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Sleep-disordered breathing (SDB), encompassing both obstructive and central sleep 
apnea, is prevalent in at least 50% of stroke patients. Small studies have shown vast 
improvements in post-stroke functional recovery outcomes after the treatment of SDB 
by continuous positive airway pressure. However, compliance to this therapy is very poor 
in this complex patient group. There are alternative therapy options for SDB that may 
be more amenable for use in at least some post-stroke patients, including mandibular 
advancement, supine avoidance, and oxygen therapy. There are few studies, however, 
that demonstrate efficacy and compliance with these alternative therapies currently. 
Furthermore, novel SDB-phenotyping approaches may help to provide important 
clinical information to direct therapy selection in individual patients. Prior to realizing 
individualized therapy, we need a better understanding of the pathophysiology of SDB 
in post-stroke patients, including the role of inherent phenotypic traits, as well as the 
contribution of stroke size and location. This review summarizes the available literature 
on SDB pathophysiology and treatment in post-stroke patients, identifies gaps in the 
literature, and sets out areas for further research.

Keywords: stroke, sleep apnea, hypopnea, treatment, phenotyping

inTRODUCTiOn

Sleep-disordered breathing (SDB) encompasses a range of respiratory sleep disorders which affects 
~20% of the middle-aged population (1, 2). The known risk factors for SDB include obesity, age, 
and male gender (3). SDB is associated with a range of negative health outcomes including excessive 
daytime sleepiness leading to neurobehavioral and cognitive dysfunction (4), hypertension (5), and 
diabetes (6).

Stroke is one of the leading causes of morbidity and mortality. Stroke can occur ischemically, 
where there is a blockage of a cerebral artery, or hemorrhagically, where the cerebral artery has 
ruptured. Hemorrhagic strokes only comprise 15–20% of strokes, but account for almost half of 
stroke deaths. There is a strong link between SDB and stroke risk (7); however, the effectiveness of 
continuous positive airway pressure (CPAP), the gold-standard treatment of SDB, in reducing stroke 
risk is not supported. For example, a recent large randomized control trial (RCT) did not support 
CPAP as a risk reduction strategy for recurrent stroke in patients with moderate to severe OSA, 
although in highly compliant CPAP users, there may be some protective effect (8). SDB is more 
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severe during the acute stroke phase; however, despite improve-
ment over time, 53% of stroke patients demonstrate at least mod-
erate–severe OSA after 1 month according to a meta-analysis (9). 
Post-stroke acute SDB, however, has received less attention in the 
literature, but there is emerging evidence that post-stroke SDB 
is very common and is associated with adverse effects, including 
poorer stroke recovery outcomes (10, 11). Emerging evidence, 
however, suggests that CPAP treatment in post-stroke patients 
may lead to faster functional recovery and reduction in the length 
of hospitalization and frequency of re-hospitalization (12–14).

It is important to improve our understanding of the patho-
physiology of post-stroke SDB in order to initiate appropriate 
rehabilitation therapy to facilitate faster recovery in stroke 
patients. This review will briefly summarize and highlight the 
growing literature on post-stroke prevalence and the clinical 
presentation of SDB. Furthermore, with the increased use of 
neuroimaging and a greater understanding of SDB pathophysiol-
ogy, recent studies have begun examining whether stroke lesion 
location and size are associated with SDB presentation. Lastly, 
we will review the emerging novel SDB-phenotyping approaches 
that may be clinically useful to better characterize the nature of 
SDB in post-stroke patients and help guide targeted post-stroke 
therapy.

PRevALenCe AnD PATHOPHYSiOLOGY 
OF SDB POST STROKe

The most common form of SDB is obstructive sleep apnea 
(OSA), which is the reduction (hypopnea) or cessation (apnea) 
of airflow during sleep as a consequence of upper-airway collapse. 
Another form of SDB is central sleep apnea (CSA), which is also 
characterized by cessation of respiration but as a consequence of 
loss in central respiratory drive and effort, rather than physical 
upper-airway collapse (Figure 1).

The gold-standard diagnosis for SDB is performed by overnight 
laboratory polysomnography (PSG), comprising electroencepha-
lography (EEG) and respiratory measures (pulse oximetry, nasal 
pressure, and respiratory effort). PSG, however, can be cumber-
some and time-consuming, making it impractical in some clini-
cal settings such as post-stroke (15). As such, the vast majority 
of studies examining SDB and stroke use respiratory polygraphy, 
which is a limited channel sleep study measuring respiratory 
parameters without EEG. There is good agreement between 
the limited channel studies compared with gold-standard PSG  
(16, 17) suggesting that the prevalence estimates for SDB post 
stroke are reasonable.

Prevalence of SDB after Stroke Compared 
to Prevalence in non-Stroke Patients
There is cross-sectional evidence suggesting that SDB is more 
common among stroke patients, compared with the general 
population, with a recent meta-analysis showing that SDB 
affects  >50% of stroke patients (9). Furthermore, studies have 
demonstrated that stroke patients experience a higher prevalence 
of CSA (>5 respiratory events/hour) compared with non-stroke 
SDB patients (18–20).

An important limiting factor in this area is determining 
whether there was preexisting SDB prior to the stroke and how 
this may influence post-stroke acute SDB pathophysiology. Few 
studies have used questionnaires to quantify snoring prevalence 
prior to the stroke (21, 22), and there are screening questionnaires 
for SDB that may provide information on whether SDB was pre-
sent prior to the stroke. Nevertheless, the use of these question-
naires would be subject to recall bias. Ultimately, unless there has 
been a prior objective clinical diagnosis of SDB, it is very difficult 
to determine the relationship between prior and post-stroke SDB.

TReATMenT OF SDB iMPROveS 
CLiniCAL ReCOveRY in STROKe 
PATienTS

Untreated SDB in stroke patients leads to numerous adverse 
outcomes during acute and chronic recovery from stroke includ-
ing higher long-term mortality (23–25) and reduced functional 
outcomes (10, 25, 26).

Traditionally, as the majority of SDB events in the general 
population are obstructive in nature, this was considered to be 
caused by a collapsible airway (27, 28). CPAP acts as a pneumatic 
splint via the application of pressurized air to prevent airway col-
lapse. There are different types of positive airway pressure (PAP) 
machines that can operate at a set pressure, or other machines that 
can automatically detect the pressure needed to maintain airway 
patency (known as an auto-CPAP, or APAP). CPAP usage of more 
than 4 h a night, for at least 70% of nights, is considered clinically 
compliant (29). Adaptive servo-ventilation (ASV) has in the past 
been used to treat CSA; however, a recent study has questioned 
the efficacy of this treatment (30). Furthermore, there has been no 
research examining the effects of ASV in post-stroke SDB patients.

Successful treatment of SDB by both CPAP (13) and APAP 
(12) in stroke patients has been shown to improve NIH Stroke 
Scale. In addition, treatment has been shown to reduce the risk of 
mortality by 32% (14). Yet, despite the well-documented benefits 
of PAP, compliance to therapy in general populations remains 
poor, with several studies showing an average nightly usage of 
less than 4 h a night, and in many cases, less than half the nights 
of the week. Furthermore, up to 50% of patients abandon CPAP 
treatment in the long term (8, 31). Many of the reasons for low 
compliance in the general population include mask discomfort, 
anxiety, and difficulty using CPAP therapy (32, 33). Compliance 
with CPAP appears to be even worse in stroke patients with SDB, 
with uptake in stroke populations regularly below 50% (23, 34). 
Furthermore, those that do use CPAP often use it for less than 
4 h/night (34–36).

Despite the prevalence of CSA in stroke patients, no study has 
attempted to treat CSA directly in SDB patients. This is further 
exacerbated by an RCT highlighting that the previous treatment 
strategy of CSA, ASV, provided no protection against CSA-related 
death (30). While CSA is not caused by a collapsed airway, CPAP 
has been shown to have some efficacy in reducing CSA; how-
ever, this is due to addressing non-stroke causes in CSA, such 
as decreased left-ventricular ejection fraction (37, 38). Thus, it 
is yet unclear whether CPAP would benefit stroke-related CSA. 
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FiGURe 1 | (A) Obstructive sleep apnea. The nasal pressure (second tracing from top) goes through periods of ‘flattening’, where airflow has ceased.  
The abdominal and thoracic respiratory bands (third and fourth tracing) show continued effort to breath, with effort increasing prior to the recovery of breathing. 
The continued respiratory effort with no airflow implies the airway has collapsed. The oxygen saturation (SaO2%, top tracing) shows periods of desaturation. The 
desaturation, and recovery, is delayed compared to the respiratory effort. Obstructive apneas occur multiple times in the example. (B) Central sleep apnea.  
The nasal pressure (second tracing from top) goes through periods of ‘flattening’, where airflow has ceased. This is combined with the abdominal and thoracic 
respiratory bands, which are also ‘flattening’, showing no effort to breathe. This combination of no airflow and no effort to breathe imply the neural drive to 
breathe is impaired. Central apneas occur multiple times in the example and also result in periods of SaO2% (top tracing) desaturation. (C) Hypopnea. The nasal 
pressure shows periods of increased and decreased breathing, coupled with increased and decreased respiratory effort. As airflow is still maintained but leads to 
decreases in SaO2% (top tracing) of at least 3%, this is classed as a hypopnea.
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Nevertheless, given the documented benefits of the treatment of 
SDB on the functional recovery of stroke patients, it is imperative 
to develop strategies and care pathways to motivate and encour-
age SDB treatment in stroke patients. These may include the 
use of non-CPAP-related treatments in conjunction with novel 
respiratory phenotyping techniques, which may be more suitable 
and acceptable for stroke populations during recovery in both 
hospital and home environments.

Other Potential Treatments for  
Post-Stroke SDB
The development of non-CPAP treatments for SDB has been 
growing. Diet and physical exercise to reduce obesity has shown 
promise to reduce the severity of SDB in non-stroke popula-
tions (39, 40); however, as in general populations, it is difficult 
to achieve and maintain in non-stroke patients (41, 42). The 
functional impairment caused by stroke, such as immobility, 
means weight loss is difficult to implement. Furthermore, during 
the post-stroke period, stroke patients with variable degrees of 
hemiparesis often lose muscle mass but increase fat mass (43), 
leading to obesity, which can worsen SDB.

Obstructive sleep apnea is often more severe in the supine posi-
tion compared to that in lateral postures (44). Recent technological 
developments in supine avoidance devices for OSA have shown 
promising results in terms of efficacy in reducing OSA severity as 
well as treatment adherence (45, 46). A small RCT involving SDB 
stroke patients using a supine avoidance pillow showed a significant 
decrease in apnea/hypopnea index (AHI) while using the pillow; 
however, larger studies are needed to properly elucidate the effect of 
supine avoidance on SDB in stroke patients (47). Furthermore, this 
technique may not be suitable for all stroke patients, particularly 
those with hemiparesis, as they may not be able to shift their body 
weight to, or maintain, a lateral position.

Mandibular advancement splints (MAS) move the mandible 
forward, thereby opening the airway and are effective at reducing 
OSA in 30–50% of patients (48). This therapy may be beneficial 
in some stroke patients and may be better suited and tolerated in 
stroke populations compared to CPAP treatment; however, MAS 
has not been tested in stroke patients thus far.

Surgical interventions to reduce OSA severity have shown 
promise in non-stroke populations; however, studies are lacking 
in this area (49). Furthermore, given the potential complications 
from stroke, surgery may not be a feasible option.

Oxygen therapy has also been evaluated as a potential treat-
ment option in OSA (50) and would seem to be an appropriate, 
minimally invasive therapy in post-stroke patients with SDB. The 
effectiveness of oxygen therapy may be limited, however, with 
evidence suggesting that it is effective at significantly reducing 
oxygen desaturation, but may prolong apneic events (50). More 
recent evidence suggests that only certain OSA patients with 
particular phenotypic traits respond positively to oxygen therapy 
(51), highlighting the need for future research on simple pheno-
typing and therapies in post-stroke patients.

Despite the availability of various treatment options for OSA, 
there has been very limited research examining the acceptance 
and efficacy of non-CPAP therapies on improving SDB and 
functional recovery in stroke patients.

Phenotyping SDB in Stroke Patients  
to inform novel Treatment Strategies
There are several nonanatomical contributors to SDB, being a low-
respiratory arousal threshold, abnormal chemoreflex response 
to differing carbon dioxide (CO2) levels, and low activation of 
the main upper-airway dilator muscle, the genioglossus (52).  
This knowledge has allowed for the development of emerging 
“tailored” treatments for those that have these nonanatomical 
contributors to SDB. Low arousal threshold can be treated by the 
use of sedative (53), abnormal chemoreflex has been treated by 
supplementary oxygen (54), and low activation of the upper-airway 
dilator muscles can be improved by targeted oral exercises (55). 
Importantly, these SDB phenotypes can be identified from diag-
nostic PSG studies (56, 57); however, the characterization of these 
phenotypes has not been performed in post-stroke SDB patients.

DOeS STROKe LeSiOn SiZe AnD 
LOCATiOn iMPACT SDB PReSenTATiOn?

The three nonanatomical contributors to SDB are controlled 
through the brainstem. Thus, it is biologically plausible that 
stroke lesions that involve the brainstem may contribute to SDB. 
This may explain why stroke patients experience higher rates of 
SDB (58). If stroke lesion location does contribute to SDB, this 
knowledge, combined with SDB phenotype information, could 
potentially be used clinically to inform the optimal mode of 
therapy for a particular patient.

neural Centers of Respiratory Control
Within the brainstem, the medulla oblongata plays the primary 
role in respiratory control (59). The medulla oblongata contains 
central chemoreceptors (with peripheral chemoreceptors located 
in the carotid bodies). The chemoreflex response controls respira-
tion through a loop-gain feedback system depending on the par-
tial pressure of CO2 detected (PaCO2). In people with “normal” 
chemosensitivity, an increase in PaCO2 will increase respiration, 
while a decrease in PaCO2 will reduce respiration. In those with 
“abnormal” chemosensitivity, increases in PaCO2 lead to above 
normal increase in ventilation, which can contribute to CSA (60). 
Lesions to the respiratory centers within the medulla have shown 
decreased chemosensitivity during wakefulness, sleep, and even 
exercise (61).1

The medulla also receives input from the respiratory center 
within the pons to innervate the pharyngeal muscles, which play 
an important role in maintaining the patency of the upper airway, 
as well as the regulation of diaphragm activity. The largest phar-
yngeal muscle, the genioglossus, is innervated by the hypoglossal 
nerve, which originates from the brainstem (62) and acts to pull 
the tongue forward. SDB patients experience a reduction in geni-
oglossus activation during sleep, which importantly contributes 
to upper-airway collapsibility (63, 64). Several studies have 
shown that brainstem strokes affect pharyngeal muscle activity 
(65, 66) causing dysphagia and can contribute to higher rates 

1 Patients in this study had focal lesions to the rostrolateral medulla; however, this 
study did not specify how the lesions occurred. 
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and severity of SDB observed in stroke patients. This implies that 
stroke-induced damage to the respiratory brain regions innervat-
ing the genioglossus muscle activity may, at least in part, explain 
the increase in upper-airway collapsibility in stroke patients.

Lesion Location
Severity and Type of SDB
Early studies examining brainstem strokes showed lesions 
to this region led to the development of Cheyne-Stokes res-
piration (periodic breathing occuring whilst awake) (67, 68). 
Lee et al. was the first to show high levels of CSA in patients 
who had suffered a brainstem lesion (67). Several case– 
control studies suggest that there is a link between brainstem 
stroke and SDB severity and in particular increased CSA sever-
ity (69, 70). The limited research in this area, however, means 
larger prospective studies are needed to make strong conclu-
sion regarding this relationship.

The advent of neuroimaging has allowed for a more detailed 
examination of the potential role that lesion location might have 
on SDB in stroke patients. These studies have produced conflict-
ing findings on whether stroke in the brainstem contributes to 
SDB and whether it contributes to specific types of SDB (obstruc-
tive vs central). Infratentorial lesions, which encompass both the 
brainstem and cerebellum, have been shown to generally result in 
higher AHI (20, 71) when compared to cortical lesions. Likewise, 
another study (18) has shown that when compared to cortical 
strokes, brainstem strokes have been associated with three times 
greater odds of significant SDB, particularly CSA, along with 
greater nocturnal desaturations (26). No study has yet exam-
ined whether brainstem lesions are associated with changes in 
respiratory arousal threshold. Given that a low arousal threshold 
contributes to unstable respiratory control and reduces the likeli-
hood of entering slow-wave sleep, while a high arousal threshold 
may exacerbate arterial hypoxemia, it is important to determine 
whether stroke in the brainstem changes arousal threshold.

By contrast, other studies have found that non-brainstem 
regions might be more related to SDB in stroke patients. For 
example, Siccoli et  al. found that patients who experience total 
anterior circulatory strokes had the highest AHI compared to 
other brain regions assessed, with CSA making up 40% of the 
overall AHI (19). Furthermore, the authors showed that the sec-
ond highest AHI resulted from strokes in the pons, which is part 
of the midbrain, where CSA made up only 12% of AHI events. 
Ahn et al. found that bilateral cerebral lesions were associated with 
significantly higher SDB severity, while stroke in other regions, 
including the brainstem, was not associated with SDB, and the 
authors did not report on the type of SDB (72). De Paolis et al. 
have hypothesized that cerebral infarctions can lead to increased 
cranial pressure leading to a reduction in cerebral blood volume, 
which would precipitate hypocapnia, leading to unstable ventila-
tory control and CSA (73). This hypothesis may partly explain 
why another study (74) has showed a spontaneous decrease in 
SDB, in particular CSA after 3 months, despite not showing SDB 
severity or the type to be associated with lesion location.

Several studies have also shown that there is no association 
between lesion location and SDB severity and SDB type (74–78); 

however, the reasons for this are unclear. It is important to note 
that brainstem-specific strokes contribute to less than 10% of the 
number of cortical strokes, limiting the power to demonstrate 
lesion location impact on SDB (18, 77).

In summary, it appears that the literature on lesion location 
and SDB is mixed and inconclusive. There is large variation in 
methodology and patient populations, lesion location definitions, 
and even the timing of the SDB measurement relative to stroke 
onset, which may contribute to conflicting results.

Brainstem and Pharyngeal Muscles
Despite the importance of the pharyngeal muscles in main-
taining upper-airway patency, there has been relatively little 
research directly examining the potential role of damage to 
the pharyngeal nerves in post-stroke SDB patients, despite 
studies showing both brainstem lesions (79) and lesions to the 
pharyngeal cortex (80), leading to dysphagia. Turkington et al. 
showed that BMI and neck circumference, but not the presence 
of dysphagia, contributed to worse SDB severity (81). Brown 
et  al. showed that stroke patients with SDB had a narrower 
retropalatal distance, which is the size of the opening of the 
airway, compared to non-SDB. Importantly, dysphagia was 
not different between SDB and non-SDB stroke patients (82). 
By contrast, Martinez-Garcia et al. showed that stroke patients 
with brainstem stroke were 1.73 times more likely to experience 
dysphagia and a significantly higher number of obstructive 
apnea events compared to stroke patients without dysphagia 
during the acute phase (83). Furthermore, stroke patients with 
dysphagia experienced larger reductions in AHI, particularly 
obstructive apneas, during recovery.

Lesion Size
Few studies have examined how the size of stroke, regardless 
of whether the stroke in hemorrhagic or ischemic, effects SDB 
prevalence and type. Ahn et  al. demonstrated that bilateral 
hemisphere lesions resulted in a significantly higher SDB sever-
ity compared to strokes that occurred in a single area (72). By 
contrast, Brown et al. compared brainstem to cortical strokes and 
showed that the lesion size was not associated with the severity of 
SDB (18). Siccoli et al. found that the worst SDB severity occurred 
with total anterior circulatory stroke, implying that the lesion size 
was a significant contributor to SDB severity (19). Yet, lesions 
occurring in the pons, a specific area of the brainstem, resulted 
in the second largest AHI, questioning whether the size of stroke 
is a contributing factor.

Differences between ischemic and 
Hemorrhagic Strokes on SDB Severity
Only a single study has examined SDB differences between 
ischemic and hemorrhagic strokes (78). SDB severity immedi-
ately post stroke was similar between ischemic and hemorrhagic 
strokes, but after 3 months, SDB severity remained unchanged 
in ischemic stroke, but was significantly reduced for those who 
experienced hemorrhagic stroke. The type of SDB was not 
recorded; thus, it is difficult to determine whether stroke type 
leads to differences in SDB type from this study. The authors 
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suggest that the observed reduction in SDB in the hemorrhagic 
stroke group after 3 months may have been due to reductions 
in intracerebral pressure (73). More research is needed on the 
impact of stroke type on SDB as it appears that this information 
might be clinically meaningful when evaluating prognosis and 
therapy options in post-stroke SDB.

DiSCUSSiOn

This review has highlighted that post-stroke SDB is significantly 
more prevalent compared to non-stroke populations. This is likely 
driven by lesion damage to respiratory control neurocircuitry 
in the brainstem and/or the cortex, and due to the complexity 
of these regions, the causes and the resulting type of SDB differ 
significantly between individual stroke patients. The literature on 
lesion location and size is limited and mixed with some studies 
reporting a link between brainstem stroke and SDB, in particular 
CSA, while others show cortical strokes to be more important 
and yet others showing no association between lesion location 
and SDB. It is too early to make strong conclusions on this, and 
further research is necessary to determine the link between stroke 
location/size and SDB.

Although SDB may reduce and resolve in severity in many 
patients over time, in parallel with functional recovery after stroke, 
SDB can significantly hinder and delay post-stroke rehabilita-
tion, resulting in increased hospitalization and slower recovery. 
Importantly, the small number of studies that have examined the 
therapeutic effect of CPAP on recovery outcomes in stroke patients 
has reported significantly faster functional recovery, reduced 
hospitalization time, and frequency of re-hospitalization. This 
provides good rationale for attempting to treat post-stroke SDB  

to improve clinical outcomes, but clearly using CPAP in this 
patient group presents significant challenges due to disabling 
and varying impact of stroke, leading to limited CPAP adherence 
and use in hospital environment. There are several alternate 
options to treat SDB, such as MAS and supine avoidance that 
may be suitable in some patients to at least reduce SDB severity. 
New SDB-phenotyping techniques are being developed, which 
will inform regarding the nature and cause of SDB in individual 
patients, and as a result, new therapies are being developed to 
target phenotypic causes of SDB to provide tailored treatment for 
individual patients. Although at present many of these phenotyp-
ing techniques are complex and experimental, making them out 
of scope for clinical use, there are efforts to utilize simple sleep 
recordings from oximetry and flow measurements suitable for in-
hospital assessment. These new phenotyping and therapy devel-
opments together with stroke location and size data could provide 
important clinical information to help prove SDB therapy in post-
stroke and improve clinical outcomes for patients. In conclusion, 
the relative lack of studies examining SDB in the aftermath of 
stroke, along with the discrepancies in findings, highlights the 
need for more research in this area. Specifically, research links 
lesion location to SDB phenotypes toward informing what drives 
SDB post stroke in individual patients and guiding the choice of 
SDB treatment and stroke rehabilitation.
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