green antigen is present, neutralizing immunity is unlikely to develop over time follow-
ing natural exposure to SARS-CoV-2. Anderson et al. described this scenario by demon-
strating that SARS-CoV-2 cross-reactive but nonneutralizing antibodies were present in
approximately 20% of people exposed to hCoVs prior to the start of the SARS-CoV-2
outbreak (16.2% had antibodies to SARS-CoV-2-N protein and 4.2% to the SARS-CoV-2-
S protein) (7). This raises a question: is there a Green antigen equivalent in some circu-
lating hCoVs that not only elicits the production of nonneutralizing/nonprotective anti-
bodies but also, as a consequence of OAS, hinders elicitation of protective antibody
responses following a SARS-CoV-2 infection?

The presence of nonneutralizing but cross-reactive antibodies to SARS-CoV-2 anti-
gens in prepandemic serum samples is a reminder that detection of an antibody signa-
ture does not equate to protection against infection. One need only look at cross-pro-
tective immunity, or lack thereof, in the context of dengue virus infections. Infection
with one of the four dengue serotypes elicits a neutralizing antibody response to that
serotype only (28). Such antibodies not only are generally nonneutralizing to the other
three serotypes but can also worsen outcomes by accelerating dengue virus uptake
into human cells via the mechanism of antibody-dependent enhancement (ADE).
Although OAS plays a role in ADE, currently it does not appear to play a role in facilitat-
ing SARS-CoV-2 uptake. We therefore use ADE as a reminder that not all antibody
responses are helpful and some can be harmful (29–31).

The scenario depicted in Fig. 1C does not involve memory. In this scenario, no anti-
gens are shared between hCoVs and SARS-CoV-2. This means that immunity to SARS-
CoV-2 would develop unimpeded and unaided by OAS, hopefully resulting in the elici-
tation of neutralizing antibody responses to SARS-CoV-2-specific antigens over time.

CONSIDERATION OF OAS FOR VACCINE DEVELOPMENT

Future studies across populations and age groups will determine the impact of OAS
in the context of COVID-19. Recent data suggest that the scenarios described in Fig. 1A
and B are possible in the context of SARS-CoV-2 and prior exposures with hCoVs (7, 8,
32, 33).

The impact of OAS on the elicitation of protective immunity should not be ignored in
vaccine development. Selection of a vaccine candidate or candidates that are too similar
to antigens already “seen” by the population at large could result in three distinct out-
comes: (i) a “back-boost” or enhanced protective immunity resulting from a second
round of GCRs in response to shared antigens between primary and secondary expo-
sures (Fig. 1A) (34), (ii) boosting of a nonprotective antibody response (Fig. 1B), or (iii) in
the context of a multicomponent vaccine formulation, the masking of a protective
response against some vaccine components if other antigens in the formulation have
been previously “seen” by the population as observed with Gardasil 9 (Fig. 1B) (21).

OAS is the double-edged sword of memory: it can provide an avenue to protection
against a novel strain of a pathogen or create an obstacle to the elicitation of protec-
tive immunity. What this means for COVID-19 is yet to be fully determined, but this im-
portant consequence of the immense powers of immunological memory and specific-
ity must be considered when assessing population-level immunity and vaccine
efficacy.
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