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Background: Parkinson’s disease (PD) is a highly heterogeneous disease, especially

in the clinical characteristics and prognosis. The PD is divided into two subgroups:

tremor-dominant phenotype and non-tremor-dominant phenotype. Previous studies

reported abnormal changes between the two PD phenotypes by using the static

functional connectivity analysis. However, the dynamic properties of brain networks

between the two PD phenotypes are not yet clear. Therefore, we aimed to uncover the

dynamic functional network connectivity (dFNC) between the two PD phenotypes at the

subnetwork level, focusing on the temporal properties of dFNC and the variability of

network efficiency.

Methods: We investigated the resting-state functional MRI (fMRI) data from 29 tremor-

dominant PD patients (PDTD), 25 non-tremor-dominant PD patients (PDNTD), and

20 healthy controls (HCs). Sliding window approach, k-means clustering, independent

component analysis (ICA), and graph theory analysis were applied to analyze the dFNC.

Furthermore, the relationship between alterations in the dynamic properties and clinical

features was assessed.

Results: The dFNC analyses identified four reoccurring states, one of them showing

sparse connections (state I). PDTD patients stayed longer time in state I and showed

increased FNC between BG and vSMN in state IV. Both PD phenotypes exhibited higher

FNC between dSMN and FPN in state II and state III compared with the controls. PDNTD

patients showed decreased FNC between BG and FPN but increased FNC in the bilateral

FPN compared with both PDTD patients and controls. In addition, PDNTD patients

exhibited greater variability in global network efficiency. Tremor scores were positively

correlated with dwell time in state I along with increased FNC between BG and vSMN in

state IV.

Conclusions: This study explores the dFNC between the PDTD and PDNTD patients,

which offers new evidence on the abnormal time-varying brain functional connectivity and

their network destruction of the two PD phenotypes, and may help better understand the

neural substrates underlying different types of PD.
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INTRODUCTION

Parkinson’s disease (PD) is a common progressive
neurodegenerative disorder, characterized by tremor, rigidity,
bradykinesia, and postural instability/gait disorders (Lees et al.,
2009). Resting tremor is a core diagnostic feature affecting up to
70% of PD patients and a symptom relatively distinct from other
motor signs of PD (Zetusky et al., 1985). Patients with PD can be
grouped into tremor-dominant (TD) and non-tremor-dominant
(NTD) phenotypes according to the presence of resting tremor or
not (Helmich et al., 2012; Marras and Lang, 2013). Relative to the
TD phenotypes, the NTD phenotypes suffer more from postural
and gait problems and have greater risk of dementia, worse
level of cognitive decline (Williams-Gray et al., 2007, 2009),
higher sensitivity for depression (Dissanayaka et al., 2010),
and increased executive control deficits (Wylie et al., 2012).
Revealing the neural mechanisms underlying this heterogeneity
is crucial to improve our knowledge of PD subtypes and to
identify effective treatments. However, the neural basis for these
disparate manifestations is not well-understood.

Previous functional neuroimaging research studies have
demonstrated that these clinical differences of the two subtypes
are reflected by a variety of cerebral functional alterations.
Nuclear imaging studies reported lower striatal dopaminergic
and glucose metabolism in NTD patients (Spiegel et al.,
2007; Helmich et al., 2011). Impairment differences in the
corticostriatal pathways and relevant neural network circuits
have been reported between the two PD subtypes. Some
task-related functional MRI (fMRI) studies revealed distinct
activation paradigm in the striato-(cerebello-)thalamo-cortical
circuits between the two subtypes along with reduced activity in
the globus pallidus and prefrontal cortex in NTD patients (Lewis
et al., 2011; Prodoehl et al., 2013; Zhang J. et al., 2015). Moreover,
previous studies using independent component analysis (ICA),
which identified brain regions that fluctuate in synchrony and
constitute reproducible and reliable brain functional networks,

found altered functional coupling between brain networks,

including corticostriatal network (Karunanayaka et al., 2016),
and within network between the two subtypes (Guan et al., 2017).

However, the majority of these earlier studies were on the basis
of static functional connectivity, supposing that fluctuation of
brain signals throughout the entire scan is constant, and the
dynamic brain network changes and the mechanism of the two
PD phenotypes are not yet clear.

The dynamic functional connectivity (dFC) investigates
the time-varying brain communication by measuring changes
in the strength or spatiotemporal distribution of functional
connectivity over time among brain regions (Hutchison et al.,
2013). It provides a new viewpoint of abnormal dynamic brain
communication and could capture FC changes motivated by
disease pathophysiology (Preti et al., 2017; Khambhati et al.,
2018). Clinical studies of multiple diseases including PD have
suggested the potential biomarker utility and clinical relevance
of dFC. For example, compared with controls, the proportion
of segregated and integrated FNC states in PD patients appears
obviously imbalanced, and the dynamic variables of FNC are
closely related to the severity of clinical symptoms (Kim et al.,

2017). Another work demonstrated that the intra-network
variability of functional connectivity in salient, visual, and
subcortical network was greater in PD patients, while that
along with the inter-network variability presented a distributed
variation (Zhu et al., 2019). Furthermore, the variability of brain
network efficiency based on the graph theory analysis method
combined with dFC may also provide important insight into the
underlying neural substrate of PD. In addition, a recent study
found that the variability of global efficiency over network in
PD patients was higher, implying abnormal functional network
integration of PD (Kim et al., 2017). However, alterations of the
dynamic brain communication characteristics between the two
PD phenotypes are yet poorly understood. From the dynamic
perspective, we may help capture the abnormal functional
alternation underlying two PD phenotypes that cannot be fully
elucidated by static analysis methods.

Therefore, we intend to compare the properties of dFNC
between the two PD phenotypes at the subnetwork level,
using the FNC state analysis and graph theory analysis. This
study aimed to (1) identify changes in dFC and in network
topological characterization between TD and NTD phenotypes,
(2) investigate whether the dFNC changes could characterize
the potential discrepancy between the two PD phenotypes,
and (3) explore whether these changes are associated with the
clinical manifestation.

MATERIALS AND METHODS

Subjects
In this study, we used data from the Parkinson’s
Progression Marker Initiative database (PPMI database,
www.ppmi-info.org/data). PPMI is an ongoing multicenter
cohort study with PD, and normal controls aimed at identifying
biomarkers of PD progression; 54 patients with PD (29 tremor-
dominant, PDTD and 25 non-tremor-dominant, PDNTD) and
20 healthy controls (HCs) were enrolled in our study between
July 1, 2012, and November 29, 2016. Inclusion and exclusion
criteria have been published in Parkinson Progression Marker
Initiative (2011). For both PD patients and the controls, those
without rs-fMRI images were excluded. PD patients were divided
into two groups according to the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III
of the resting tremor score (Prodoehl et al., 2013; van Nuland
et al., 2020). A PDTD patient has an MDS-UPDRS-III resting
tremor score of greater than two points for at least one limb, with
a history of tremor. A PDNTD patient has an MDS-UPDRS-III
resting tremor score of zero, without a history of tremor. The HC
subjects were demographically comparable with the PD patients.

Data Acquisition and Pre-Processing
All participants underwent resting-state MRI scans on 3.0T MRI
scanners. A gradient-echo T2∗-weighted echo-planar imaging
sequence (GE-EPI) was applied to image brain functional activity
with 210 time points during scanning. The fMRI acquisition
parameters were as follows: time of repetition = 2,400ms, echo
time=25ms, field of view= 224mm, flip angle= 80◦, voxel size
= 3.3 mm3, and 40 axial slices.
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Preprocessing of fMRI data was carried out using GRETNA
software (http://www.nitrc.org/projects/gretna/). To achieve the
equilibration of MRI signals and the adaptation of subjects to the
scanning environment, the first 10 time points were discarded.
The fMRI images of the remaining 200 time points were then
slice-time corrected and realigned to the mean echo-planar
image. Furthermore, all corrected fMRI images were spatially
normalized into the Montreal Neurological Institute (MNI)
standard space using EPI templates, resampled with a 3mm
isotropic voxel, and spatially smoothed with a 4mm3D-Gaussian
filter. Three control patients with head motion exceeding 3mm
of translation motion or 3 degrees of rotation and 10 PD patients
with poor-quality images were excluded from the analysis.

Identification of Independent Components
The preprocessed fMRI data were broke down into independent
components (ICs) via a group-level ICA carried out in the
Group ICA of fMRI Toolbox (GIFTv3.0b, http://mialab.mrn.org/
software/gift/). First, two data reduction steps were performed to
decrease computational complexity. We cut down the subject-
specific data with principal components analysis (PCA) followed
by decomposition of the concatenated subject-reduced data in
the group level including both the patient and control groups.
Second, 39 ICs were automatically estimated through Group ICA
utilizing the Infomax algorithm. Finally, the spatial functional
networks for each subject and corresponding time courses were
created using the ICA back reconstruction method.

Of the 39 ICs, 6 ICs of interest were identified that exhibited
peak activations mostly in gray matter and higher low-frequency
spectral power with low spatial overlap with known vascular,
ventricles, cerebral white matter, and edge regions (Allen
et al., 2014). Those ICs satisfying the expectations that ICs
of interest should have the strongest anatomical correlation
with the template were selected. Six ICs were characterized as
subnetworks: basal ganglia (BG), default mode network (DMN),
dorsal somatomotor network (dSMN), ventral somatomotor
network (vSMN), left frontoparietal network (lFPN), and right
frontoparietal network (rFPN), as shown in Figure 1.

Finally, we applied post-processing steps to eliminate noise,
mainly including (a) detrending (linear, quadratic, and cubic),
(b) analyzing the six realignment parameters by multiple
regression, (c) despiking time courses, and (d) low-pass filtering
(f < 0.15 Hz).

Dynamic Functional Network Connectivity
We adopted the k-means clustering integrated with a sliding
window approach in GIFT software to calculate the dFNC (Allen
et al., 2014; Kim et al., 2017). To detect changes in FNC matrix
across time, we created a sliding window of 48 s (20 TRs width)
with a Gaussian value (σ = 3TRs) in steps of 1 TR, resulting in
180 sliding windows per subject. We chose the window length
of 48 s because window size around 30–60 s could optimize the
balance between the temporal resolution and the quality of the
FNC estimate (Keilholz et al., 2013; Li et al., 2014). Each window
of individual dFNC matrix was obtained using the values of
pairwise Pearson’s correlation between BOLD time courses of

six ICs, resulting in time series of FNC matrixes (6×6) for
subsequent analyses.

Next, all dFNC windows for each subject were classified by
applying the k-means clustering based on the Euclidean distance,
and the algorithm was repeated 100 times to reduce the bias
of random initialization of centroid positions (Friedman et al.,
2008). Four (k = 4) was determined as the optimal cluster
using the elbow criterion. Consequently, three different variables,
namely, mean dwell time, fractional windows, and number of
transitions, were assessed to examine the temporal properties
of dFNC states. Briefly, the mean dwell time was measured by
averaging the quantity of consecutive windows in a specific state.
The fractional windows referred to the percentage of time spent
in one state. Accordingly, the number of transitions represented
the number of times the conversion occurred from one state
to another. Group comparisons were examined on functional
connectivity strengths and temporal properties of FNC states
using the two-sample t-test, followed by false discovery rate
correction (FDR, P < 0.05).

Graph Theory Analysis
We performed the graph theory analysis using the GRETNA
software to analyze the variability of topological characterization
of the FC network based on the ICs resulting from the above
analysis. Herein, ICs corresponded to nodes, and connectivities
linking nodes-pairs were defined as edges in the graphs (Rubinov
and Sporns, 2010). We binarized all FNC matrixes and set
a wide range of sparsity thresholds (0.1–0.5, with an interval
of 0.05). As for the minimum sparsity selection, we applied
a simple algorithm that was S = 2∗log(N)/N−1, where N
denoted the number of subjects. Global and nodal network
indicators were calculated under the area of the curve (AUC)
over the sparsity range, and AUC was widely applied in the
graph theory analysis and proved to be sensitive to alterations in
the topological organization of neurological diseases (He et al.,
2009; Koshimori et al., 2016; Zhi et al., 2018). We studied the
global efficiency and local efficiency as global and nodal network
indicators, respectively. Global efficiency evaluated the capability
of incorporating information of the whole network, while local
efficiency characterized the fault tolerance of a network when
a node was removed. Then, for every subject, the variance
of the time-varying network efficiency was calculated. Graph-
theoretical parameters analysis was assessed by one-way ANOVA
and adjusted with FDR correction (P < 0.05) to detect the
between-group differences.

Statistical Comparisons and Correlations
Analysis
Quantitative variables were analyzed via one-way ANOVA
with pairwise t-test or Kruskal–Wallis one-way ANOVA with
pairwise Mann–Whitney U-test according to its distribution.
Qualitative variables were analyzed using chi-square test. The
FDR correction for multiple comparisons was applied with
P < 0.05. Additionally, Spearman’s correlation analysis was
performed to examine the relationship between altered dFNC
metrics (functional connectivity strengths, temporal properties
of FNC states, and network topological characterization) and
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FIGURE 1 | (A) Six independent functional components derived from the group ICA: basal ganglia (BG), default mode network (DMN), dorsal somatomotor network

(dSMN), ventral somatomotor network (vSMN), left frontoparietal network (lFPN), and right frontoparietal network (rFPN). (B) Group averaged static functional

connectivity matrix between six ICs.

clinical variables in PD patients. The clinical variables included
resting tremor score, total tremor score, and MDS-UPDRS-III
score. Since age, gender, and head motion could be modifiers
of functional connectivity, nonetheless in our analysis, they were
taken as covariates. Statistical analyses were performed utilizing
SPSS version 26.0, and P < 0.05 was the threshold selected to be
statistically significant.

To assess the diagnostic ability of dFNC in differentiating
PDTD from PDNTD patients, univariate receiver operating
characteristic (ROC) curves analysis was computed through
SPSS software, calculating the area under the curve (AUC),
sensitivity, and specificity. Here, we select the mean
dwell time in state I as the most discriminating feature in
ROC analysis.

RESULTS

Demographic and Clinical Characteristics
Table 1 lists the detailed demographic and clinical characteristics
of the PDNTD and PDTD patients, and controls. No significant
differences were found in age, gender, or years of education
between the three groups, except for MDS-UPDRS-III score
and tremor score. The PDNTD group had significantly lower
MDS-UPDRS-III score and tremor score than the PDTD
group (P < 0.05).

Intrinsic Connectivity Networks
Figure 1A depicts the spatial map of the selected ICs using
the Group ICA. According to their anatomical and presumed
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TABLE 1 | Characteristics of participants.

PDTD (n = 29) PDNTD (n = 25) Controls (n = 20) p-value

Age (years)a 63.96 ± 7.73 59.36 ± 9.87 64.40 ± 8.07 00.08

Gender (female/male)b 13/16 8/17 04/16 00.20

Education (years)c 16 (15–18) 16 (14–18) 16.5 (16–18) 00.41

Duration of illness (years)e 3 (2–5) 3 (2–4) – 00.37

Onset age (years)d 60.55 ± 8.04 56.44 ± 9.67 – 00.10

MDS-UPDRS IIId 25.48 ± 8.77 18.84 ± 10.42 – 00.01**

Hoehn-Yahr stagee 2 (2–2) 2 (1–2) – 00.12

Resting Tremor scored 2.86 ± 1.03 0.00 ± 0.00 – <0.001**

Action/posture Tremor scored 1.86 ± 1.75 0.56 ± 1.00 – 0.001 **

Values are presented as mean ± SD or median (interquartile range 25–75%).
**P < 0.05.

MDS-UPDRS III, motor section of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale.
aANOVA.
bPearson’s χ

2-test.
cKruskal–Wallis test.
dTwo-sample t-test.
eMann–Whitney U-test.

functional properties, the ICs were classified into the following
networks: basal ganglia (BG), default mode network (DMN),
dorsal somatomotor network (dSMN), ventral somatomotor
network (vSMN), left frontoparietal network (lFPN), and right
frontoparietal network (rFPN). Figure 1B shows the resting-state
FNC matrix between ICs, which was averaged over all subjects.

Dynamic Functional Connectivity States
and Connectivity Strength
Four reoccurring states of dFNC matrixes were obtained
throughout scans based on k-means clustering algorithm. The
cluster centroid of the four states and their respective occurrence
frequency and percentage are shown in Figure 2. With the above
four cluster centroids, all dFNC windows of each subject were
then divided into one of the four states based on their similarity
to the cluster centroids; however, not all subjects have each of
the four states. Each cluster centroid presents its corresponding
connectivity patterns. State I occurred most frequently in four
states (34%) and showed generally weak connectivity between
ICs, except for strong and positive correlations between the
vSMN and lFPN, and between the rFPN and lFPN. In contrast,
the other three states demonstrated positive and negative
couplings between ICs and were less frequent (state II 23%, state
III 24%, and state IV 19%). State III distinguished itself from
state II and state IV by the domination of a strong and positive
connectivity of vSMN with DMN, dSMN, and lFPN. In state
II, lFPN had a strong and positive connectivity with vSMN and
dSMN but a negative connectivity with DMN, and dSMN had
a negative connectivity with both BG and DMN. State IV was
characterized by the presence of relatively strong connectivity
related to rFPN, positive correlation with DMN and lFPN, and
anti-correlations with vSMN.

We compared the group differences of functional connectivity
strengths among the triple groups in each state (P < 0.05, FDR
corrected), as shown in Figure 3. Compared with HCs, both

the PD groups showed higher FNC strengths between dSMN
and lFPN in state II, and between dSMN and rFPN in state
III. Two abnormal FNC strengths were observed in PDNTD
patients relative to HCs, including reduced BG-lFPN junction in
state II and stronger rFPN-lFPN junction in state III. Similarly,
the two FNC differences were also found between PDTD and
PDNTD patients. In particular, PDTD displayed higher strength
in BG-lFPN junction than that in PDNTD, while lower strength
in rFPN-lFPN junction. In addition, compared with PDNTD
patients, we found greater FNC strength between BG and vSMN
in state IV in PDTDpatients. For state I, no significant differences
were found between any other groups.

With regard to temporal properties, the mean dwell time in
state I was significantly increased in PDTD patients compared
with the PDNTD patients (P < 0.05, FDR corrected). However,
there was no significant group effect either in fractional windows
or in transition number, as shown in Figures 4A–C.

Graph Topological Properties
In terms of network topological metrics, we found increased
variability of global efficiency in the PDNTD patients relative to
the controls. In contrast, PD subtypes andHCs did not differ with
regard to local efficiency. Figure 5 depicts the variability of global
efficiency and local efficiency for each group.

Relationship Between dFNC Properties
and Clinical Characteristics
As shown in Figure 6, the dFNC properties were significantly
correlated with tremor symptom severity in the PD group with
FDR-corrected for multiple comparisons. To be specific, the
dwell time in state I was positively associated with resting tremor
(P < 0.05, r = 0.562), suggesting that a higher percentage of
time spent in the more sparsely inter-network connected was
associated with poor tremor performance. In addition, the FNC
strength between BG and vSMN in state IV had a positive
correlation with the total tremor score, an item comprising
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FIGURE 2 | Cluster centroids of each states, and the total number and percentage of occurrence of the each brain connectivity state across the sliding windows of all

subjects.

resting tremor, postural tremor, and kinetic tremor (P < 0.05,
r = 0.466). This indicated that greater the FNC strength of
BG-vSMN coupling in state IV, the patients would have worse
tremor performances.

Univariate ROC curves analysis in Figure 7 shows that
the diagnostic value of mean dwell time in state I for PD
phenotypes was relatively high: AUC = 0.709 [95% CI 0.569–
0.849], optimal bound value = 0.426, sensitivity = 0.586, and
specificity= 0.840.

DISCUSSION

In this study, we investigated the abnormalities of brain
functional network in the two PD subtypes from a dynamical
point of view, building on a combination of temporal properties
of FNC and variability of network topological organization.
The main findings were as follows: (1) Relative to PDNTD
patients, PDTD patients spent more time in state I showing
sparse connections, and the dwell time in state I was positively
correlated with the resting tremor score; (2) PDTD patients
and PDNTD patients exhibited altered dFNC strength between
networks encompassing BG, vSMN, dSMN, l_FPN, and r_FPN.
Meanwhile, the dFNC between BG and vSMN in state IV

displayed a significant positive correlation with the total tremor
score; and (3) PDNTD patients showed higher variability in
global network efficiency compared with controls. Collectively,
our findings provide new evidence that PDTD and PDNTD
subgroups represent differential aberrant time-varying brain
connectivity patterns.

Increased Mean Dwell Time of the Sparsely
Connected State in PDTD Patients
For what concerns the temporal properties, the dwell time in
state I was discovered to provide good discrimination between
the PDTD and PDNTD patients. PDTD patients stayed longer
in the pattern of sparse connected state I relative to the PDNTD
patients, mirrored by the increase in mean dwell time. Moreover,
there was a significant positive correlation between the mean
dwell time in state I and the resting tremor score in the PD
patients with tremor. This indicated that a higher proportion
of time stay in state I was associated with poor level of tremor
severity. Compared with the other three states, the strength of
FNC between networks in state I was much lower. The fact
that PDTD patients cost more time in the weakly connected
dFNC state indicates less information communication between
networks. This might result in the inability for motor cortex to
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FIGURE 3 | Group differences of FC strength in each state. Each square color represents one of the six networks. Blue lines represent increased connectivity, while

purple lines represent decreased connectivity in PDTD patients compared with PDNTD patients. Yellow lines represent increased functional connectivity relative to

controls. Red lines represent increased functional connectivity, while green lines represent decreased connectivity in PDNTD patients compared with controls. (P <

0.05, FDR corrected).

timely and accurate process information on rapid adaptive top-
down control. In addition, as shown in Figure 4D, the average
transition matrix showed the probability converts from state t−1
to state t in color map, and we found that the most frequent
state I was as well more likely to transfer across states. Taken
together, weak interaction between networks and high variability
of transitions reflect state I may be an unstable state, ready
to participate in brain activity. Indeed, brain signaling activity
fluctuates across different patterns rather than keeping stable
overall at the same level of datum line. Our result that long time
is spent in the unstable state I in TDPD patients also provides
corroborating evidence to the above point.

Dynamic Functional Network Connectivity
Strength Changes Between PDTD and
PDNTD Patients
Both PDTD and PDNTD patients displayed higher connectivity
between dSMN and FPN in state II and state III compared with
the controls. Here, dSMN mainly refers to supplementary motor
area and paracentral lobule, relating to planning and execution
of voluntary movements (Manara et al., 2018; Rodriguez-Sabate
et al., 2019). FPN is a crucial region involving cues signifying
task onset and responding differentially to tasks that carry
performance feedback (Dosenbach et al., 2008). Functional
connectivity between the SMN and FPN may reflect motor

performance, and their coupling is found to be bound up
with motor outcome in patients with PD and chronic stroke
(Lam et al., 2018; Chen et al., 2021). However, our results are
inconsistent with a recent study by Chen et al. (2021), who found
reduced communication between FPN and SMN in PD. One

likely explanation is that the increased dSMN-FPN coupling may

present a functional compensation. The PD patients in our study
had a short course of disease and were at an early stage, while

the disease course in the study by Chen et al. was relatively

long. Hence, we presume that the functional connectivity might
be repairable in the incipient stage, whereas the impairment of
dSMN-FPN coupling became apparent as the disease progressed
to an advanced stage.

We found that PDNTD patients exhibited decreased FNC

between BG and FPN compared with both PDTD patients and
controls. This result is in line with a task-related study (Prodoehl
et al., 2013) revealing that PDNTD patients had reduced activity
in the globus pallidus and ipsilateral dorsolateral prefrontal
cortex, key player in the BG and FPN, respectively, compared
with tremor-dominant PD patients and controls. Frontoparietal
systems, known as cognitive control networks, play an important
role in cognitive task and environment adaption (Cole et al.,
2013), and the dynamic property of the FPN is associated with
cognitive control (Zanto and Gazzaley, 2013). Decreased FC
between BG and FPN indicates that the impairment of cognitive
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FIGURE 4 | Comparison of group effect in the temporal properties of functional connectivity state among the PDTD, PDNTD, and control groups (P < 0.05, FDR

corrected). (A) Fraction windows, (B) mean dwell time, and (C) number of transitions. (D) The state transition probability matrix, averaged over subjects. High values

indicate a high probability of staying in a state. Asterisks represent significant differences at P < 0.05.

ability might be more severe in PDNTD patients, which further
clarifies the point that PDNTD patients have worse cognitive
performance than PDTD patients (Burn et al., 2006) and higher
risk of developing dementia (Williams-Gray et al., 2007).

Interestingly, we also found a significant increase in
the connectivity of l_FPN and r_FPN in PDNTD patients,
which supports a previous study exploring interhemispheric
functions in PD, described in the alpha1 band oscillatory
activity: Interhemispheric coupling was positively associated
with cognitive dysfunction in early-stage PD patients, an
increased tendency for perseveration (Stoffers et al., 2008).
Thus, we speculate that excessive interhemispheric coordination
in bilateral FPN regions in PDNTD patients may be the
manifestation of an attempt to invest more neural resources to
compensate for the cognitive decline.

Tremor-dominant PD patients showed increased FNC
between BG and vSMN in state IV compared with PDNTD,
and the FNC strength of these areas was positively correlated
with the total tremor score. Dysfunction of the basal ganglia-
motor circuit is generally believed to underlie the movement
disorders in PD (Dirkx et al., 2016). The current dominantly
held view is that tremulous activity originates from the basal

FIGURE 5 | Between-group differences in the variances of network efficiency.

The variances of (A) global efficiency and (B) local efficiency shown with violin

plots. Asterisks represent significant differences at P < 0.05.

ganglia and spreads through cerebello-thalamo-cortical circuit
to the motor cortex (Helmich et al., 2012; Dirkx et al., 2016;
Helmich, 2018). The SMN is critical for the planning and
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FIGURE 6 | (A) Topographic representation of the connectivity between BG and vSMN. Correlation between total tremor score and FNC between BG and vSMN in

state IV. (B) Cluster centroid of state I. Correlation between resting tremor score and mean dwell time in state I. Linear regression line with 95% CI for best-fit line

(shading area), and r and P-values (Spearman’s correlation coefficient) are provided.

FIGURE 7 | Receiver operating characteristic (ROC) curve of mean dwell time

in state I for discriminator of PD phenotype. AUC = 0.709 [95% CI

0.569–0.849], P = 0.004, optimal cutoff value = 20.4, sensitivity = 0.586,

specificity = 0.840.

execution of the simplest motor patterns (Smith et al., 2009).
Thus, the increase in FNC of PDTD patients between BG and
SMN suggested abnormalities in controlling the execution of the
motor performances in PDTD patients. There are many previous
studies that showed increased connectivity strength and elevated
regional hypermetabolism in the basal ganglia and motor cortex
in Parkinsonian tremor (Rivlin-Etzion et al., 2008; Mure et al.,
2011; Zhang D. et al., 2015). In addition, the increased expression
of functional connectivity between networks was similar to the
excessive neurosynchrony in cerebral cortex, and changes in
the synchronization of brain signals were reported to be well-
associated with Parkinsonian tremor (Rivlin-Etzion et al., 2008;
Stoffers et al., 2008). In addition to consistency of previous
studies, our findings also provide other insights from a dynamic
perspective. Furthermore, correlation analysis revealed that the
increased BG-vSMN coupling was positively associated with the
expression of total tremor level in PDTDpatients. In other words,
greater the strength of BG-vSMN coupling in state IV, the PD
patients would have worse tremor performance measured by
MDS-UPDRS tremor subscore. Of note, scores of rest tremor,
postural tremor, and kinetic tremor constitute total tremor
score. The correlation indicates the effectiveness of the detected
alterations in capturing the expressions of tremor severity in
PDTD patients. Inspired by these findings, we postulate that
the increased FNC between BG and vSMN may lead the basal
ganglia to be more influenced by top-down mechanisms, thereby
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resulting in the loss of segregation in the dopamine-depleted
basal ganglia and cause network more instability.

Higher Variability of Global Efficiency in
PDNTD Patients
Furthermore, we observed that PDNTD patients showed higher
variability in global network efficiency relative to health controls,
suggesting instability and enthusiasm of dynamic interactions.
Our finding was in line with the current studies by Kim
et al. (2017) and Zhu et al. (2019), which reported that PD
patients have higher variability of global network efficiency,
suggesting low efficiency and instability of information propagate
within/between network. Our results further clarify that the
difference of global network efficiency between PD patients
and the controls is due to the aberrant information integration
of brain networks in PDNTD patients. The result that PDTD
patients did not exhibit aberrant global network efficiency may
also explain the more benign disease course of PDTD patients.
Autopsy and nuclear imaging studies reported that PDTD
patients have relatively benign nigrostriatal degeneration (Paulus
and Jellinger, 1991), and more cortical lesions were found to exist
in PDNTD patients than in PDTD patients. This may be because
resting tremor may appear as a side effect of brain mechanisms to
make up for the changes that produce other movement disorders
(Rivlin-Etzion et al., 2006).

Distinguishing PD Phenotypes
The univariate ROC analysis shows that the diagnostic value
of mean dwell time in state I for PD phenotypes is relatively
high. Combined with linear correlation analysis, our study
illustrates that the mean dwell time in state I was closely
related to the severity of the clinical manifestations. Our
study is an attempt for furnishing relevant classification of
PD phenotypes and exploring the potential of mean dwell
time in state I as a biomarker for PD phenotypes seems
valuable. Other than the mean dwell time in state I, PDTD
and PDNTD patients also exhibited significant difference
in terms of the UPDRS III. However, according to linear
correlation analysis, there was no correlation between UPDRS
III score and observed dFNC changes when controlling for
covariables including sex, age, and head movement. Thus,
the observed dFNC changes may not be related to the
motor impairment.

LIMITATIONS

Several limitations should be taken into account in our study.
First, the sample size was relatively small to evaluate the dFC
abnormalities. Thus, a larger number of subjects should be
included in the future studies. Second, our study did not
include cerebellum that may involve assisting in Parkinsonian
tremor genesis. Although the main purpose of this study is
to study the key role of the brain in Parkinsonian tremor, it
is still advocated to add the cerebellum in order to observe
the overall impact in future research studies. Third, it is
difficult to control head motion for PD patients without
medication, and head motion may bring some confusion

to the result of dFC. In order to minimize the impact
of head motion, we eliminated three subjects with head
motion exceeding 3mm of translation motion or 3 degrees
of rotation and used head motion correction algorithm to
adjust the images, and the mean framewise displacement
values did not differ among the triple groups in this study.
Fourth, our study is indeed unable to elucidate the causal
relationship between PD phenotypes and brain dFNC changes.
Further research studies are needed to explore the “cause-
consequence” relationship.

CONCLUSIONS

Combining ICA and graph theory analysis applied to dFC,
our study provides a full map of the presence and difference
in abnormal dFC between PD subtypes. Severity of tremor is
associated with dwell time in state I and increased FNC between
BG and vSMN in state IV in PD patients. These findings provide
significance for understanding the neural substrates underlying
the PD subtypes and suggest that dFC may serve as a novel
physiological biomarker to identify PD subtypes.
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