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Abstract 
 

Responsiveness to drugs is an important concern in designing personalized treatment for cancer 
patients. Currently genetic markers are often used to guide targeted therapy. However, deeper 
understanding of the molecular basis for drug responses and discovery of new predictive 
biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for 
identifying condition-specific gene co-expression networks associated with responses to the 
tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer 
Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we 
have identified multiple gene modules specifically co-expressed in the drug responsive cell lines 
but not in the unresponsive group. Interestingly, most of these modules are enriched on specific 
cytobands, suggesting potential copy number variation events on these loci. Our results therefore 
imply that there are multiple genetic loci with copy number variations associated with the Erlotinib 
responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples 
using the TCGA data. Since these structural variations are inferred from functional genomics data, 
these CNVs are functional variations. These results suggest the condition specific gene co-
expression network mining approach is an effective approach in predicting candidate biomarkers 
for drug responses. 

 

Introduction 
 

Cancer patients are highly heterogeneous1,2. Even patients with the same type of cancers often 
present different responses to drugs and therapeutic schemes3,4. Therefore, understanding and 
predicting the drug responses in cancer patients is critical to enable personalized treatment. 
Current methods to model drug effectiveness and resistance are limited to in vitro systems such as 
body-on-a-chip pharmacokinetic models5, tissue scaffolds6, or engineered tumor 
microenvironments7-10; animal models such as genetically engineered murine systems11,12 have 
also shown promise. While these methods are effective at predicting general drug responsiveness 
to human cell lines, they fail to incorporate specific patient variability in a high-throughput 
manner. Single nucleotide polymorphisms (SNPs) are often used as measures of variance within a 
population and have proven invaluable for the development of personalized medicine13-16. The 
problem with using SNP arrays as a basis for drug screening is that these microarrays often 
encompass all polymorphisms, including non-functional variations, between subjects. As non-
functional polymorphisms do not directly correspond to genes, they are irrelevant to the 
determination of drug responsiveness17. Using gene expression data alleviates this issue by only 
surveying functional genomic data. One of the major efforts in understanding the molecular basis 
for drug responses in cancer is the Cancer Cell Line Encyclopedia (CCLE) project in which a  
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large number (> 900) different cancer cell lines are treated with 26 different drugs including both 
chemotherapy drugs and targeted drugs18. The responses of the cancer cell lines to the drugs were 
recorded and the genome-wide gene expression profiles for these cancer cell lines before drug 
treatment were also generated. This dataset has hence become a valuable resource for 
characterizing the molecular basis of drug responses. In this paper, we take a systems biology 
approach to studying the CCLE by characterizing the gene co-expression networks (GCNs) 
specific to drug-responsive or unresponsive groups. 

 

Gene co-expression is the phenomena wherein two or more genes tend to be expressed 
simultaneously across a large population19. Thus, in any one subject, two co-expressed genes  
will either both be highly or both lowly expressed comparing to other subjects in a cohort. There 
are multiple possible biological mechanisms leading to gene co-expression. For instance, genes co-
regulated by the same set of transcription factors are often co-expressed. These co-expressed genes 
are often functionally related20-25. In addition, genes located on the same cytoband may co-express 
in a cohort in which some of the patients have copy number variations (CNVs) on this 
cytoband26,27.  Therefore co-expression analysis can reveal important structural and regulatory 
relationships in biological systems among a cohort. 

 

Using high throughput gene expression algorithms, gene co-expression data is often measured by 
calculating the correlation between expression profiles of the two genes20,28. When co- expression 
analysis is expanded to all the genes in the genome, a network model called a gene co-
expression network (GCN) is often adopted where genes are represented nodes29,30. For an 
unweighted GCN, the correlation coefficient value between two genes is used to determine if the 
two genes (nodes) are connected (often based on some threshold). For a weighted GCN, the 
correlation coefficient of its transformation is used as the weight for the edge linking the two 
genes28-31. Gene co-expression network analysis (GCNA) can reveal functionally or genetically 
related gene clusters, which can subsequently lead to discovery of new gene functions and 
regulatory relationships19-21,26. Such discoveries can bring to light new understandings of disease 
progression and therapy, as well as predicting new gene functions and even discovering new 
disease biomarkers. Compared to previously developed clustering algorithms, GCNA allows 
overlap between the modules; this overlap is particularly useful to visualize since genes can 
involve in multiple biological functions. 

 

In this paper, we carry out weighted GCN (WGCN) analysis to identify highly co-expressed 
gene network modules in different groups of lung cancers. Specifically we compare the modules 
identified from lung cancer cell lines that are responsive to Erlotinib versus the ones identified 
from lung cancer cell lines that are not responsive to the drug. Erlotinib is a targeted cancer drug; 
specifically it is an ATP-competitive, tyrosine kinase inhibitor acting on EGFR, that blocks 
signaling cascades3. While it was originally used for lung cancers, not all patients are responsive to 
the drug4,32,33. Therefore, it is of great interest to identify the potential genetic factors associated 
with the drug response. 

 

From our WGCN analysis, we have identified 73 gene modules for the drug responsive group 
and 51 gene modules for the unresponsive group. Interestingly, several of the condition-specific 
gene modules are highly enriched on specific cytobands, suggesting potential roles of the copy 
number alterations in drug responses.  The existence of CNVs on these loci was further confirmed 
using cBioPortal (http://www.cbioportal.org). While further validation of the roles of the drug 
resistance of these loci requires experimental validation, our workflow nevertheless led to new 
hypotheses regarding the genetic basis for cancer drug resistance. While our focus is on the effects 
of Erlotinib on non-small cell lung cancer, specifically lung adenocarcinoma, our approach can 
nonetheless be applied to all other cancers and drugs. 
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Methods 
 

Datasets 
 

The gene expression dataset used for all analysis was downloaded from the Broad-Novartis’s 
database, the Cancer Cell Line Encyclopedia (CCLE). The file, “CCLE_Expression_Entrez_2012-
09-29.gct” contains gene-centric RMA-normalized mRNA expression data for 1037 cancer cell 
lines and 18987 genes. The file was converted to a Tab-Delimited-Text file in order to be 
read and processed by MATLAB.  The genes and corresponding expression data were doubly 
filtered by low-value and low-variance MATLAB filters to limit the data to the top 10000 gene 
probes. 

 

The drug responsiveness dataset used, ‘CCLE_GNF_data_090613.xls’, was also converted to a 
Tab-Delimited-Text file and the IC50 values from the data were used in order to determine 
responsiveness for 203 cancer cell lines to each of 26 drugs. 

 

Workflow 
 

As shown in Figure 1, our workflow contains multiple steps. The first three steps are data 
preprocessing steps and the following three steps are WGCN analysis steps. Below we describe 
each step in details. 

 

 
Figure 1. The workflow for our analysis. 

 

Filter CCLE gene expression data: After the gene expression and drug response files were 
downloaded from the CCLE database and converted to‘.txt’ formats, the first step was to 
identify the common cell lines to both datasets and isolate the lung cancer cell lines. Within the 
gene expression dataset, the genes and corresponding expression data were doubly filtered by low-
value and low-variance MATLAB filters to limit the data to the top 10000 unique genes. For this 
study, the lung cancer drug Erlotinib was chosen and the drug data was limited accordingly. 

 

Isolate common lung cancer cell lines: The intersection between the two datasets described in the 
previous section yielded 195 common cancer cell lines. As the primary site of cancer was recorded 
along with the cell lines in each file, a simple search and comparison algorithm was conducted in 
MATLAB to isolate the 38 lung cancer cell lines of interest. These 38 lung cancer cell lines and 
their corresponding gene expression and drug responsiveness data were used for this study’s 
subsequent analysis. 
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Separate by drug responsiveness: Two threshold IC50 values were set to deem each cell line 
responsive or unresponsive to Erlotinib. As IC50 values determine the dosage concentration 
needed for 50% inhibition (in this case, of cancer cells), higher IC50 values correspond with less 
effective drugs or more resistant cells. For IC50 ≤ 5, the cell line and its corresponding gene 
expression data were sorted into the responsive data matrix. For IC50 ≥ 10, the cell line and its 
corresponding gene expression data were sorted into the unresponsive data matrix. The upper 
threshold value of 10 was chosen to reflect the spread of the data from 0≤IC50≤20 and thus term 
the upper half unresponsive. The responsive data was also limited by the lower threshold value 
of 5 in order to exclude cell lines that were neither responsive nor unresponsive to Erlotinib. 

 

Correlation matrix per group:  For both the unresponsive and responsive expression data, 
correlation matrices were created to quantify the co-expression between each pair of genes by 
calculating the Pearson correlation coefficient between the two expression profiles. 

 

WGCN mining of each group: Both correlation matrices were then passed through a weight 
network quasi-clique mining algorithm in order to mine through the network and identify modules 
of strongly co-expressed genes. Here, we applied our recently-developed local maximal quasi-
clique merging (lmQCM) algorithm27. This algorithm was specifically designed to mine weighted 
graphs. Unlike the well-known WGCNA R-package developed by the Horvath group that uses 
hierarchical clustering algorithm to identify gene modules28, this algorithm takes a graph mining 
approach and thus allows overlap between gene modules. In addition, it uses an adaptive module 
density threshold instead of a global distance threshold, as in hierarchical clustering. The density of 
gene modules is guaranteed to be above a lower bound determined by the parameters. One of the 
key parameters of the algorithm is that defines the ratio between the weight of the first edge of a 
module and the maximal edge weight in the graph. The larger the value of , the more stringent it 
is to start a new module and the less number of modules will be identified. In this study we 
tested multiple values of ranging from 0.85 to 0.95. We finally chose 0.86 in order to 
constrain the maximum module to 50-500 genes and the number of modules to 10-100. These 
ranges were chosen to ensure that only highly co-expressed genes were clustered and limit the 
possibility of clustering genes together with only marginal correlation. Additionally the parameter 
of minimum cluster size determined the fewest number of co-expressed genes that could 
represent a gene module; this value was set at 10 genes. 

 

Cluster intersection and hypergeometric tests: Every pair of responsive and unresponsive gene 
modules were compared to determine the intersection and union between the two gene lists. 
Using this information, the Jaccard Index ( ) and Altered Jaccard Index ( ) were calculated 
based on the following equations: 

 

  [1] 

  [2] 

 
where ‘size’ indicates the number of clusters in each intersection or union, respectively. In 
addition, the statistical significance for the intersection was determined using a hypergeometric 
test. Since we are interested in the modules that are unique in each responsiveness condition, we 
selected the modules that do not have significant intersections with any modules in the other 
group. In order to be more stringent in this selection, we used a p-value cutoff as 0.05, instead of 
any lower threshold from multiple test compensation. Essentially, a module is selected if the 
hypergeometric test p-values between it and all modules in the opposite group is larger than 0.05. 
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Gene enrichment analysis: Cluster intersections and set differences larger than 5 genes with a 
Jaccard Index > 0.03 were analyzed using the website ToppGene’s functional annotation software, 
ToppFun, for gene enrichment analysis (https://toppgene.cchmc.org/enrichment.jsp).  For each 
inputted gene list, information regarding the common biological processes, transcription factor 
binding sites, cytoband (chromosome band locus), molecular functions, and interactions that the 
genes are involved in were recorded along with p-values. In addition, information was collected on 
drugs that act to target these genes and diseases the genes are known to play roles in. 

 

 
 
Results 

 

After passing both unresponsive and responsive matrices through the clustering algorithm at the 
gamma value of choice, we obtained 73 gene modules for the Erlotinib responsive group and 51 
modules for the unresponsive group. The Jaccard and adjusted Jaccard distances between every 
pair of responsive-unresponsive modules were calculated. In addition, hypergeometric tests were 
conducted to calculate the statistical significance of the intersections between the modules. Since 
our goal is to identify the conditional specific gene modules, we focused on the genes modules 
that had no significant intersection with any modules in the other group. Table 1 shows the lists 
of conditional specific modules and their sizes. 

 

Table 1. Condition specific modules and the lowest hypergeometric test p-values. N/I means that 
the module has no intersection with any module in the other group. 
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Module # 16 25 29 37 62 66 67 68 69 72 

Module size 46 27 26 24 22 21 21 21 21 21 

Lowest 
p-value 

0.1012 0.0589 0.0568 N/I N/I 0.2787 N/I 0.0960 0.3714 N/I 
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Module # 11 12 31 32 35 48     
Module 

size 18 17 11 11 11 10     

Lowest 
p-value 

0.0563 0.0852 0.3106 0.3106 N/I N/I     

 
 
We then further carried out gene enrichment analysis for these gene modules and the highly 
enriched terms for both groups. The analysis for the responsive group-specific modules is 
shown in Table 2 while the analysis for the unresponsive group-specific modules are shown in 
Table 3. 

 

From Table 2, it is clear that many of the responsive group specific modules are enriched on 
different cytobands. While the trend for the unresponsive group is not clear, at least one module 
(# 48) is entirely on a single cytoband. This suggests potential involvement of copy number 
variations (CNVs) in the drug responses. While understanding roles of CNVs on these regions in 
drug responses requires further experimental study beyond the scope of this paper, we examined 
if CNVs on these regions were indeed present in the CCLE data and possibly other cancer data 
using cBioPortal. As shown in Table 4, the prevalence of CNVs in the modules with highly 
enriched cytobands in CCLE and lung cancer TCGA data are listed. An example of the patients 
with adenocarcinoma is shown in Figure 2. Specifically, among the 27 genes from module 25 of 
the responsive group, 10 are known to be on cytobands 8q21-24. Interestingly, among the 10 
genes, seven show consistent amplification/gain in patients while the other three show consistent 
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deletion/loss and the two types of alterations are mutually exclusive in patients. In addition, the 
expression levels of the genes with CNVs are indeed correlated with the copy number variance 
levels (Figure 3 shows an example). Furthermore, the genes with consistent CNV often co- 
express (two examples are shown in Figure 4). 

 

Table 2. Highly enriched biological terms for gene modules specific to the responsive group. If a 
category contains no significantly enriched terms, it is left blank. 

 
 

Module # 
 

Gene Ontology term 
 

Cytoband Transcription 
factor 

 
16 

BP: GO:0006310 DNA 
recombination 

(p=4.171E-8, 8 genes) 

 

19p13.3 (p=6.935E-7, 7 
genes) 

 

E2F (p=1.280E-
5, 6 genes) 

 

25 
 

- 8q24.3 (p=2.414E-6, 4 
genes),10 genes on 8q21-24 

 

- 

 
29 

BP: GO:0006479 protein 
methylation (p=2.636E-5, 

4 genes) 

17q11.2 (p=4.093E-17, 9 
genes); 16p13.3 (p=8.009E-7, 

5 genes) 

 
- 

 

37 
 

- 3q27.2 (p=2.769E-5, 2 
genes), 8 genes on 3q21-

 

- 

 
62 

BP: GO:1903047, mitotic 
cell cycle process 

(p=1.387E-5, 7 genes) 

 

12p13 (p=8.557E-6), 7 
genes on 12p13 

 
- 

66 - - - 
 
 

67 

BP: GO:0009057, 
macromolecule catabolic 
process (p=5.022E-6, 8 

genes) 

 

15q24 (p=6.533E-5, 2 genes), 
12 genes on 15q13-24 

 
 

- 

 
68 

MF: GO0003723, RNA 
binding (p=1.005E-5, 9 

genes) 

 

6q13-q14.3 (p=5.773E-4), 5 
genes on 6q11-26 

 
- 

 
69 

 
- 

17q22 (p=3.224E-4, 2 
genes), 4 genes on 

17q21-23 

 
- 

 
72 

MF: GO:0044822, poly(A) 
RNA binding (p=1.405E-6, 

9 genes) 

 

6p21.3 (p=4.184E-4, 3 
genes) 

 
- 

 
 
Table 3. Highly enriched biological terms for gene modules specific to the unresponsive group. 
If a category contains no significantly enriched terms, it is left blank. 

 

 

Module # 
 

Gene Ontology term 
 

Cytoband 
Transcription factor 

binding site 
11 - 3 genes on 12q24 - 

 
12 

GO: BP:GO0045333, 
cellular respiration 

(p=3.831E-9, 6 genes); CC: 
GO0044429, mitochondrial 
part (p=1.397E-8, 9 genes) 

- - 
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31 - 3 genes on 2q24-33 - 
32 - - - 
35 - 3 genes on 2p11-13 - 

48 - 
19q13.43 (p=8.438E-9, 4 

genes), 10 genes on 
19q13.4 

- 

 
 
Table 4. Prevalence of CNVs of the genes in the modules in CCLE and lung adenocarcinoma 
samples from TCGA 

 

 Responsive Group Unresponsive Group 
Module # 16 25 29 37 62 67 68 72 48 
% in CCLE 

(995 cell lines) 51.9 53.4 22.8 41.7 27.5 28.7 41.4 39.7 5.6 

% in Lung 
cancer TCGA 
(LUAD, 230 

cases) 

32.2 32.6 14.3 27.0 15.7 28.3 33.5 23.5 0.9 

 
 

Discussion 
 

In this project, we implemented a novel workflow for identifying condition-specific gene co- 
expression networks associated to drug response in lung cancer. Instead of taking the traditional 
approach on inferring phenotype-associated differentially expressed genes, the condition-specific 
network approach fills in a gap between gene and functional levels. Most interesting about our 
findings is the prevalence of gene modules enriched on multiple cytobands in the Erlotinib 
responsive group. These results predict the potential functional roles of the structural variants in 
drug response and thus provide new hypotheses of biomarkers for personalized treatment in 
cancers. 

 

Our approach has two major advantages. First, while traditionally CNVs are detected using 
genetic approaches or microarrays (e.g., SNP array), it is often unclear if the detected CNVs are 
functional. Since the potential CNVs loci we detected are based on functional genomics data (ie., 
gene expression), they are clearly functional variations. Secondly, the direct connection to 
functions can help to elucidate drive genes in cancer. While currently single nucleotide variations 
and indels are widely used for personalized targeted cancer treatment, robust CNVs have been 
recently proposed to be potential biomarkers and our study supports such potentials4,32,34. 

 

Future work will include detailed bioinformatics analyses at the network and systems level to 
delineate potential drive mutations from the co-expressed modules. In addition, we plan to 
expand the  study  to  other  targeted  drugs  in  CCLE,  as  well  as  other  cancer  types.  The 
commonality between different cancer types may also suggest possible drug repurposing options. 
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Figure 2. OncoPrint for the CNV events of the 26 genes (the 27th gene could not be found in the 
database)  in  gene  module  25  of  the  responsive  group  in  230  TCGA  lung  adenocarcinoma 
patients generated by cBioPortal. 
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Figure 3. Relationship between expression levels and CNV measurements for C8ORF33. 

 

Left: the x-axis indicates patients with different status of CNVs. Right: The scatterplot between 
the expression levels and the CNV measurements. The Pearson correlation coefficient is 0.669. 
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Figure 4. Relationship between different gene pairs identified on the same cytobands. 

 

Left: C8ORF33 versus GPAA1, the Pearson correlation coefficient is 0.502. Right: AGO2 versus 
SCRIB. The Pearson correlation coefficient is 0.573. 
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