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ABSTRACT

Motivation: Unraveling the transcriptional regulatory program
mediated by transcription factors (TFs) is a fundamental objective
of computational biology, yet still remains a challenge.
Method: Here, we present a new methodology that integrates
microarray and TF binding data for unraveling transcriptional
regulatory networks. The algorithm is based on a two-stage
constrained matrix decomposition model. The model takes into
account the non-linear structure in gene expression data, particularly
in the TF-target gene interactions and the combinatorial nature of
gene regulation by TFs. The gene expression profile is modeled as
a linear weighted combination of the activity profiles of a set of TFs.
The TF activity profiles are deduced from the expression levels of
TF target genes, instead directly from TFs themselves. The TF-target
gene relationships are derived from ChIP-chip and other TF binding
data. The proposed algorithm can not only identify transcriptional
modules, but also reveal regulatory programs of which TFs control
which target genes in which specific ways (either activating or
inhibiting).
Results: In comparison with other methods, our algorithm identifies
biologically more meaningful transcriptional modules relating to
specific TFs. We applied the new algorithm on yeast cell cycle and
stress response data. While known transcriptional regulations were
confirmed, novel TF-gene interactions were predicted and provide
new insights into the regulatory mechanisms of the cell.
Contact: zhanmi@mail.nih.gov
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genes are coordinately expressed under tight regulation by
transcriptional factors to carry out complex and condition-specific
biological functions in living cells. It is critical to develop
computational approaches for deciphering transcriptional regulatory
programs, in order to elucidate molecular mechanism of
development or disease or identify biomarkers (Brunet et al., 2004;
Hughes et al., 2000; Li and Zhan, 2006; Segal et al., 2004; Zhan,
2007). Microarray gene expression data have been extensively
used for identifying transcriptional regulatory modules. Various
computational methodologies have been introduced for those
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studies, including projection (e.g. principal component analysis,
singular value decomposition, independent component analysis)
(Alter et al., 2000; Lee and Batzoglou, 2003; Liebermeister,
2002), model-based approaches (e.g. network component analysis,
probabilistic sparse matrix factorization) (Dueck et al., 2005; Liao
et al., 2003) and conventional clustering (e.g. hierarchical clustering,
self-organizing maps, K-means) (Eisen et al., 1998; Tamayo et al.,
1999; Tavazoie et al., 1999). The projection methods decompose the
original data into components that are constrained to be mutually
either uncorrelated or statistically independent, and cluster genes
into mutually non-exclusive modules based on their loading in the
components. Since these methods do not cluster genes according
to the pair-wise similarity, they can identify sets of coexpressed
genes that are potentially co-regulated. Model-based approaches
model microarray data as a linear mixture of latent variables
that may correspond to specific biological sources. These methods
usually incorporate prior knowledge on gene regulatory mechanisms
as constraints for precisely estimating model’s parameters. For
example, the probabilistic sparse matrix factorization approach uses
the ‘sparse’ constraint in the matrix decomposition to provide a
combinatorial account of the gene expression in terms of a small
set of factors. One challenge of such model-based approaches is the
lack of sufficient data to estimate the parameters. Recent simulation
studies suggest that transcriptional networks inferred from gene
expression data alone can be considerably obscured by spurious
interactions when the number of observations is small or the quality
of the data is poor (Husmeier, 2003). Several approaches, including
GRAM (Bar-Joseph et al., 2003), COGRIM (Chen et al., 2007)
and ReMoDiscovery (Lemmens et al., 2006), have been developed
to infer transcriptional regulatory networks by integrating gene
expression data with transcription factor (TF) binding information.
These approaches allow identification of more functionally coherent
regulatory modules, in comparison with the analyses utilizing
microarray data alone (Bernard and Hartemink, 2005; Joung et al.,
2006; Kim et al., 2006; Yu and Li, 2005; Zhou et al., 2005).

We recently developed a two-stage matrix decomposition method
that combine the characteristics of projection and model-based
approaches for the discovery of transcriptional modules (Li et al.,
2007). In the present study, we extend the two-stage decomposition
method to incorporating TF binding data for unraveling TF-mediated
regulatory programs. The new approach provides information of
not only transcriptional modules, but also on which of the TFs
control which target genes in which specific ways (either activating
or inhibiting) in a regulatory program. Considering highly non-linear
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interactions between TFs and their target genes, we first adopt
a non-linear independent component analysis (NICA) method to
reduce the non-linear distortion in the data and decompose the data
into independent latent components. Next, we develop a constrained
probabilistic sparse matrix factorization (cPSMF) approach that
models the expression of each gene across the independent latent
components as a linear weighted combination of activity profiles
of a small number of TFs. The model takes into account of the
combinatorial and sparse nature of gene regulation by TFs. By
incorporating TF-target gene relationships derived from ChIP-chip
data into the probabilistic sparse matrix factorization, the cPSMF
approach infers the network structure in a more accurate and
robust manner. Finally, we fine-tune the transcriptional network by
selecting target genes whose promoter regions contain a sequence
that matches with the binding site of the corresponding TF.
In comparison with other methods, our algorithm shows better
performance in identifying functionally coherent transcriptional
modules relating to specific TFs. We demonstrate the usefulness
of the new method in a case study on yeast cell cycle and stress
response data. While known transcriptional regulatory interactions
were confirmed, novel TF-gene links were also predicted, providing
new insights into the regulatory network of the cell.

2 METHODS

2.1 The two-stage constrained matrix decomposition
model

In this proposed model, TF-mediated transcriptional regulatory programs
are inferred based on integrated results from microarray, ChIP-chip and TF
binding motif data. Suppose there is a microarray gene expression data matrix
X∈�N×M with N genes and M samples and a configuration matrix C∈
{0,1}N×Lobtained from ChIP–chip data with L TFs, where element Cil = 1
represents gene i is regulated by TF l. We first take the NICA step to de-
nonlinearize microarray data into independent latent components. The model
can be written as (Jutten and Karhunen, 2004; Lappalainen and Honkela,
2000; Li et al., 2007):

X=F(S̄A)+N (1)

where S̄∈�N×M ′
denotes the independent latent source matrix and A∈

�M ′×M is the mixing matrix. M ′ is the number of latent sources. N is a
white Gaussian noise matrix. F(·) is a non-linear mixing function, which is
modeled using a multilayer perceptron (MLP) network with one non-linear
hidden layer (Haykin, 1999). S̄ can be obtained from Equation (1) using
the variational Bayesian learning (Lappalainen and Honkela, 2000) and the
FastICA algorithm (Hyvarinen and Oja, 2000).

Next, we take the cPSMF stage to model the expression profiles of genes
across the independent latent components as linear weighted combinations
of L TF activity profiles

S̄=YZ+N (2)

where Y∈�N×L is the weighting matrix, and Z∈�L×M ′
is the matrix that

contains activity profiles of L TFs across the independent latent components.
For each TF, we obtain an activity profile from the centroid of the expression
profiles of the target genes across the independent latent components. The
target genes of each TF are chosen from the configuration matrix C,
constructed from the ChIP-chip data. The Y matrix is inferred from Equation
(2) by variational Bayesian learning (Dueck et al., 2005; Jordan et al., 1999)

with constraints that

Y=C·Y (3)

where · denotes an element-by-element product of C and Y, which means
that the element Yil of Y can be non-zero only when Cil = 1. C is pre-specified
from ChIP-chip data and has a sparse property since any target gene can only
be regulated by a small number of TF’s biologically. A detail description
of the NICA and cPSMF approaches can be found in the Supplementary
Material.

The proposed algorithm is summarized as follows:
Input

• Microarray data matrix X = [Xij], where the element Xij represents the
expression level of gene i associated with the j-th sample, i=1,...,N ,
j = 1,…, M

• Configuration matrix C = [Cil], where Cil = 1 represents gene i is
regulated by TF l, obtained from ChIP-chip data, i = 1,…, N , l = 1,…, L,
L is the number of TFs.

• Maximum number of effective TFs, K . K should be less or equal to L.

Output

• The topology of transcriptional regulatory networks.

Algorithm

• De-nonlinearize X using the NICA approach.
◦ Find the non-linear principal components matrix S= S̄A from

Equation (1) by variational Bayesian learning.

◦ Decompose S= S̄A by the linear FastICA algorithm to obtain linear
independent components in S̄.

• Decompose S̄ from Equation (2) using the cPSMF method.
◦ Construct Z as follows: For l = 1,…, L cluster the expression profiles

of target genes of TF l into two groups (activated or inhibited pattern)
using K-means approach. Then choose the centroid profile with the
larger variance as the activity profile of TF l.

◦ Initialize the element Yil in Y to an arbitrary value if Cil =1, else set
the value of Yil to zero.

◦ Infer Y from Equation (2) by factorized variational inference with
constraint Y = C·Y.

• Reconstruct transcriptional networks regulated by given TFs based
on Y.
◦ For l = 1,…, L and i = 1,…, N , if Yil > α then gene i is positively

regulated or activated by TF l. α is a predetermined weight cutoff.

◦ For l = 1,…, L and i = 1,…, N , if Yil <−α then gene i is negatively
regulated or inhibited by TF l.

• Fine-tune gene transcriptional networks by selecting target genes whose
promoter regions contain a sequence that matches with the binding site
of the corresponding TF.
◦ Forl = 1,…, L and ∀i :Yil �= 0, compute the core similarity score

Oil between the position-specific weight matrix of the TF l binding
motif and the promoter sequence of the target gene i, using
the MATCH software searching against the TRANSFAC database
(http://www.biobase-international.com). Select the candidate target
gene i regulated by the TF l if Oil ≥β;β is a predetermined cutoff
value.

2.2 Biological assessment and visualization of inferred
regulatory networks

To assess biological relevance of inferred regulatory network, we examined
whether the identified TF-regulated transcriptional modules accumulate in
certain Gene Ontology (GO) categories by conducting two different analyses:
over-representation analysis and gene set enrichment analysis. The over-
representation analysis was used to detect if a GO term is enriched in a
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transcriptional network. In specific, the hypergeometric probability p that
a GO term is significantly enriched in a network is calculated as:

p=1−
k−1∑
i=0

(
A
i

)(
G−A
n−i

)
(

G
n

) (4)

where k is the number of genes in the group, G is the total number of genes,
n is the number of genes in the module with a given GO term and A is the
total number of genes with a given GO term.

The gene set enrichment analysis is based on the non-parametric test.
When considering an arbitrary GO category, it evaluates if the genes in the
identified transcriptional modules that belong to the category are uniformly
distributed or accumulated in the list sorted by some specific criteria (Backes
et al., 2007). Since both the over-representation analysis and the gene
set enrichment analysis were applied to many GO categories, we further
conducted the false discovery rate (FDR) correction, which provides strong
control to have less false negatives at the cost of a few more false positives.

We took advantage of Cytoscape’s versatile visualization environment
(Shannon et al., 2003) to produce graphic representation of the resulting
regulatory networks.

2.3 Experimental datasets
Two publicly available yeast microarray datasets were used for algorithm
evaluation and case studies. The first was a cell cycle dataset, which was
determined under the normal growth condition (Spellman et al., 1998).
The second was a stress response dataset, determined under different
experimental conditions such as temperature shocks, amino acid starvation,
nitrogen source deletion and progression into stationary phase (Gasch
et al., 2000). The normalization of the datasets was conducted by zero
transformation (Gollub et al., 2006), and the missing data were filled using
the KNNimpute approach (Troyanskaya et al., 2001).

The yeast ChIP-chip dataset used for the studies was obtained from
a previous study (Harbison et al., 2004). The dataset contains 203 TFs,
with all profiled in a rich medium and 84 profiled under multiple stress
conditions. We used the TF-gene pairs that have P-values <0.05 to construct
the configuration matrix C in our analysis.

The known TF-gene interaction data used in the studies were obtained
from the yeast transcriptional regulatory network previously published
(Herrgard et al., 2003; Milo et al., 2002). The yeast promoter sequences
and TF binding motifs data were obtained from Harbison et al. (2004).

3 RESULTS AND DISCUSSION

3.1 Feature of the algorithm
The motivation of this work was to provide a mathematical
framework for identifying condition-specific transcriptional
regulatory networks by integrated analysis of microarray, ChIP-
chip and TF binding motif data. An important feature of our method
is the utilization of two-stage data decomposition (NICA + cPSMF).
The NICA transformation captures the non-linear structure in the
data and represents the data with independent latent components.
Inspired by the fact that gene expression is regulated by a small
set of TFs that act combinatorially, the cPSMF models the
expression profile of each gene represented by the independent
latent components as a linear combination of activity profiles
of a small number of TFs. A configuration matrix (C matrix)
is incorporated into the modeling as constraint for precisely
estimating the influence of TFs. The configuration matrix, derived
from ChIP-chip data, has a sparse property. That is, there are only
a few non-zero elements in the matrix, as target genes can only

be regulated by a small number of TF’s. Through learning the
parameters of the cPSMF model, the algorithm can infer activating
and inhibitory regulatory relationships between TFs and their gene
targets. The strength and direction of transcriptional regulation that
a TF applies on its target genes are reflected by the weight of the
TF presented in the Y matrix.

Most methods for inferring TF-regulated transcriptional modules
are based on the assumption that there exists a correlation on the
mRNA expression level between TFs and their target genes (Kim
et al., 2006; Zhu et al., 2002). This assumption is however not
always true, since the activation or inhibition of a target gene by
a TF can be influenced by not only the mRNA expression of the TF
and their targets, but also by post-transcriptional modification of the
genes, as well as the concentration, post-translational modification
and cellular localization of their protein products. Because of these,
our algorithm uses the expression patterns of TF target genes, instead
of TFs themselves, to deduce the activity profiles of TFs.

When applying our algorithm, we set the number of independent
latent components equal to the number of experimental conditions
for simplicity. For more accurate non-linear mapping, we set
the number of hidden neurons in the MLP network as twice as
the number of independent latent components. We also set K , the
maximum number of effective TFs bound on target genes, equal
to two in our algorithm. The choice of the parameters α (weight
cutoff) and β (PWM matching score cutoff) is important for the
structure of the inferred network. Since in general, ground-truth
data are hardly available for condition-specific situation, we take a
conserved approach in setting up the parameters in our case studies.
We set weight cutoff α=0.05 and PWM matching score cutoff
β =0.94. Similar conserved parameters are also adopted in other
similar studies (Kim et al., 2006).

3.2 Comparison with other methods
To evaluate our algorithm, we compared its performance with
those by other similar methods, including GRAM (Bar-Joseph
et al., 2003), COGRIM (Chen et al., 2007) and ReMoDiscovery
(Lemmens et al., 2006). The latter three methods can predict
transcriptional modules that are coregulated by TFs through
integrated analysis of microarray, ChIP-chip and TF motif data.
GRAM is based on an iterative search, in which genes with
common TF binding sites on the promoters are first identified
using ChIP-chip data and the clustered gene sets are further
refined by shared expression profiles. COGRIM is derived from
a Bayesian hierarchical model, while ReMoDiscovery is a non-
iterative approach. While our method and COGRIM can infer
activating or inhibiting relationships between TFs and their
target genes, GRAM and ReMoDiscovery can not predict such
relationships.

We identified TF-mediated transcriptional modules using our
method as well as the three other methods, based on the same set
of data of microarray (from both cell cycle and stress response),
ChIP-chip and TF binding motifs derived from the yeast (see Section
2.3). We chose 19 TFs that are involved in the cell cycle and stress
response, and identified their target genes. We then examined the
functional relevance of the target gene clusters based on the GO
using over-representation analysis and gene set enrichment analysis.
In the gene set enrichment analysis, the input set was sorted by the
variance of the expression profile of the target genes. Table 1 shows
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Table 1. Comparison with other methods based on GO functional enrichment

Gene seta Over-representation analysis Gene set enrichment analysis

Our algorithm GRAM COGRIM ReMoDis. Our algorithm GRAM COGRIM ReMoDis.

ABF1 5.93 6.12 5.74 4.55 4.56 4.60 5.05 3.76
ACE2 4.43 1.60 3.59 4.47 2.06 5.23 3.43 1.53
FKH1 4.62 4.79 1.76 4.05 4.51 1.91 2.99 2.04
FKH2 6.10 1.28 5.82 6.09 2.86 3.60 4.02 2.41
GCN4 7.23 6.64 7.40 7.61 5.71 2.09 1.48 4.72
LEU3 7.74 7.29 6.44 5.20 2.70 1.32 1.05 1.83
MBP1 6.08 6.15 4.93 6.17 4.17 4.21 4.91 3.40
MCM1 6.13 6.87 5.97 6.74 2.71 1.19 2.93 1.40
NDD1 1.64 1.82 1.66 4.49 2.67 2.40 3.09 3.47
RAP1 8.39 7.37 8.92 6.6 6.49 0.85 2.17 2.04
REB1 5.52 5.03 5.53 5.10 4.13 5.09 4.92 3.46
STB1 4.72 4.43 3.91 6.51 2.11 0.50 2.89 5.09
SWI4 7.06 5.61 5.76 6.42 5.22 4.25 4.73 1.56
SWI5 4.41 2.36 5.7 4.78 6.01 5.79 5.54 0.94
SWI6 5.66 4.58 4.79 4.90 2.81 4.08 4.23 4.23
HSF1 6.53 4.42 4.4 4.38 3.47 1.64 2.92 3.52
MSN4 6.31 5.51 5.67 5.72 2.77 0.86 4.58 1.93
SKN7 5.86 6.75 4.55 2.91 1.29 2.88 1.27 0.85
YAP1 6.08 5.69 6.64 5.92 3.10 2.62 2.81 1.90
Averaged over TFs 5.81 4.96 5.22 5.40 3.65 2.90 3.42 2.64

The comparison is conducted based on two enrichment analysis methods: over-representation analysis and gene set enrichment analysis. The target gene sets of
19 TFs relating to cell cycle and stress response are evaluated. The GO functional enrichment levels of target genes identified by each method are shown. The
enrichment level is calculated by transforming the enrichment P values after FDR correction to the negative log values and averaged over all functional modules
for corrected P < 0.05. If no functional modules are found for corrected P < 0.05, the smallest value of corrected P is taken for calculating the enrichment level.
aeach gene set is named by the TF that regulates the genes.

the statistical enrichment of functional GO terms in the target gene
clusters based on these two analysis approaches. The enrichment
level was calculated by transforming the enrichment P-values after
FDR correction to the negative log values and averaged over all
functional modules for corrected P < 0.05. If no functional modules
are found for corrected P < 0.05, the smallest value of corrected
P is taken for calculating the enrichment level. As illustrated,
our algorithm out-performs the other methods on the functional
enrichment in the target gene clusters. The averaged enrichment
level over all the 19 clusters in over-representation analysis was the
highest by our algorithm (5.81), followed by ReMoDiscovery (5.40),
COGRIM (5.22) and GRAM (4.96). The averaged enrichment level
over all the 19 clusters in gene set enrichment analysis was also
the highest by our algorithm (3.65), followed by COGRIM (3.42),
GRAM (2.90) and ReMoDiscovery (2.64). This implies that our
algorithm can identify more functionally coherent gene clusters
relating to specific TFs. In terms of the number of target genes
identified, the average gene number per cluster was the highest by
our algorithm (91), followed by COGRIM (85), ReMoDiscovery
(74) and GRAM (32). Interestingly, our algorithm identified more
target genes that are annotated with known functions, indicating
that our approach provides more functional information about
transcriptional regulatory program. The better performance of our
algorithm in comparison with others indicates that the mathematical
framework we choose for modeling the transcriptional regulatory
program is appropriable.

Nevertheless, challenges still remain for identifying TF-regulated
transcriptional programs. There are limited ChIP-chip data available

for such analysis. The identification of TF binding sites on the
promoter sequences is often associated with high false positive
or negative errors. Moreover, ChIP-chip data and gene expression
profile data are often generated under different experimental
conditions. It is not clear how this difference effects the identification
of condition specific regulatory programs by integrated analysis of
these data.

3.3 Case study: regulatory networks of the yeast
3.3.1 Cell cycle We applied our algorithm to infer the
transcriptional regulatory program of the cell cycle in the yeast
under the rich medium growth condition. The analysis was based
on the microarray data and TF binding information determined
by ChIP-chip and promoter sequence analysis (see Section 2.3).
From the total 203 TFs, we selected 32 TFs for the analysis
according to their ranked activity profiles, which were sorted by
the variance of the activity profiles of TFs. These TFs should
be top cell cycle regulated TFs. Cheng and Li recently proposed
a two-step method to identify the cell cycle regulated TFs by
integrating microarray data with ChIP-chip data (Cheng and Li,
2008). We compared these 32 TFs with the putative cell cycle TFs
identified by Cheng and Li’s method, as well as the TFs identified
by Tsai et al. (2005). Among them, 15 are known cell cycle related
factors from previous experiments and 8 are also suggested as
putative cell cycle TFs by these studies (Cheng and Li, 2008; Tsai
et al., 2005). Figure 1A shows the inferred regulatory network.
The network contained 2017 TF-target interactions. Among these
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Fig. 1. Visualization of the transcriptional regulatory networks of the yeast inferred using our algorithm. TFs are represented by red squares and their target
genes by small circles. Blue and gray lines indicate known and predicted regulatory interactions, respectively. (A) cell cycle, (B) stress response.

interactions, 160 are the known regulatory links (blue solid lines)
from literature (Herrgard et al., 2003; Milo et al., 2002), while
the others are new predictions. We found that the known cell
cycle regulatory TFs FKH1, FKH2, MBP1, MCM1, NDD1, REB1,
SKN7, SWI4, SWI5 and SWI6 were the predominant hubs in
the network. The hub genes also included ABF1, GAT1, HSF1,
MSN4, NRG1, PHD1, RAP1 and YAP1. Among them, ABF1,
MSN4, NRG1, PHD1 and RAP1 are putative cell cycle TFs that
previous studies have also suggested. For example, NRG1 was
identified as a cell cycle regulated TF by (Cheng and Li, 2008). There
were 76 target genes that were regulated by NRG1 in our inferred

network, and these genes showed significant biological relevance
(GO enrichment level 5.66). Similarly, PHD1, also previously
predicted as an cell cycle regulated TF (Tsai et al., 2005), regulated
70 target genes, which were biologically significant (GO enrichment
level 5.10). GAT1 was a major hub gene on the yeast transcriptional
network and was regulated by cell cycle related TFs ACE2/SWI5
and FKH1/FKH2 in our network. These results are consistent to
previous observations (Yu and Li, 2005). Besides showing TF-target
interactions, our regulatory network further identifies activating
and inhibitory relationships between TF and target genes. For
example, SWI5 activated the expression of ASH1, while ASH1
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repressed SWI5 (Fig. 1A). These findings are once again consistent
to previous observations (Herrgard et al., 2003; Milo et al., 2002).
The consistency of our findings from the inferred network with
experimental data and predictions by others support the validity of
our methods in inferring the regulatory networks.

3.3.2 Stress response The inference of this regulatory network
using our algorithm was based on the stress response microarray
data under heat shock from 25˚C to 37˚C, along with 203 TFs
and their genomic binding sites determined by ChIP and promoter
sequence analysis (see Section 2.3). Firstly, we chose top 32 active
TFs according to their ranked activity profiles. These 32 TFs include
all stress response related factors that are experimentally confirmed.
Figure 1B shows the inferred network. Among the 1403 detected TF-
target interactions in the network, 153 are the known regulatory links
(blue solid lines) previously confirmed (Herrgard et al., 2003; Milo
et al., 2002), while the others are novel predictions. Among the hub
genes of the network, HSF1 was the most predominant, regulating
155 target genes. The other hub genes included CBF1 (115 targets),
UME6 (115 targets), SKN7 (113 target genes), FKH1 (95 targets),
STE12 (67 targets), MSN2 (48 targets), MSN4 (44 targets), PHD1
(43 targets), NRG1 (44 targets), YAP1 (29 targets) and CAD1 (8
targets). Six of the hub genes are particularly related to the stress
response (HSF1, SKN7, MSN2, MSN4, YAP1 and CAD1) (Gasch
et al., 2000). CBF1 and UME6 were also reportedly involving in
stress response by previous studies (Sweet et al., 1997; Yu and Li,
2005). Interestingly, HSF1, FKH1, NRG1 and PHD1 were hub TFs
on both stress response and cell cycle networks. The heat shock
related TF HSF1, in particular, regulated 170 and 155 genes in the
two networks, respectively, in which 136 target genes were common
between the two networks. Reportedly, HSF1 is activated in G1 of
the cell cycle under non-stress conditions and may play a role in the
G1 regulation that does not involve the transcription of heat shock
genes in the yeast (Bruce et al., 1999).

4 SUMMARY
In this study, we present a novel methodology for unraveling
transcriptional regulatory networks by integrated analysis of
microarray, ChIP-chip data and TF motif information. The method is
based on a two-stage constrained matrix decomposition model. The
new method offers several advantages over previously published
algorithms: (1) it takes into account the non-linear structure existed
in the data, particularly in the TF-target gene interactions; (2) the
model considers the combinatorial nature of gene regulation by TFs;
(3) it predicts not only TF-target interactions, but furthermore the
activating or inhibitory relationships; (4) the model does not assume
the correlation between TFs and their target genes on the mRNA
expression. We demonstrated the usefulness of the new method on
the discovery of condition-specific regulatory networks in the yeast.
While known transcriptional regulations were confirmed, novel TF-
target interactions were predicted and provide new insights into the
regulatory mechanisms of the cell.
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