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The hypoxic microenvironment was recognized as a major driving force of the malignant phenotype in
hepatocellular carcinoma (HCC), which contributes to tumour immune microenvironment (TIM) remod-
eling and tumor progression. Dysregulated hypoxia-related genes (HRGs) result in treatment resistance
and poor prognosis by reshaping tumor cellular activities and metabolism. Approaches to identify the
relationship between hypoxia and tumor progression provided new sight for improving tumor treatment
and prognosis. But, few practical tools, forecasting relationship between hypoxia, TIM, treatment sensi-
tivity and prognosis in HCC were reported. Here, we pooled mRNA transcriptome and clinical pathology
data from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), and
later developed a hypoxia risk model including four HRGs (DCN, DDIT4, PRKCA and NDRG1). The high-risk
group displayed poor clinical characteristics, a malignant phenotype with carcinogenesis/proliferation
pathways activation (MTORC1 and E2F) and immunosuppressive TIM (decreased immune cell infiltrations
and upregulated immunosuppressive cytokines). Meanwhile, activated B cells, effector memory CD8 T
cells and EZH2 deregulation were associated with patient’s survival, which might be the core changes
of HCC hypoxia. Finally, we validated the ability of the hypoxia risk model to predict treatment sensitivity
and found high hypoxia risk patients had poor responses to HCC treatment, including surgical resection,
Sorafenib, Transarterial Chemoembolization (TACE) and immunotherapy. In conclusion, based on 4 HRGs,
we developed and validated a hypoxia risk model to reflect pathological features, evaluate TIM landscape,
predict treatment sensitivity and compounds specific to hypoxia signatures in HCC patients.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common can-
cer in men and the seventh in women worldwide, which causes
more than 700,000 deaths annually [1,2]. In 2021, the predicted
mortality rate of HCC ranks sixth among men and seventh among
women [2]. As a global high-risk cancer, HCC has a high mortality
rate due to a lack of effective treatment [3]. To date, surgery and
chemotherapy are still considered the first-line therapies for
HCC. Recent studies have shown that immunotherapy had been
successful in many advanced cancers, including advanced HCC
[4,5]. However, only some patients were sensitive to immunother-
apy, which might be assigned to the highly variable immune land-
scape in HCC patients. Thus, an in-depth understanding of the
tumour immune status in HCC is of great importance, to select sen-
sitive treatment and improve prognosis.

Hypoxia is an important factor to promote tumour cell prolifer-
ation and tumour progression. Meanwhile, hypoxia is related to
maintaining the malignant phenotype of tumour [6]. Recently,
the association between hypoxia and tumour microenvironment
(TME) has received increasing attention. Insufficient blood supply
is an inevitable phenomenon in tumour progression, which results
in hypoxia conditions [7,8]. Different from normal cells, tumour
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cells show the characteristics of evolution under a hypoxic envi-
ronment and develop into a more malignant tendency (i.e, exces-
sive proliferation, invasion and metastasis) [9]. The interaction
between hypoxia and TME has been confirmed in various cancers,
such as glioma, breast cancer, pancreatic cancer and lung cancer
[10–13]. In HCC, hypoxic microenvironment significantly corre-
lates with anti-apoptosis, hyperproliferation, tumour recurrence
and metastatic potential, inducing and maintaining malignant phe-
notype, consequently leading to poor prognosis [14,15]. Previous
evidence showed that hypoxia activates the PI3K/AKT signalling
pathway, which leads to cancer cell proliferation and
radiotherapy-resistance [16]. Besides, hypoxia activates the
PLAGL2-EGFR-HIF-1/2a signalling loop, promoting the progress of
HCC and reducing the sensitive response to the EGFR drug Erlotinib
[17]. Meanwhile, increasing evidence indicated hypoxia recon-
structs the tumour immune microenvironment (TIM), such as
decreased the proportion of immune cells (i.e, activated CD8 T cells
and NK cells) [18] and contributed to the expression of immuno-
suppressive cytokines (e.g., EZH2, CCL28, PDL1 and PD1) [18].
Although there was a tendency between hypoxia and tumour pro-
gression, few studies employed a practical hypoxia model to pre-
dict HCC progression, TIM reshaping and therapy sensitivity.

Here, we developed and validated a hypoxia risk model (includ-
ing four hypoxia-related genes DCN, DDIT4, PRKCA and NDRG1) to
reflect HCC TIM, predict prognosis, evaluate treatment sensitivity
and therapeutic compounds which may provide guidance for pre-
cise and effective HCC treatment in the future.
2. Materials and methods

2.1. Data acquisition

HCC RNA-seq transcriptome data and clinical information were
performed on five separate series. The first series consisted of 231
patients from ICGC (https://icgc.org/) as the training set. The sec-
ond dataset was obtained from TCGA (https://portal.gdc.can-
cer.gov/) including 377 patients as a validation set. Ninety-one
patients from GSE9843, 268 from GSE25097, and 225 from
GSE14520 were downloaded as other validation sets. We used
the ‘‘SVA” package in R for batch correction before data analysis
[20]. GSE6764 (75 patients), GSE109211 (140 patients), and
GSE104580 (147 patients) were included in the study to analyze
tumour progression, surgical resection, sorafenib and Transarterial
Chemoembolization (TACE) sensitivity. Information of patients,
including age, gender, and other information were concluded in
Tables 2–4.

Survival analysis of sorafenib treatment obtained from Kaplan-
Meier Plotter (https://kmplot.com/analysis/index.php?p=service&
cancer=liver_rnaseq). TCGA immunohistochemical pictures and
single-cell sequencing were obtained from the HPA database
(https://www.proteinatlas.org/). ImmuCellAI (http://bioinfo.life.
hust.edu.cn/ImmuCellAI#!/) was used to predict the patient’s
immunotherapy response [21,22]. Besides, the data from TCGA
and GEO databases are freely available to the public, and our
research also strictly followed access policies and publication
guidelines, therefore our study did not require ethical review and
approval from an Ethics Committee.
2.2. Hypoxia-risk model constitution

To quantify the effects of hypoxia, 200 hypoxia-related genes
were downloaded from Gene Set Enrichment Analysis (hallmark-
hypoxia). The differentially expressed hypoxia-related genes
(p < 0.05, |Log2-fold change (FC)| > 1) were analyzed by univariable
and multivariable Cox regression. Where N = 4, the model achieved
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the coefficients. The differentially expressed genes (DEGs) related
to hypoxia between normal and HCC were identified with limma,
an R package. The applied formula is as follows:

RiskScore ¼
XP

i¼1

ðCoefi� GeneiÞ
2.3. Gene set enrichment analyses (GSEA)

The GSEA analysis was performed by GSEA software (version
4.0.3). We utilized it to detect the difference in the set of genes
expressed between the high-risk and low-risk group in the enrich-
ment of the MSigDB Collection (h.all.v7.2.symbols.gmt). For each
analysis, gene set permutations were performed 1000 times.

2.4. Data analysis

Continuous variables were summarized as the mean ± standard
deviation (SD). Chi-square test was used to predict correlation of
gene and clinical traits. Differences between groups were com-
pared by the Wilcox test through R software. Different hypoxia
subtypes were compared by using the Kruskal–Wallis test. The
ConsensusClusterPlus software package in R software was used
for consistent clustering to determine the subgroup of HCC sam-
ples from GSE14520. The Euclidean squared distance metric and
the K-means clustering algorithm were used to divide the sample
into k clusters from k = 2 to k = 9. About 80% of the samples were
selected at each iteration, and after 100 iterations, the results were
obtained [23]. The results were presented in the form of heatmaps
of the consistencymatrix generated by heatmap R package, and the
optimal number of clusters was determined by the consistent
cumulative distribution function (CDF) graph.

We utilized Kaplan-Meier analysis to compare the overall sur-
vival (OS) between the high and low hypoxia risk groups via sur-
vival and survminer packages in R. The significance of survival
time differences was calculated using the log-rank test with a
threshold of p-value < 0.05. Univariate and multivariate analyses
of clinical pathology were performed with Cox regression and then
sought an independent risk factor for OS in HCC. To evaluate the
accuracy of the model, we utilized the receiver operating charac-
teristic (ROC) curve and calculated the AUC via the survival ROC
package in R.A Decision Curve Analysis (DCA) was employed to
evaluate the efficacy of using the complex model as a decision-
maker tool [24,25]. Also, the calibration curve was used to evaluate
the accuracy of the nomogram.

2.5. Estimation of immune cell type

We used the ssGSEA (single-sample gene-set enrichment anal-
ysis) algorithm to quantify the relative abundance of immune cell
infiltration. The gene set stores a variety of human immune cell
subtypes, such as activated CD8 T cells, activated dendritic cells,
NK cells, etc [26,27]. The enrichment score calculated by ssGSEA
analysis was used to indicate the relative abundance of immune
infiltrated cells in each sample.

2.6. Gene–gene interaction network and protein-protein interaction
(PPI) network

The gene-gene interaction network was structured by the Gene
Multiple Association Network Integration Algorithm (GeneMANIA;
https:// www.genemania.org/). STRING database (https://cy-
toscape.org/) was used to construct a protein–protein interaction
network (PPI).
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2.7. Identifying the potential inhibitors targeting the hypoxia
signatures

The Connectivity Map (CMap) is a database based on gene
expression developed by the Broad Institute, which is mainly used
to reveal the functional connection between small molecule com-
pounds, genes and disease states [28,29]. Both in ICGC and TCGA
database, the top 300 genes included 150 up-regulated genes and
150 down-regulated genes were queried in the CMap tools to
investigate therapeutic compounds for HCC. Compounds with an
enrichment score of less than �90 or more than 90 were selected
as potential inhibitors specific to hypoxia signatures.

2.8. Tissue microarray

We employed HCC tissue microarray (HLivH180Su10) from
ShGnghGi Outdo Biotech company, which containing 93 paired
HCC and paracancerous tissue to further confirm the relation
between genes, prognosis and clinical features (detail were shown
in Supplement Table 1). Antibody DCN (ab268048, Abcam, 1:200),
NDRG1 (ab124689, Abram, 1:500), DDIT4 (ab223034 Abcam,
1:100), PRKCA (ab32376, Abcam, 1:200) were used for IHC accord-
ing the instructions.
3. Result

3.1. Hypoxia risk signature to predict HCC prognosis

The whole research design was illustrated in Fig. 1. Total 200
hypoxia-related gene set was downloaded from Gene Set Enrich-
ment Analysis (hallmark-hypoxia). Forty-four differentially
expressed hypoxia-related genes (HRGs) (p < 0.05 and |logFc|>1)
were identified between normal and HCC patients in ICGC database
(Fig. 2A). Based on 44 differentially expressed HRGs, we performed
univariate cox analysis and found that 15 HRGs were significantly
associated with HCC patients’ overall survival (OS), including
NDRG1, SLC2A1, CA12, DDIT4, ALDOA, PRKCA, ANXA2, RRAGD, ALDOB,
PCK1, NEDD4L, FBP1, EFNA3, DCN and MT2A (Table 5). To better clar-
ify the relationship of these HRGs, we applied the STRING database
to perform PPI network analysis. Fourteen HRGs showed close
interaction degrees to each other (except EFNA3) (Fig. 2B). Later,
we performed multivariate Cox analysis, and four candidate genes
were chosen to build the model, which were NDRG1, DDIT4, PRKCA
and DCN (Fig. 2C, Table 6). The Risk-score formula was as follows:
RiskScore = (�0.14428 � DCN) + (0.18771 � DDIT4) + (0.36480 �
NDRG1) + (0.3727 � PRKCA). We separated patients into low-risk
and high-risk groups based on the median RiskScore.

3.2. Prognostic value of the 4 HRGs (NDRG1, DDIT4, PRKCA and DCN)

To explore the biological functions of these 4 candidate genes,
we applied the GeneMANIA database. Four candidate genes
showed an intimate interaction with each other (Fig. 2D). In pro-
tein expression profile (HPA database), NDRG1, PRKCA and DDIT4
were higher in HCC patients than that in normal patients, while
DCN was lower in HCC patients rather than normal liver tissue
(Fig. S1A). To verify the effectiveness of 4 HRGs in predicting prog-
nosis, we performed consistent clustering and identified two new
clusters based on DCN, DDIT4, NDRG1 and PRKCA expression
(GSE14520). The clustering outcome was stable when k = 2, which
appeared to fit with the selection based on clustering stability
increasing from k = 2 to 9 (Fig. S1 B-C). Principal component anal-
ysis (PCA) analysis showed that cluster analysis could successfully
divide HCC patients into two clusters (Fig. S1D). Meanwhile, the
heatmap showed that all these 4 HRGs were closely related to
2777
tumour progression indexes including tumour size and TMN stag-
ing (Fig S1E).

Subsequently, we employed a tissue microarray to evaluate the
relationship between protein expression level and OS (Fig. S3).
According to our database, we identified these genes that showed
different protein-expression in HCC (Fig. 2E). Then we divided
patients into a high protein-expression group and a low protein-
expression group based on the results of histochemistry. We found
that these 4 HRGs were closely related to HCC pathological features
(grade and stage). In the high DDIT4 expression group, patients
showed higher tumour stage and grade, which was consistent with
NDRG1 and PRKCA. However, the DCN low expression group
showed a more aggressive phenotype (higher stage and grade)
(Fig. 2F-G). Survival analysis showed patients in low DDIT4
(p < 0.001), NDRG1 (p < 0.001) and PRKCA (p < 0.001) expression
had significantly longer OS than those in the high-expression
group, while patients in the DCN high-expression group
(p < 0.001) had significantly longer OS than those in low-
expression group (Fig. 2H).

Therefore, the above results indicated that these four HRGs
(DCN, DDIT4, NDRG1 and PRKCA) can be used as prognostic
indicators.
3.3. Prognostic value and clinic pathological features of the hypoxia
risk model in HCC

To further explore the relationship between the hypoxia and
clinic pathological features, we examined 4 HRGs (DCN, DDIT4,
NDRG1 and PRKCA) in ICGA and TCGA databases. The boxplot
showed the expression of DDIT4, NDRG1 and PRKCA increased in
the high-risk group in both TCGA and ICGC cohort (Fig. 3A, D),
while the expression of DCN decreased in the high-risk group.
The results indicated that the high-risk group was more prevalent
accompanying a higher HRGs expression. Meanwhile, patients
with higher RiskScore had more deaths and worse survival in
both TCGA and ICGC cohorts (Fig. 3B, C, E, F). To further assess
the prognostic value of hypoxia risk model in HCC, we performed
a Kaplan-Meier analysis. In ICGC database, the results showed
patients in low NDRG1, PRKCA and hypoxia-risk had significantly
longer OS than those in the high expression and hypoxia-risk
group (p < 0.001, p = 0.002, p < 0.001). Meanwhile, patients in
high DCN expression had significantly longer OS than those in
the low expression (p = 0.044), while there was no difference in
the low- and high-expression group of DDIT4 (p = 0.192)
(Fig. 3G). In TCGA database, the result showed patients in low
NDRG1 and hypoxia-risk had significantly longer OS than those
in the high expression and hypoxia-risk group (p = 0.011,
p = 0.033), while there was no difference in the low and high-
expression group of DCN, DDIT4 and PRKCA (p = 0.352,
p = 0.356, p = 0.458) (Fig. 3H).

Considering the correlation among hypoxia, tumour tumorigen-
esis and progression, we tried to explore the relationships between
hypoxia RiskScore and clinicopathological features. ICGC cohort
showed that NDRG1 expression and hypoxia RiskScore were
significantly associated with tumour grade, as the hypoxia
RiskScore /gene expression increased with tumour grade. However,
DCN, DDIT4 and PRKCA expressions showed no significant relation-
ship with tumour grades. Secondly, it showed that NDRG1 and
hypoxia RiskScore were significantly associated with tumour
stage/T stage/vascular invasion. As the tumour stage/ T stage/
vascular invasion increased, the NDRG1 and hypoxia RiskScore /
gene expression elevated (Fig. 3I). Analogously, these results were
confirmed in TCGA database (Fig. 3J).

Therefore, a hypoxia-risk model closely correlated with progno-
sis, including survival, tumour progression in HCC.



Fig. 1. Establishment, verification, and application of hypoxia risk model.
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3.4. Validation of the hypoxia-risk model

To evaluate the predictive accuracy of the hypoxia-risk model in
the one-year, two-year, and three-year survival rate, the ROC curve
was performed in both ICGC (N = 231) and TCGA (N = 365) data-
base. In ICGC database, the area under the ROC curve (AUC) was
0.809 at one-year, 0.771 at two-year, 0.791 at three-year, which
indicated the accuracy and reliability of the model (Fig. 4A). Com-
pared to other factors (DCN, DDIT4, PRKCA, NDRG1, age, gender and
grade), the hypoxia-risk model had better performance in 1/2/3-
year AUC. Besides, risk-model and tumour stage showed similar
performance (Fig. 4A-B). In the TCGA database, the AUC of
hypoxia-risk model was 0.691 at one-year, 0.628 at two-year,
0.600 at three-year. Consistently, the hypoxia-risk model per-
formed better than other factors (DCN, DDIT4, PRKCA, NDRG1, age,
gender and grade) in 1/2/3-year AUC. Besides, risk-model and
tumour stage showed similar performance (Fig. 4D-E). The above
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results indicated hypoxia-risk model demonstrated profound accu-
racy and reliability to predict 1/2/3-year OS.

We further performed univariate and multivariate survival
analysis to evaluate the hypoxia-risk model using Cox regression
models. In the ICGC dataset, the univariate analysis showed that
the hypoxia RiskScore was significantly correlated with OS. Fur-
thermore, multivariate Cox regression analysis indicated that
hypoxia RiskScore was also closely related to OS in HCC patients
(Fig. 4C). This conclusion was further supported by the TCGA data-
base (Fig. 4F). Therefore, hypoxia-risk model can be identified as an
independent prognostic parameter for HCC.

3.5. Hypoxia-risk model to identify HCC tumorigenesis and progression

To identify the efficacy of hypoxia-risk model to distinguish
HCC patients from normal patients, we performed a boxplot and
identified higher AFP/DDIT4/NDRG1/PRKCA expression, hypoxia



Fig. 2. Characterization of hypoxia to predict prognosis of HCC. (A) Deviation plot of 44 differentially expressed hypoxia-related genes (p < 0.05, |logFc|>1); (B) Protein-
Protein Interaction interactions among 15 hypoxia-related genes filtered by univariate Cox regression; (C) Construction of a hypoxia-risk model to predict HCC prognosis by
multivariate Cox regression; (D) Correlation analysis of four hypoxia genes from GeneMANIA; (E) Immunohistochemistry of DCN/DDIT4/NDRG1/PRKCA in tissue microarray
(1� and 40�); (F–G) Relationship between DCN/DDIT4/NDRG1/PRKCA and clinical characteristics in tissue microarray; (H) Kaplan-Meier analysis of DCN/DDIT4/NDRG1/PRKCA
in tissue microarray.
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Fig. 3. Prognostic value of the hypoxia risk model in HCC. (A/F) Boxplots showing four hypoxia-related genes expression profiles in high- and low-risk group from ICGC (A)
and TCGA (F) database; (B/E) Patient status distribution in the high- and low-risk group from ICGC (B) and TCGA (E) database; (C–F) Mortality rates of the high- and low-risk
group in ICGC (C) and TCGA (F) database; The red dot presents death; the green dot presents alive. (G/H) Overall survival curves for patients with high RiskScore and low
RiskScore in ICGC (G) and TCGA database (H); (I–J) The expression levels of DCN/DDIT4/NDRG1/PRKCA/RiskScore in HCV-HCC with different clinical characteristics in ICGC (I)
and TCGA (J) database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Validation of hypoxia risk model in HCC. (A-B) ROC curves of ICGC cohort. From left to right: ROC curves showing the predictive accuracy on the one-year, two-year,
and three-year survival rate; ROC curves of a single gene on the one-year, two-year, and three-year survival rate; (B) ROC curves of different clinical characteristics on the
one-year, two-year, and three-year survival rate; (C) Univariate and Multivariate analyses in ICGC cohort. Left: Univariate analyses evaluating hypoxia signature in terms of
OS in HCC patients; Right: Multivariate analyses evaluating the hypoxia signature in terms of OS in HCC patients; (D-E) ROC curves of TCGA cohort. From left to right: ROC
curves showing the predictive accuracy on the one-year, two-year, and three-year survival rate; ROC curves of a single gene on the one-year, two-year, and three-year
survival rate; (B) ROC curves of different clinical characteristics on the one-year, two-year, and three-year survival rate; (F) Univariate and Multivariate analyses in TCGA
cohort. Left: Univariate analyses evaluating hypoxia signature in terms of OS in HCC patients; Right: Multivariate analyses evaluating the hypoxia signature in terms of OS in
HCC patients; (G-H) Boxplot and ROC curves (from left to right) of hypoxia-risk model in ICGC (G) and TCGA (H) cohort to distinguish normal and HCC patients; (J) Boxplot
and ROC curves (from left to right) of hypoxia-risk model in GEO cohort to distinguish Normal, Early-HCC, Medium HCC and Advanced-HCC patients.
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RiskScore and lower DCN expression in HCC group of ICGC
database. Later, the ROC curve was performed to evaluate the
accuracy and reliability of hypoxia-risk model. The results showed
hypoxia-risk model (AUC = 0.919) had better performance than
regular factor AFP (AUC = 0.583) (Fig. 4G). Meanwhile, we repeat-
edly confirmed these results in TCGA cohort (hypoxia-risk
model:0.970; AFP:0.710) (Fig. 4H).

To identify whether our model can distinguish HCC progression,
we checked AFP/DCN/DDIT4/NDRG1/PRKCA expressions and
hypoxia RiskScore in patients with different HCC statuses including
Early/Medium/Advanced HCC (GSE6764). The boxplot showed that
hypoxia RiskScore gradually increased in process of Normal-Early
HCC-Medium HCC-Advanced HCC. Subsequently, the ROC curve
was performed to evaluate the accuracy and reliability of
hypoxia-risk model, which had better performance than other
indicators (DCN, DDIT4, NDRG1, PRKCA and AFP) (Fig. 4I). Based
on above results, hypoxia-risk model could successfully distinguish
different disease states during HCC development.

3.6. GSEA signaling pathways and predicting OS

To find the possible pathway involved in hypoxia, HCC patients
were divided into 2 groups to perform GSEA according to hypoxia
RiskScore. We took the intersection of the enriched pathways
obtained from ICGC, TCGA and GEO databases. Gene sets enriched
in the high-risk groups were tumour proliferation in the ICGC data-
base, such as MTORC1 signalling pathways, PI3K-AKT-MTOR sig-
nalling, E2F targets, and DNA repair signalling pathways (Fig. 5A,
Table 7). For instance, activation of both MTORC1 signalling path-
ways leads to increased cell proliferation and decreased apoptosis,
which finally may contribute to immune cell deficiency because of
persistent immune activation [30]. All those activated pathways
were proved to be associated with tumour progression and anti-
apoptosis. These results were further validated in the TCGA data-
base (Fig. 5B) and the merging GEO database (Fig. 5C).

Based on ICGC database, we built a nomogram combining
meaningful clinical characteristics and hypoxia risk model
(Fig. 5D). The DCA found that the complex model was more mean-
ingful for predicting clinical survival than the simple model, and
our hypoxia model was more effective than other single clinical
traits in predicting patients’ prognosis (Fig. 5E). And c-index of
the complex model was 0.791. The calibration curve confirmed
that the nomogram was more reliable for predicting the survival
rate of patients at 1, 2, and 3 years (Fig. 5F). All these results indi-
cated a more reliable predictive ability of our hypoxia-related
model which can be applied to the clinical area.

3.7. Tumour immune landscape between low and high hypoxia risk
HCC patients

To explore the tumour immune landscape among low and high
hypoxia-risk groups, we performed ssGSEA. The heatmap of each
patient was shown in Fig. S2. Compared to low-risk patients,
high-risk patients showed fewer immune cell infiltration in ICGC
cohort, such as activated B cells, activated CD8 T cells, effector
memory CD8 T cells, NK cells, CD56bright NK cells, CD56dim NK cells,
etc. (Fig. 6A, S2A). Analysis of the correlations among the immune
cells showed MDSC and regulatory T cells showed the most posi-
tive correlation (R = 0.92). Meanwhile, the results showed that
there is a close relationship between a variety of immune cells
(dendritic cells, B cells, T cells, etc.), such as effector memory
CD8 T cells & activated B cells (R = 0.83) (Fig. 6B).

Subsequently, we explored the relationship between our model
and immunosuppressive cytokine expression. Based on previous
research, we downloaded Cancer-Immunity Cycle associated
immunosuppressive cytokines from the Tracking Tumour
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Immunophenotype website [31]. The boxplot showed that genes
involving the negative regulation of the Cancer-Immunity Cycle
were mostly upregulated in the high-risk group (Fig. 6C, S2B), indi-
cating that patients had low activities of the Cancer-Immunity
Cycle. The correlations among the immunosuppressive cytokines
showed ARG1 and VEGFA appeared to have the most negative cor-
relation (R = �0.33), while CD48 and BTLA were the most positive
correlation (R = 0.85, Fig. 6D). Besides, ssGSEA also revealed lower
ImmuneScore, StromaScore and MicroenvironmentScore, which
were closely associated with high hypoxia-risk group (Fig. 6E).

Taken together, the data proved high hypoxia-risk group was
closely related to HCC immunosuppressive TIM. The conclusion
was also confirmed in TCGA cohort (Fig. 6F-J, S2C, D).

3.8. Hypoxia risk model indicates survival-related immune cells and
immunosuppressive cytokines

To further explore the relationship between immune landscape
and OS, we performed a Kaplan-Meier analysis. In ICGC cohort, the
result showed that patients with decreased activated B cells
(p = 0.002) /effector memory CD8 T cells (p = 0.002) were associ-
ated with worse OS. Meanwhile, patients with higher expression
of DNMT1 (p = 0.047) /EZH2 (p < 0.001) were associated with worse
OS (Fig. 6K). Analogously, in TCGA cohort the result also showed
that patients with less activated B cells (p = 0.016) / effector mem-
ory CD8 T cells (p = 0.031) were associated with worse OS. Besides,
patients with higher expression of DNMT1 (p = 0.025) / EZH2
(p < 0.001) were related to worse OS (Fig. 6L).

Based on HPA database, single-cell sequencing in liver showed
DNMT1 and EZH2 are enriched in T cells and B cells (Fig. 7A). There-
fore, we hypothesized that immune cells and immunosuppressive
cytokines work together to influence patient outcomes. To explore
the relationship between OS-related factors (activated B cells,
effector memory CD8 T cells, DNMT1 and EZH2), we performed
the logistic regression analysis. The results showed activated B cell
infiltration (ICGC: R = �0.6, p < 2.2e�16; TCGA: R = �0.21,
p = 1.3e�05), effector memory CD8 T cell infiltration (ICGC:
R = �0.61, p < 2.2e�16; TCGA: R = �0.26, p = 5.5e�08), DNMT1
expression (ICGC: R = 0.4, p < 2.2e�16; TCGA: R = 0.54,
p < 2.2e�16), EZH2 expression (ICGC: R = 0.69, p < 2.2e�16; TCGA:
R = 0.61, p < 2.2e�16) were significantly associated with hypoxia
RiskScore. As the RiskScore increased, activated B cell infiltration
and effector memory CD8 T cell infiltration decreased, EZH2
expression and DNMT1 expression elevated (Fig. 7 B-C). Mean-
while, we found EZH2 expression was significantly associated with
activated B cell infiltration (ICGC: R = �0.31, p = 4.6e�11; TCGA:
R = �0.2, p = 5e�05) and effector memory CD8 T cell infiltration
(ICGC: R = �0.33, p = 6.5e�13; TCGA: R = �0.34, p = 1.3e�12). How-
ever, DNMT1 expression has no connection with activated B cell
infiltration and effector memory CD8 T cell infiltration both in ICGC
and TCGA database (Fig. 7 D-E).

Taken together, these results indicated activated B cells, effector
memory CD8 T cells and EZH2 may form a TIM regulating system
contributing to HCC TIM remodeling, which might be potential
new targets for HCC therapy.

3.9. Model predicts the HCC treatment effectiveness and therapeutic
compounds

Surgical resection, Sorafenib and Transarterial chemoemboliza-
tion (TACE) are traditional proved approaches for HCC treatment,
and immunotherapy emerges as a new promising approach for
HCC. Therefore, we explored whether hypoxia risk model could
predict Sorafenib, Biostorm (Surgical resection plus sorafenib)
and TACE treatment sensitivity in HCC. To assess the relationship
between progression-free survival (PFS) and RiskScore after sorafe-



Fig. 5. GSEA enrichment between low- and high-risk groups. (A-C) GSEA showing that enriched hallmarks in ICGC (A), TCGA (B) and GEO (C) cohort. Left: Hallmarks enrich in
high-risk group; Right: Hallmark enrich in low-risk group; Normalized enrichment score (NES) > 1 and nominal p-value (NOM p-Val) < 0.05 were considered significant gene
sets. (D) Multivariate nomogram predicts survival rate in HCC patients; (E) Decision Curve Analysis (DCA) curves of the nomogram for 1-, 2- and 3-year OS prediction in HCC
to evaluate the clinical decision-making benefits of the nomogram; (F) Calibration curve for nomogram.

F. Zeng, Y. Zhang, X. Han et al. Computational and Structural Biotechnology Journal 19 (2021) 2775–2789

2783



Fig. 6. Immune landscape between low and high hypoxia risk HCC patients. (A/F) Boxplots visualizing the difference of immune cell infiltration between high-risk group and
low-risk group in ICGC (A) and TCGA (F) database. * P < 0.05, ** P < 0.01, *** P < 0.001; (B/G) Correlation analysis of immune cells from ICGC (B) and TCGA (G) database; (C/H)
Boxplots visualizing the difference of immunosuppressive cytokines between high-risk group and low-risk group in ICGC (C) and TCGA (H) database. * P < 0.05, ** P < 0.01, ***
P < 0.001; (D/I) Correlation analysis of immunosuppressive cytokines from ICGC (D) and TCGA (I) database; (E/J) Boxplots showing relationship between RiskScore and
immune microenvironment scores in ICGC (E) and TCGA database (J); (K/L) Kaplan–Meier analysis of immune cell infiltration/immunosuppressive cytokines for OS between
high-risk group and low-risk group in ICGC (K) and TCGA (L) database.
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nib therapy, we performed a Kaplan-Meier analysis and found
high-risk group had a shorter recurrence time and poor prognosis
compared with low-risk group (Fig. 7F). For Biostorm therapy, the
results showed significantly upregulated DDIT4, NDRG1, and PRKCA
expression and RiskScore in non-response group, while DCN
showed no difference between non-response and response group
(Fig. 7G). Meanwhile, the result showed TACE non-response group
had a higher hypoxia RiskScore than the TACE response group.
Besides, significantly upregulated DDIT4, NDRG1, and DCN expres-
sions were also observed in non-response group, while PRKCA
showed no difference between non-response and response group
(Fig. 7H).

Based on above results indicated our model might predict HCC
TIM, we further consider whether this model could predict the
patient’s response to immunotherapy. Previous studies have
shown that the ImmunCellAI website could be employed to predict
HCC patient’s response to immunotherapy [21], we explored
whether if our model had consistent ability. The results showed
DCN, NDRG1, PRKCA, and RiskScore significantly upregulated in
immunotherapy non-response group, while DDIT4 showed no dif-
ference between non-response and response group (Fig. 7I). This
phenomenon may be on account that hypoxia can produce
immunotherapy resistance by regulating multiple pathways (such
as WNT/NOTCH/EMT pathway) and stimulating immune cells to
2784
secrete multiple cytokines (such as TGF-b, IL4 and IL6) [32]. Mean-
while, based on CMap database, the results showed that Celastrol
and BW-B70C may serve as therapeutic compounds for HCC
(Fig. 7J).

Besides, to explore our model whether be of value for other
tumors, we performed a pan-cancer analysis. Compared with
HCC, the results showed model-related genes (DCN, DDIT4, NDRG1
and PRKCA) change significantly in cervical squamous cell carci-
noma and endocervical adenocarcinoma (CESC), head and neck
squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD)
and uveal melanoma (UVM) with similar trends (Fig. S4A). For
above cancers, fewer hypoxia models were reported to predict
prognosis and treatment approaches. We performed a survival
analysis, and results showed our model had a great ability in pre-
dicting patients’ survival status (Fig. S4B). Therefore, this model
could provide effective predictions for CESC, HNSC, LUAD, UVM
and HCC diagnosis and treatment.
4. Discussion

Although therapeutic level of HCC has exhibited continuous
improvement, HCC keeps high mortality because of scarce specific
symptoms for early diagnosis, common therapy resistance and low



Fig. 7. Immune microenvironment prediction and therapy prediction. (A) Single-cell sequencing showing relationship between DNMT1/EZH2 and immune cells based on HPA
database; (B-C) Diagram showing the correlation between RiskScore and activated B cell infiltration/effector memory CD8 T cell infiltration / DNMT1/ EZH2 in ICGC (B) and
TCGA (C) database; (D-E) Diagram showing the correlation between activated B cell infiltration/effector memory CD8 T cell infiltration and DNMT1/ EZH2 in ICGC (D) and TCGA
(E) database; (F) Recurrence-free survival time after sorafenib treatment between high- and low-risk groups; (G) RiskScore and 4 hypoxia-related genes’ expression (DCN,
DDIT4, NDRG1, PRKCA) between sorafenib non-response group and sorafenib response group; (H) RiskScore and 4 hypoxia-related genes’ expression (DCN, DDIT4, NDRG1,
PRKCA) between TACE non-response group and TACE response group; (I) RiskScore and Four hub genes’ expression (DCN, DDIT4, NDRG1, PRKCA) between immunotherapy non-
response group and immunotherapy response group; (J) Connectivity map analysis (CMap) showing potential inhibitors targeting the HCC hypoxia signatures.
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immunotherapy response. Up to now, HCC diagnosis mainly relies
on imaging examination and liver biopsy, which lacks ability to
precisely assess disease status, evaluate TIM and predict treatment
sensitivity. Therefore, a convenient assessment model to evaluate
prognosis and treatment sensitivity is urgently needed.

Substantial data suggest that hypoxia is involved in promoting
tumorigenesis [33], progression [34], and maintenance of malig-
nant phenotype [35]. For example, the pressure of hypoxia pro-
vides an adaptation process of tumour cells reprogramming,
contributing to proliferation, migration and invasion [36–38].
Studies also confirmed that hypoxia plays an important role in
reprogramming TIM [39–42]. Given the crucial role of hypoxia in
tumour progression, a hypoxia-signature model was established
that could understand latent molecular mechanisms and improve
prognosis in HCC.

Here, we established a hypoxia-risk model based on 4 HRGs
(NDRG1, PRKCA, DDIT4, and DCN) filtered by ICGC database. In
our patient microarray, we found these 4 HRGs closely related to
HCC progression and prognosis. Decorin (DCN) expressing in
fibroblast and myofibroblasts, acts as a soluble pan-receptor tyro-
sine kinase inhibitor and negatively regulates kinds of growth fac-
tor receptors to impede tumorigenesis [43]. DNA damage-
inducible transcript 4 (DDIT4) is a key mediator of the MTOR path-
way and promotes tumour growth [44]. N-myc downstream regu-
lated 1(NDRG1) engages in a loop between cancer-associated
fibroblast and FOXQ1/NDRG1 axis, which contributes to HCC initia-
tion [45]. Moreover, protein kinase C alpha (PRKCA) is combined
with DNAJB1, subsequently increases cAMP-dependent protein
kinase (PKA) activity, and eventually triggers and potentiates HCC
formation [46]. Therefore, we tried to establish hypoxia risk model
consisted of these four HRGs (NDRG1, PRKCA, DDIT4, and DCN), and
tested them in a large-scale patient sequence. Compared with a
single gene, our risk model showed profound ability in predicting
tumour pathological features (tumour grade, stage, vascular inva-
sion and progressive classification) and patients’ prognosis.

Except for driving HCC malignant progression (44), hypoxia
protects tumour cells from identification and elimination by the
host immune system, ultimately contributing to tumour escape
and immune resistance [42]. For example, T cells and NK cells play
the most important role in potent antitumour immunity. Hypoxia
directly downregulated PTPROT expression in HCC-infiltrating T
cells, which decreased T effector cell quantity and increased Treg
differentiation [47]. Besides, HIG2 activates the STAT3 signalling
pathway under hypoxia conditions, which promotes IL-10 release
and ultimately inhibits NK cell killing activity [19]. Consistent with
previous reports, our hypoxia-risk model can distinct different TIM
characterizations. The ssGSEA indicated low-risk group was char-
acterized by the activation of immunity, corresponding to
immune-activated phenotype. High-risk group was characterized
by the suppression of immunity, corresponding to immune-
desert phenotype. We further detected the correlations between
different cell types and found MDSC and regulator T cells appeared
to have a high positive correlation in ICGC (R = 0.92) and TCGA
database (R = 0.89). Meanwhile, the results showed most of the
correlation coefficients between various immune cells in the
immune system are>0.3, such as effector memory CD8 T cells &
activated B cells (R = 0.83).

Meanwhile, NK cells are important immune cells in the body
and are the core cells of the natural immune system. They are
mainly distributed in the peripheral blood, liver and spleen
[48,49]. According to the expression level of CD56, the surface
molecule of NK cells, it can be divided into two important func-
tional subtypes: CD56dim NK cells and CD56bright NK cells [50,51].
In terms of function, CD56dim NK cells are mainly cytotoxic and
have stronger killing activity. CD56bright NK cells can produce a
large number of cytokines, which mainly play a role in immune
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regulation [52,53]. The liver is an important immune organ of
the body, CD56bright NK cells are the dominant NK cell subtype,
which mainly secrete IFN, TNF, IL-10, IL-13 and GM-CSF to kill tar-
get cells and play a role in immune regulation [54,55]. Previous
evidence suggested that the imbalance of NK cells plays an impor-
tant role in the development and progression of HCC [56–59].
Therefore, we used the hypoxia model to explore changes in NK
cell subtypes in the liver. Integrating the results of TCGA and ICGC
database, it was found that the total number of NK cells and
CD56bright NK cells showed a decreasing trend. Meanwhile, the
infiltration of natural killer T cells (NKT cells) also showed a down-
ward trend. At present, tumor immunotherapy mainly focuses on
NK cells and T cells to enhance the recognition of tumor surface
antigens and prevent tumor immune escape [60,61]. The main rea-
son why the immunotherapy effect of HCC has not reached the
ideal effect is the heterogeneity of patients and the immune escape
[19,57,62,63]. These results suggest that our model can also be
used to distinguish immune cell subtypes and immune microenvi-
ronments in different patients, which may facilitate the selection
of immunotherapy methods in the future.

Besides, immune cytokines also play an important role in
tumour immune microenvironment remodelling [64].In both ICGC
and TCGA databases, increased immunosuppressive cytokines
(CCL28, DNMT1, EZH2, SMC3 and VEGFA) were identified in high-
risk group, which might directly or indirectly regulate immune
cells. The above results indicated hypoxia serves as a predominate
reshaped TIM as an organism rather than simply changing a single
or small portion of immune cells. Meanwhile, different immune
cells also interact with each other to determine the overall immune
environment via direct contact and cytokines paracrine, which fur-
ther contributes to suppressive immune status.

Subsequently, survival and correlation analysis indicated acti-
vated B cells, effector memory CD8 T cells and EZH2 might be the
core change factors in hypoxia TIM reshaping. Effector memory
CD8 T cell is an important subtype of T cell. Previous reports have
confirmed that effector memory CD8 T cells can prolong the sur-
vival time of patients by secreting IL-33 [65]. Besides, previous
studies showed densities of both T and B cells are associated with
HCC patient survival, and interaction between T cells and B cells is
critical in the activation of immune response and controlling
tumour progression [66–69]. Enhancer of zeste 2 polycomb repres-
sive complex 2 subunit (EZH2) could mediate trimethylation on
histone 3 lysine 27 (H3K27me3). Abnormal activation of EZH2
reshaped TIM, influencing tumour cell growth, patients’ survival,
and tumour metastasis [70–72,75]. Therefore, less activated B
cell/effector memory CD8 T cell infiltration and high expression
of EZH2 may be the core factors in creating immunosuppressive
tumour microenvironments, which may induce tumour immune
escape and immunotherapy resistance.

HCC therapies mainly include chemotherapy, surgery and
immunotherapy. Sorafenib, as a first-line drug for HCC, directly tar-
get MAPK/ERK pathway, VEGF receptor tyrosine kinase signalling
and other targets, which inhibit tumour growth through antiprolif-
erative and antiangiogenic [73]. In our research, we explored the
efficacy of hypoxia risk model in predicting sorafenib sensitivity.
The results showed patients with high RiskScore were more fre-
quent in sorafenib resistance. Meanwhile, patients in high-risk
group had limited response both in Biostorm (Surgical resection
plus sorafenib) and TACE treatment compared with those in low-
risk group. Immunotherapy is now recognized as the most promis-
ing therapy for cancer. However, the biggest problem is to effec-
tively and precisely distinguish the immunotherapy sensitivity of
patients. Since hypoxia model could evaluate TIM and prognosis
in HCC, we further explored whether hypoxia-risk model could be
employed for evaluating HCC treatment sensitivity. Compared to
immunotherapy response patients, results showed immunotherapy
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no-response HCC patients had a higher RiskScore. This phe-
nomenon may be on account that most of the immune cells of the
high-risk group showed a significant decline, and the prerequisite
for immunotherapy is to have a sufficient amount of immune cell
infiltration, which may be the main reason why the high-risk group
shows low response to immunotherapy. Combining the analysis of
immune microenvironment and previous studies, it suggested that
this may be due to the decreased infiltration of immune cells, such
as activated B cell, effector memory CD8 T cells, activated CD8 T
cells and NK cells [74]. Meanwhile, we identified hypoxia signa-
tures and candidate compounds (Celastrol and BW-B70C) targeting
HCC from the CMap database. Besides, the pan-cancer analysis indi-
cated that our model can also be used to predict survival for other
cancers, such as CESC, HNSC, LUAD and UVM.

In summary, the hypoxia model that we constructed through
the ICGC and TCGA databases showed great ability in predicting
HCC progress and prognostic. Firstly, the model we constructed
can accurately predict pathological features (TMN stage, grade,
and vascular invasion), progression (early, medium and advanced
stages) and prognostic survival status. Secondly, this hypoxia
model could evaluate the tumor immune microenvironment status
of HCC patients and find possible targets for the treatment of HCC
(activated B cells, effector memory CD8 T cells and EZH2). Thirdly,
this model could also be used to evaluate therapy sensitivity of
HCC (such as chemotherapy, surgery and immunotherapy). Finally,
we screened out two possible drugs (Celastrol and BW-B70C) for
the treatment of HCC. Therefore, this hypoxia model could provide
powerful insights for future treatment options by evaluating the
specific conditions of HCC patients.

At the same time, the hypoxia model also has its limitations.
Firstly, the underlying mechanism of the therapeutic targets (acti-
vated B cells, effector memory CD8 T cells and EZH2) obtained
through model evaluation is not yet clear. Whether there were
specific pathways between these targets and the upstream and
downstream regulation mechanism still need to further explore.
Secondly, the drugs (Celastrol and BW-B70C) we screened out
through the model still need to be experimentally explored in
the future.
5. Conclusion

In conclusion, we developed and validated a prognostic and
treatment sensitivity model based on hypoxia risk in HCC. Firstly,
this hypoxia risk model included four hypoxia-associated genes
that could serve as an independent prognostic factor for HCC
patients. Secondly, this model could reflect the tumour immune
landscape within the cancerous tissue. The research also indicated
activated B cells, effector memory CD8 T cells and EZH2 might be
the core change factors in hypoxia TIM remodeling, which pro-
vided a possible treatment target for HCC patients with high
hypoxia risk. Besides, our model also predicted therapy sensitivity
(such as chemotherapy, surgery and immunotherapy) and thera-
peutic compounds (Celastrol and BW-B70C), which may guide
hypoxia-targeted therapies for HCC patients in the future.
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