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Abstract The use of fungal entomopathogens as

microbial control agents has driven studies into their

ecology in crop ecosystems. Yet, there is still a lack of

understanding of the ecology of these insect pathogens

in semi-natural habitats and communities. We review

the literature on prevalence of fungal entomopatho-

gens in insect populations and highlight the difficulties

in making such measurements. We then describe the

theoretical host-pathogen models available to examine

the role that fungal entomopathogens could play in

regulating insect populations in semi-natural habitats,

much of the inspiration for which has been drawn from

managed systems, particularly forests. We further

emphasise the need to consider the complexity, and

particularly the heterogeneity, of semi-natural habitats

within the context of theoretical models and as a

framework for empirical studies. We acknowledge that

fundamental gaps in understanding fungal entomo-

pathogens from an ecological perspective coupled with

a lack of empirical data to test theoretical predictions is

impeding progress. There is an increasing need,

especially under current rapid environmental change,

to improve our understanding of the role of fungi in

insect population dynamics beyond the context of

forestry and agriculture.

Keywords Pathogen population dynamics �
Theoretical modelling � Epizootiology �
Fungal entomopathogens � Entomophthorales �
Hypocreales � Non-pest insects

Introduction

Fungal entomopathogens are diverse and globally

ubiquitous natural enemies of arthropods. There has

been considerable research focus on their potential as

microbial control agents (e.g. Goettel et al. 2005, 2008;

Pell 2007; Vega et al. 2009; Hajek and Delalibera

2009; Jaronski 2009; Pell et al. 2009). Indeed, they are

considered to have been instrumental in the advent of
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modern microbial control (Steinhaus 1949; Burges and

Hussey 1971; Krassilstchik 1888; Vega 2008) and our

knowledge of fungal ecology in crop ecosystems has

largely been driven by applied studies assessing their

potential for microbial control. There is no doubt that

such studies have provided fundamental information

on the host-fungus relationship. However, there are

still profound gaps in our understanding of their

ecology particularly in semi-natural or minimally

managed systems both in terrestrial and aquatic

environments (Johnson et al. 2006; Stentiford et al.

2001; Roy and Cottrell 2008; Roy et al. 2009). The role

of pathogens as natural enemies of non-pest insects,

including those of conservation value, is seldom

considered beyond their context as ‘non-targets’ of

microbial control agents (Roy et al. 2009). It is possible

that fungal pathogens are playing a hitherto undetected

role in documented declines of some insect species

(Balmford et al. 2005; Roy and Cottrell 2008). In this

review we consider the literature on prevalence of

fungal entomopathogens in populations of insects in

crop and semi-natural habitats. We then examine the

insights provided by ecological models in exploring

the role fungi may play in regulating host populations.

As much of the inspiration for this work is drawn from

forest ecosystems and, due to the paucity of data

available from semi-natural ecosystems, we highlight

those studies in managed systems that are also

particularly relevant to insect populations in semi-

natural habitats.

There are over 700 species of fungal entomopath-

ogens and these are broadly found within two main

groups: phylum Ascomycota (subkingdom Dikarya)

and the order Entomophthorales (Hibbett et al. 2007;

Humber 2008; Blackwell 2009). Within the Ascomy-

cota there are two major orders that contain entomo-

pathogens: Hypocreales (class: Sordariomycetes;

subclass: Hypocreomycetidae) and Laboulbeniales

(class: Laboulbeniomycetes) (Hibbett et al. 2007).

The Hypocreales have both sexual (teleomorph) and

asexual (anamorph) forms although most research has

focused on the anamorphs. Anamorphic hypocrealean

fungi are considered to be generalist pathogens with

broad host ranges and even switching between path-

ogenic and saprophytic lifestyles (Blackwell 2009).

The Laboulbeniales (Ascomycota: Laboulbeniaceae)

are a group of obligate ectoparasitic fungi that are

mainly associated with Coleoptera and do not cause

death of their hosts (Weir and Hammond 1997; Roy

and Cottrell 2008). The Entomophthorales are all

obligate arthropod pathogens historically placed

within the phylum Zygomycota but likely to be

elevated to a distinct subphylum named Entomoph-

thoramycotina pending resolution of clades from the

Zygomycota (Hibbett et al. 2007). Microsporidia are

now known to be highly specialised obligate intracel-

lular fungi, closely aligned to the Entomophthorales

(Keeling and Fast 2002; Humber 2008) and infecting a

diverse array of vertebrate and invertebrate hosts.

However, the Laboulbeniomycetes are all associated

with insects or other arthropods mostly as biotrophic

parasites (Blackwell 2009). There are a number of

detailed studies examining the ecological interactions

of microsporidia with their hosts particularly in forest

Lepidoptera systems (Hoch et al. 2000, 2008; Pilarska

et al. 2006; Solter 2006; Solter and Becnel 2007). We

will only consider microsporidia superficially in this

manuscript; the recent literature on this group is worthy

of an entire ecological review. However there are

undoubtedly conceptual parallels between this intrigu-

ing group of fungi and the others that are described in

detail here.

Although the taxonomy of fungal entomopatho-

gens is undergoing significant change, their basic

biology and general life history attributes are well

understood. All fungal entomopathogens produce

infective conidia (spores) that attach to, germinate,

and penetrate the cuticle (or digestive tract) of their

host. Inside the host they proliferate as single- or

multi-celled structures (protoplasts, blastospores,

hyphal bodies), usually killing the host and producing

either more infective conidia for immediate trans-

mission or resting structures (sexual or asexual

resting spores, chlamydospores, mummified hosts)

for persistence in the environment (Roy et al. 2006;

Pell et al. 2001; Table 1; Fig. 1).

Abiotic and biotic conditions strongly influence key

components of fungal activity and fitness including

transmission efficiency and persistence within and

outside the host (Fuxa and Tanada 1987; Fig. 1).

Humidity in excess of 90% in the microenvironment

surrounding fungi is required for germination, infec-

tion, and sporulation (e.g. Inglis et al. 2001; Wilding

1969) and is considered to be the most critical

environmental factor influencing the development of

epizootics (Fuxa and Tanada 1987; Hall and Papierok

1982). Ambient temperatures affect speed of germi-

nation, growth and kill. There is an inverse relationship
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between speed of kill and temperature although overall

mortality may not be affected (Ekesi et al. 1999;

Thomas and Blanford 2003). Solar radiation is detri-

mental to persistence, particularly on the phylloplane

where fungi can be rapidly deactivated (e.g. Fargues

et al. 1996; Furlong and Pell 1997).

The detailed ecology, physiology and life cycles of

each species within these groups can be exceedingly

varied reflecting adaptations to ensure survival and

transmission despite the environmental constraints

(Pell et al. 2001; Roy et al. 2006; Table 1). However,

it is possible to generalise for taxonomically related

species/groups. Entomophthoralean fungi demon-

strate a continuum of adaptations for dispersal and

transmission. They exhibit dispersive, actively dis-

charged conidia produced externally after host death

through to sporulation from living hosts prior to host

death which is particularly noted in species which

require continued host activity to ensure conidia

dispersal (Pell et al. 2001; Roy et al. 2006; Table 1;

Fig. 1). Species in the Entomophthorales do not

generally produce toxins (secondary metabolites) as

part of the infection cycle but are characteristically

biotrophic with a narrow host range and are common

among foliar arthropods (Pell et al. 2001; Shah et al.

2004; Table 1). Eilenberg and Pell (2007) list a

number of host-pathogen systems in which the

ecology of Entomophthorales has been discussed.

2a)

Below Ground

Above Ground

2c)

1a)

1b)

Soil Surface

1c)

1d)

1e)

Influenced by  
RH, temperature

1f)

2d)

2b)

2e)

Fig. 1 Entomopathogenic fungi and their hosts exist in a

complex landscape influenced by multi-trophic relationships

within the community and modulated by abiotic factors.

Environmental change, particularly the arrival of new species

(either host or fungus), climate change, habitat fragmentation

and/or alteration will have differential effects across this

community. Arrow size indicates the direction of interaction

that is likely to be greatest in semi-natural habitats. 1a) an

insect host contacts infective spores which b) germinate and

penetrate the host eventually killing it, c) the sporulating

cadaver releases spores for further cycles or d) often (in the

case of Entomophthoralean fungi) when the number of

susceptible hosts decreases resting spores are produced which

survive in the soil and produce infective spores under

favourable conditions and e) alternative hosts, often taxonom-

ically related to the primary host, may be infected and produce

spores that also infect primary hosts f) Conidia can be

transported in wind currents, in infected hosts and on the

surfaces of non-host invertebrates to other habitats. 2a)

Conidia/resting spore distribution and persistence at the soil

surface will be influenced by abiotic factors such as rainfall

that influence horizontal transmission by promoting conidium

formation on cadavers, mechanically dispersing conidia and

potentially increasing vectoring by other invertebrates b)

Epigeal predators can also remove inoculum by consuming

cadavers but may also vector infective stages to new hosts and

habitats at the soil surface and c) into foliar environments.

Persistence in the soil profile is affected by d) soil type, soil

moisture and pore size and by e) interactions in the rhizosphere

with soil microbes, root exudates and secondary plant

compounds. Within the soil profile conidia may also be

dispersed by species such as Collembola

Challenges in modelling complexity of fungal entomopathogens
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The anamorphic Hypocreales are generally consid-

ered to be opportunistic with broad host ranges and

most commonly associated with soil-inhabiting arthro-

pods in temperate regions. They are characteristically

hemibiotrophic, switching from a parasitic, biotrophic

phase in the haemocoel (sometimes producing toxins)

to a saprophytic phase colonizing the host after death.

Conidia are produced on the cadaver but, unlike

Entomophthorales, are not actively discharged. Both

Entomophthorales and Hypocreales produce resting

structures for persistence in the absence of new hosts or

under adverse environmental conditions. Often

assumed to be generalists, they are usually considered

to be less well adapted to a parasitic life style than

entomophthoralean fungi. However, recent research is

demonstrating that the challenges of exploiting a wide

range of potential hosts requires adaptations that are

just as elegant as those required for a specialist life style

(Humber 2008). Furthermore, while Hypocreales tend

to be considered as generalists and Entomophthorales

as specialists, there is considerable variability amongst

species within these orders and this is highlighted in

Table 1.

The genus Cordyceps (Ascomycota: Hypocreales)

is, perhaps, the most studied teleomorph within the

Ascomycota and the most common fungus encoun-

tered in association with arthropods in tropical forests

(Evans 1981). Most Cordyceps appear to have a very

restricted host range (in contrast to their anamorphic

counterparts). This has been clearly demonstrated for

ants. Sanjuan et al. (2001) documented the importance

of host association in the distribution and incidence of

Cordyceps in forest systems. Number of ants parasit-

ized by Cordyceps was greater in disturbed forests

compared to near pristine forests and this was closely

correlated to the presence of host species. The taxon-

omy of these fungi is only just being resolved. Indeed it

is only recently that the teleomorph and anamorph

states have been linked as one species rather than being

assigned to separate divisions. Phylogenetic analysis

suggests that the Cordyceps are not monophyletic but

occur in three families: Clavicipitaceae, Cordycipita-

ceae and Ophiocordycipitaceae (Sung et al. 2007;

Blackwell 2009). There are more than 400 species of

Cordyceps and a number of studies are emerging on the

ecology of a few of these (Chee-Sanford 2008; Sanjuan

et al. 2001). It is fascinating to consider that the same

fungal species can differ so fundamentally in ecology

depending on sexual state and not surprising that many

basic questions remain unanswered such as: why do

teleomorphic ascomycetes not occur so widely in

temperate habitats? What is driving the host specificity

of the sexual stages? Are the telemorphic ascomycetes

utilising the functional niches in the tropics that are

occupied by the Entomophthorales in temperate zones?

The anamorphic (asexual) states of the Ascomy-

cota have generally been used as inundative biopes-

ticides. In contrast, research on the Entomophthorales

has focused on conservation and inoculation biolog-

ical control. Accordingly, ecological understanding

of the Entomophthorales is more advanced than for

the Hypocreales. However, recent research efforts are

beginning to address this imbalance (Bidochka et al.

2001; Meyling and Eilenberg 2006a, b; Roy et al.

2009). Studies on the anamorphic states of species

within the Ascomycota dominate the literature. The

teleomorphic (sexual) states are poorly understood

but are undoubtedly critical to our ecological under-

standing of fungal entomopathogens.

Conceptual framework for understanding the role

of fungal entomopathogens in host population

regulation

The potential of fungi to regulate insect populations

will depend on their abundance in the host population

(prevalence) as well as their abundance and persistence

in the surrounding environment. Whether or not insect

populations are regulated by fungi, our first challenge

is to accurately quantify how common fungi are in both

hosts and the surrounding environment.

Prevalence in host populations

Accurate measurement of prevalence without biased

sampling of either uninfected or diseased insects can be

difficult and some challenges are specific to fungal

entomopathogens (Fig. 2). A truly accurate assessment

of prevalence can only be achieved by sampling all

stages of the host in a life table analysis but this is rarely

possible. Two methods are usually employed to

estimate prevalence (1) sampling living individuals

only, followed by laboratory incubation until death

when infection can be confirmed by phenotypic

characteristics and (2) sampling both living, dead and

dying individuals, followed by laboratory incubation

and identification (Fig. 2). The choice of sampling
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process and the life-stages sampled will be dictated by

the practicalities of sampling. The most obvious

challenge, however, is ensuring the sample is repre-

sentative of the entire population (Fuxa and Tanada

1987; Fig. 2). Some insects have behavioural charac-

teristics that cause aggregation at specific locations

such as late instar larvae of Lymantria dispar

L. (Lepidoptera: Lymantriidae) moving off trees onto

soil (Hajek 2001) or exhibit behavioural changes due to

infection such as increased movement in aphids (Roy

et al. 2006; Roditakis et al. 2008). Some life stages

cannot be easily located, such as small instars,

increasing sampling bias towards the larger late instars.

Furthermore, host development time could be altered

by infection (Hoch et al. 2000) and this could lead to an

inaccurate measure of prevalence. However, it is

critical that all juvenile (and in some cases also adult)

stages are sampled as insects may demonstrate stage

specific resistance to fungal infection (Roy et al. 2008)

and in some cases, differential susceptibility based on

the life stage exposed (Dromph et al. 2002). Ideally,

sampled insects should be incubated separately to

avoid transmission within the sample and under

conditions that do not favour infection as this could

lead to overestimation of prevalence.

In recent years, molecular techniques have been

developed to detect the presence of fungal pathogens in

field collected insect samples. Such methods offer

opportunities for more rapid assessment in the future

and examples include: enzyme-linked immunosorbent

assay (ELISA) to detect Entomophaga maimaiga

Humber, Shimazu and Soper (Entomophthoramycoti-

na: Entomophthorales) in L. dispar (Hajek et al. 1991);

DNA probes to confirm L. dispar deaths due to

Entomophaga aulicae (Reichardt in Bail) (Zygomy-

cota: Entomophthorales) Humber or E. maimaiga

(Hajek et al. 1996); PCR detection of Pandora

neoaphidis (Remaudière & Hennebert) Humber (En-

tomophthoramycotina: Entomophthorales) in aphids

(Fournier et al. 2008; Tymon et al. 2004). Most

examples of prevalence assessments using the two

methods described above are for pest insects in

managed systems but the methods are appropriate in

semi-natural systems (see examples in Table 2).

Abundance in the environment

Fungal propagules can persist outside the host on soil

and phylloplanes and in the air where they can act as

reservoirs of inoculum. Their abundance can be

measured directly (conidia capture) and indirectly

(baiting) in these habitats (e.g. Bidochka et al. 2001;

Bruck 2004; Hemmati et al. 2001; Klingen et al.

2002; Meyling and Eilenberg 2006a; Wilding and

Perry 1980). Soil samples are generally incubated

with laboratory reared susceptible bait insects such as

wax moth Galleria melonella L. (Lepidoptera:

Pyralidae) and the frequency of insect infection is

used as a measure of fungal abundance. Conidia

capture in the aerial environment has been measured

using selective media (Shimazu et al. 2002) or

microscope slides (Steinkraus et al. 1996) exposed to

the air above or within plant canopies. More precise

measurements are made using volumetric spore traps

e.g. Burkhard traps and rotorod samplers that capture

conidia on adhesive materials to determine conidia

density at specific locations (e.g. Hajek et al. 1999;

Hemmati et al. 2001) Occurrence studies, such as

these, are useful measurements of fungal reservoirs

within a habitat that may have the potential to infect a

A: Uninfected, alive 

B: Infected, still alive 

C: Inf
with fungus symptoms 

D: Infected, 
dead, 
overgrown with 
saprophytes or 
disintegrated 

ected, dead still 

Fig. 2 (Adapted from Eilenberg and Pell 2007). A diagram of

the composition of a natural population of an insect species in

relation to infection by a fungus pathogen. A: The population of

uninfected individuals; B: The population of living, infected

individuals. Fungus prevalence will be documented upon

sampling these individuals and incubating them in the labora-

tory. C: Recently killed fungus-infected individuals located in

the field; D: Individuals overgrown with saprophytic fungi for

which diagnosis is not possible without molecular probing.

Example of prevalence assessment: If living individuals are

sampled and incubated alongside scoring of any dead individuals

in the field then prevalence is assessed as (B?C)/(A?B?C)

Challenges in modelling complexity of fungal entomopathogens
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particular insect species, although these studies are

again generally focused on insects of economic

importance (Bruck 2004; Sookar et al. 2008).

Fungal traits

Research on traits of fungal entomopathogens have

largely focused on a single trait: the ability of an

isolate or species to cause mortality in the host. In

part, this reflects the interest of many pathologists to

develop fungi for microbial control and there are,

therefore, few studies on non-pest hosts. Examples

from non-pest hosts mostly consist of descriptive or

observational studies on single or a few species

(Humber 1976; Keller 1987b) or books on diversity

and occurrence of fungal entomopathogens (Bałazy

1993; Samson et al. 1988). These researchers use the

qualitative term pathogenicity to describe ‘‘the qual-

ity or state of being pathogenic’’ whilst they use the

quantitative term virulence for ‘‘the disease produc-

ing power of an organism, i.e. the degree of

pathogenicity within a group’’ (Shapiro-Ilan et al.

2005). Both pathogenicity and virulence are fre-

quently measured in laboratory bioassays (see Navon

and Ascher 2000 for examples). Within the field of

fungal insect pathology, virulence is expressed as the

lethal dose (LD50) or lethal concentration (LC50)

causing mortality of 50% of test insects. In this way,

Table 2 Examples of prevalence studies using two methods: collection of live hosts only and collection of both living and dead

hosts

Method Fungus species Host species References

Living hosts only Entomophthora schizophorae Chamaepsila rosae Eilenberg and Philipsen (1988)

Entomophaga maimaiga, Isaria
farinosus, Lecanicillium sp.

Lymantria dispar Hajek (1997)

Strongwellsea castrans Delia radicum and other

diptera

Eilenberg and Michelsen

(1999)

Beauveria bassiana Hypothenemus hampei

Musca domestica

Monzon et al. (2008)

Siri et al. (2005)

Lecanicillium spp., Beauveria
bassiana, Metarhizium anisopliae,

Isaria farinosa

Taeniothrips inconsequens Brownbridge et al. (1999)

Pandora neoaphidis Sitobion avenae Feng et al. (2004)

Dean and Wilding (1973)

Entomophthora planchoniana,

Neozygites fresenii

Elatobium abietinum Nielsen et al. (2001)

Living and dead

hosts

Neozygites fresenii Aphis gossypii Steinkraus et al. (1995)

Pandora neoaphidis,

Entomophthora planchoniana,

Entomophthora thaxteriana

Metopolophium dirhodum,
Sitobion avenae

Dean and Wilding (1971)

Pandora neoaphidis,

Entomophthora planchoniana,

Neozygites fresenii,

Beauveria bassiana, Lecanicillium sp.

Cereal aphids including

Diuraphis noxia
Hatting et al. (1999)

Neozygites floridana Tetranychus urticae Klingen et al. (2008)

Entomophthora planchoniana,
Pandora neoaphidis, Neozygites sp.

Monella caryella Ekbom and Pickering (1990)

Pandora neoaphidis, Conidiobolus
thromboides, Entomophthora
chromaphidis, Zoophthora
occidentalis, Neozygites fresenii,
Lecanicillium sp.

Aphids glycines Nielsen and Hajek (2005)
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a fungus may be highly virulent if only a few conidia

are required to cause a lethal infection. The defini-

tions of pathogenicity and virulence vary within and

between disciplines and depending on the type of

pathogen concerned. Cross-disciplinary consensus

regarding these definitions is required but this will

require wide consultation and is beyond the scope of

this paper.

In the general epidemiological literature virulence

is defined as a measure of the impact of a pathogen on

host fitness, and may be expressed as a reduction in

either fecundity or survival of infected hosts com-

pared to uninfected hosts (Solter 2006). It is a

biological property of the pathogen that may be

altered through abiotic and biotic impacts and thus

may vary during the progression of an epizootic.

Current studies of fungal entomopathogens often only

consider isolates and species that are highly virulent

and therefore almost invariably cause host mortality.

However, we know that there are fungal isolates that

have low virulence and do not generally cause high

host mortality (Shah et al. 2004). In these cases, and

also for virulent isolates, there are additional effects

on the host through other mechanisms such as

reduced fecundity (Baverstock et al. 2006; Furlong

et al. 1997; Roy et al. 2008; Xu and Feng 2002). Only

recently with improved molecular techniques are we

becoming aware of the previously underestimated

role that covert infections may play in insect popu-

lations (Burden et al. 2003). Covert viral infections

are increasingly considered as important in infection

dynamics (Boots et al. 2003) but as yet, there is no

evidence to suggest fungi harbour similar covert

infections although these may be more likely in the

microsporidia.

To what extent do fungal entomopathogens play a

role in regulating populations of insects in semi-

natural ecosystems?

This question would be best answered by classic life

table studies of host populations, yet few such studies

exist as previously mentioned. Examples in the eco-

logical literature tend to focus on insect hosts and their

parasitoids (Hawkins et al. 1997; Paniaqua et al. 2009),

reflecting perhaps the technical difficulties in detecting

pathogens in the field as we highlighted earlier. The

best examples emanate from the USA, where

populations of Lepidoptera are monitored in forests

for economic reasons. Although these studies are from

forests that are managed monocultures allowing the

host species in question to reach high population

densities (Dwyer et al. 2004), they still provide the best

empirical and theoretical examples of populations to

date in which pathogen prevalence has been monitored

over time, and illustrate how theoretical models may be

used to unravel the relative contributions of different

entomopathogens in the control and regulation of their

hosts. In the case of invasive non-native insects, a

special situation may occur if the invasive species has

escaped from its specialized natural enemies and for

that reason, significantly increased in population size.

This hypothesis, termed ‘natural enemy release’,

(Torchin et al. 2003; Roy et al. 2008) needs confirma-

tion for host specific entomopathogenic fungal species

or isolates.

Potential of specialist fungal entomopathogens

to regulate host populations

The earliest host pathogen models established the

principle that pathogens with persistent stages exter-

nal to their hosts have the ability to regulate their

hosts if sufficiently persistent in the environment

(Anderson and May 1981). These models also assume

that insect hosts do not acquire immunity to their

pathogens and therefore do not include a resistant

class of hosts immune to further infection (Grenfell

and Dobson 1995). Indeed, it was illustrated that such

specialist pathogens (or parasitoids) could be respon-

sible for population cycles in which the period

extends over many host generations. These principles

were established using models in which, quite

deliberately, the host was not influenced by any

other form of population regulation, including intra-

specific density dependence. The features of the host-

pathogen interaction that resulted in population

cycles included the density dependent nature of

horizontal transmission which is well recorded for

fungal entomopathogens (Johnson et al. 2006;

Thomas et al. 1995), and the persistent nature of

the external infectious stages (Baverstock et al. 2008;

Weseloh and Andreadis 1997; Table 1). The density

dependence of horizontal transmission ensures that

the prevalence of the fungus in susceptible hosts rises

as host population density rises, so checking the

exponential growth of the host population.

Challenges in modelling complexity of fungal entomopathogens

12363Reprinted from the journal



The best studies that demonstrate insect population

regulation by fungal entomopathogens are those

involving pest insects in agroecosystems (e.g. Kluber-

tanz et al. 1991; Nielsen and Hajek 2005; Smitley et al.

1986) but there are also examples from aquatic systems

(Burns 1979; Johnson et al. 2006). External infectious

stages ensure that the fungi persist during periods of

low host population density, when horizontal trans-

mission is insufficient to maintain the prevalence in the

host population (Filotas and Hajek 2004; Hajek et al.

2004). Thus early theoretical work established that

pathogens with these life history characters could

potentially both regulate, and cause cycles in host

populations. This caused considerable interest at the

time, because forest insect pests displayed such cycles

with no convincing explanation for them and this has

been an area of much research and debate ever since

(e.g. Abbott et al. 2008; Abbott and Dwyer 2007;

Buntgen et al. 2009; Liu et al. 2007; Myers 1988). As

fungal entomopathogens possess these life history

attributes (Table 1) it is likely that they also have the

potential to regulate host populations.

Two important concepts arose from these early

models, one of these being the basic reproductive rate

of the pathogen (R0). This is defined as the number of

new infections that arise from one primary infection in

a wholly susceptible population. This must be greater

than one for the pathogen to persist and spread, and so

defines the conditions under which the pathogen could

invade the host population. Due to the density depen-

dent nature of transmission, host populations with

higher densities of susceptible hosts will have higher

contact rates with infective conidia, and so will give

rise to higher values of R0. The second concept, the host

density threshold (HT) is related to R0, and is the

density at which R0 = 1. Thus HT is a critical threshold

below which prevalence will decline and above which

it will rise. Comparing how assumptions alter the

expressions for R0 and HT provides a convenient way

of comparing different models.

Potential of generalist fungal entomopathogens

to regulate host populations

Theoretical models exploring the potential for natural

enemies to regulate populations usually consider

specialist natural enemies, the densities of which are

tightly coupled to the host populations. However, any

density dependent relationship may regulate or

stabilize a population through heterogeneity in attack

rates, and even density independent patterns may do

this if there is sufficient heterogeneity in risk from

patch to patch (Hassell and May 1988). Conse-

quently, generalist natural enemies may also hold the

potential to be prime regulating factors, even though

their dynamics may be uncoupled to some degree

from the host species.

Both manipulative empirical and theoretical stud-

ies have illustrated that attack rates from generalist

natural enemies are usually high enough at low host

population densities to prevent population outbreaks.

For example, the white footed mouse, Peromyscus

leucopus Rafinesque (Rodentia: Neotominae), is a

generalist predator of the gypsy moth L. dispar.

Empirical data is consistent with this predator

regulating the moth at low densities and a nucleo-

polyhedrovirus regulating the moth at high densities

(Elkinton et al. 1996). In another study of the forest

tent caterpillar Malacosoma disstria Hübner (Lepi-

doptera: Lasiocampidae), generalist avian predation

was found to be the dominant mortality factor, in

strong contrast to five specialist parasitoid species

(Parry et al. 1997). A review of two herbivore species

(the autumnal moth, Epirrita autumnata Borkhausen

(Lepidoptera: Geometridae) and voles of the genus

Microtus and Clethrionomys) concluded that the

population cycles observed in northern Fennoscandia

were likely to be caused by specialist natural enemies

and the more stable dynamics on the south to be

caused by an increase in the density and diversity of

generalist natural enemies (Klemola et al. 2002).

Although this evidence is drawn largely from

generalist predators, generalist fungal entomopatho-

gens possess the life history characteristics to fill this

role very effectively; host-fungus interactions exhibit

heterogeneity in attack rate, and they can increase in

abundance rapidly in response to the presence of

hosts (Kamata 2000). However, the degree to which

they cause mortality in populations, outside of the

context of crop systems, is virtually unknown.

Combined effects of specialist and generalist

natural enemies on host populations

It has long been established by theory and observa-

tion that host populations exhibit many different

equilibrium states, and consequently it is unlikely that

any one natural enemy is responsible for regulating a
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host species (Henson et al. 2009). Indeed food webs

consist of both specialist and generalist natural

enemies, with fungal entomopathogens playing both

of these roles (Roy and Pell 2000; van Veen et al.

2008), and it is important to consider the combined

effect of the suite of natural enemies present; no one

pathogen acts in isolation. Furthermore, models in

which only one natural enemy is responsible for

regulating a host population frequently fail to capture

the observed dynamics, with the time between host

outbreaks being far more irregular than traditional

models would predict. More recently, in a few cases,

models are now being developed to include more

than one natural enemy, with the stochastic influence

of abiotic factors causing the host population to move

between a low, stable, equilibrium which may be

maintained by generalist natural enemies, and more

cyclic dynamic behaviour which is the classic

hallmark of a specialist natural enemy (Dwyer et al.

2004). These more complex models can produce

behaviour which is more consistent with field obser-

vations, namely irregular outbreaks separated by long

intervals during which the host is present at low

densities, and represent a significant step forward in

our understanding of the potential role of complexes

of natural enemies in the regulation of herbivores and

is applicable to fungal entomopathogens.

Making the models more realistic

Pathogen reservoirs

Clearly host populations are likely to be influenced by

constraints on resources, or other factors that will act in

a density dependent manner on population growth.

Host density dependence has been incorporated into

early models in more than one way, and one case

concluded that cyclical behaviour occurs over great

regions of parameter space (Dwyer 1994), and in

another case that cycles were less likely, with the cycle

period depending upon parameter values (Bowers et al.

1993). The range of parameter values considered and

the form of the density dependence is likely to be

influential in determining which outcome is most

probable. Perhaps a more significant extension of

theory was to include the concept of a ‘pathogen

reservoir’, in which pathogens cannot infect hosts but

where their degradation rate is low (Hochberg 1989).

Pathogens may also move out of the reservoir to

re-enter the infection cycle, or hosts may ‘visit’ the

reservoir and acquire infection (Fig. 1). The ability of

fungal conidia or resting spores in reservoirs to re-enter

the infection cycle has been demonstrated (Bitton et al.

1979; Hajek 1999). The presence of such a reservoir

has a storage effect, which dampens cycles and

increases the likelihood of a stable equilibrium.

Environmental reservoirs of fungal entomopathogens

have been found in a number of circumstances of which

a few examples are: E. maimaiga in forest soil (Hajek

1999); Beauveria bassiana (Balsamo) Vuillemin

(Ascomycota: Hypocreales) on logs (Reay et al.

2007) and within agricultural soils (Meyling and

Eilenberg 2006b); P. neoaphidis within agricultural

soil (Baverstock et al. 2008; Nielsen et al. 2003);

Entomophthora planchoniana Cornu (Entomophtho-

ramycotina: Entomophthorales) as hyphal bodies on

tree trunks or resting spores in soil (Keller 1987a, b);

Neozygites fresenii (Nowakowski) Batko (Entomoph-

thoramycotina: Entomophthorales) as resting spores

on trees (Bitton et al. 1979).

Transmission and disease resistance

In contrast to the experimental literature on viral

entomopathogens (Elderd et al. 2008), there are no

studies directly examining heterogeneity in transmis-

sion rates for fungal entomopathogens. Heterogeneity

in transmission is expected, however, due to individual

differences in host susceptibility observed in the

laboratory (Ferrari et al. 2001; Keller et al. 1999;

Roy et al. 2008) and the heterogeneous distribution of

infective conidia in the field (Meyling and Eilenberg

2006b; Tscharntke et al. 2008). Such heterogeneity in

natural-enemy attack rates is strongly stabilizing

(Hassell et al. 1991) and produces stable cycles for a

range of parameter values in host-pathogen models

(Dwyer et al. 2000).

An element of heterogeneity in host susceptibility

has a genetic basis. It has been illustrated that host

populations can develop a degree of resistance or at

least reduced susceptibility, to some fungal entomo-

pathogens within and between generations (Ferrari

et al. 2001; Milner 1982, 1985; Stacey et al. 2003). This

phenomenon has also been illustrated in response to

other entomopathogens (Boots and Begon 1993;

Cooper et al. 2002). Indeed, Stow et al. (2007) suggest

that selection by microbial pathogens, and more

Challenges in modelling complexity of fungal entomopathogens
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specifically production of antimicrobial defences, was

critical to the evolution of sociality. However, few

studies show that host investment in resistance to

fungal entomopathogens may change depending upon

host density and these are limited to species exhibiting

density-dependent phase polyphenism (Wilson et al.

2001, 2002). The hypothesis is that at high host

densities, insects are more likely to encounter inocu-

lum due to the density dependent nature of horizontal

transmission, and that some species can exhibit a

plastic response to this and allocate more of their

limited resources to disease defence than at low

densities. This has also been illustrated for some

species in response to nucleopolyhedroviruses (Reeson

et al. 1998, 2000), but for others the reverse pattern is

suggested, with susceptibility increasing at high den-

sities, and this has been postulated to be due to stress

(Reilly and Hajek 2008). The form of the relationship

between disease resistance and density dependence

will influence the impact on population dynamics, with

the inverse relationship between population density

and disease resistance having a stabilizing influence

(Reilly and Hajek 2008).

Given that there is a heritable element to resistance

in some cases, it is possible that susceptibility to

entomopathogens may change during the course of an

epizootic, particularly if there is a cost to resistance.

Again there is supporting empirical evidence for this

in the case of viruses (Cory and Myers 2009) but

evidence for fungal entomopathogens is limited

(Miller et al. 2009). If natural selection drives rates

of transmission through altered host susceptibility,

theoretical models suggest that cycles are more likely

to be observed even at high rates of heterogeneity in

transmission (Elderd et al. 2008). This illustrates

the importance of including natural selection in host-

pathogen models when attempting to discover

the role of entomopathogens in host population

dynamics.

Summarising, theory illustrates that host specific

fungal entomopathogens could potentially regulate

their host populations, but the question remains open as

to whether such pathogens really are the prime

regulating factor in many cases. There are many details

of the host-pathogen interaction that would benefit

from further empirical data. It is notable that vertical

transmission of fungi has only been demonstrated in

very few cases (e.g. Tarrant and Soper 1986). High

rates of vertical transmission would make the

conditions for regulation less stringent (Anderson

and May 1982).

Dispersal: keeping up with your host

Greif and Currah (2007) demonstrated the importance

of arthropods in dispersing fungi but highlighted the

need for more data comparing patterns among sub-

strates, fungal species and their arthropod carriers.

Most ecological studies are conducted at a small spatial

scale. More recently, and particularly in the context of

arthropod species shifting their ranges as a conse-

quence of climate change, there has been greater focus

on the mechanisms and rate at which pathogens spread

through host populations. One fundamental constraint

on the part of a specialist pathogen is that, when

considering the regional scale, it is unlikely to arrive in

a new habitat ahead of the host. This has led to the

hypothesis that the increased abundance observed at

the leading edge of species shifting their ranges is due

to the host escaping, albeit temporarily, the regulating

influence of some natural enemies (Gaston 2009;

Menendez et al. 2008). In some cases, pathogens may

hitch a ride with their hosts in the form of covert

infections vertically transmitted to offspring (Burden

et al. 2003). Covert infections are uncommon in fungal

entomopathogens (Tarrant and Soper 1986), however,

modern molecular tools may reveal hitherto hidden

fungal infections at non lethal levels.

The simplest theoretical models describing path-

ogen dispersal within a host population are based on

the process of diffusion and provide a moderately

good description of dispersal at small spatial scales

(Dwyer et al. 1998). These relatively simple models

assume that conidia obey the laws of diffusion,

although the precise shape of the dispersal kernel is

unlikely to be Gaussian, and more likely to be ‘fat-

tailed’. The moderately good fit between models and

data suggest that the majority of fungal infection at

small spatial scales represented by experimental plots

is due to a process akin to diffusion. However, a study

of the regional spread of E. maimaiga through gypsy

moth populations in North America found that rates

of spread at the regional scale could not be predicted

from diffusion models fitted to data obtained at local

scales (Dwyer et al. 1998). Similarly, more detailed

simulation models incorporating local abiotic factors

such as temperature, rainfall and humidity could only

accurately represent patterns of spread over a 3 km

H. Hesketh et al.
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area if airborne conidia are allowed to freely disperse

over the whole area (Weseloh 2003, 2004). This

suggests that dispersal mechanisms, such as wind

currents above the forest canopy, which operate at

long distances, are crucial in explaining observed

patterns of dispersal of conidia independent of their

hosts. There are parallels here with studies on the

dispersal of seeds, in which models have been

developed combining local and long distance dis-

persal processes (Wichmann et al. 2009), and there is

a strong argument that similar theoretical develop-

ments, combining local and regional processes in an

analytical framework, would be appropriate for

fungal entomopathogens (Dwyer et al. 2004).

Spatially heterogeneous environments

Habitat loss through environmental change leads to an

increasingly fragmented landscape, with only patches

of habitat that are suitable for hosts to persist. How will

this influence host-pathogen dynamics, particularly in

light of the broad host range of some fungi, and the

dispersal ability of conidia discussed above? Hess

(1996) developed a host-pathogen model from the

classical Levins (1969) metapopulation model to

explore the conditions under which hosts and patho-

gens may persist in a fragmented landscape. This

original model was based on direct transmission

between infected and susceptible hosts although sub-

sequently, we have explored similar models based on

pathogens such as baculoviruses and many fungal

entomopathogens which infect by means of free-living

infective stages, and the conclusions are not qualita-

tively different (White and Hails personal communi-

cation). Hess (1996) concluded that host dispersal

between patches enhanced the spread of disease and

thus could lead to host extinction. Fungus-infected

hosts have the ability to disperse and to spread disease

into new colonies as documented for aphid species

(Feng and Chen 2002; Feng et al. 2004). Some

specialist fungi such as Strongwellsea spp. sporulate

from one or two holes on living hosts and conidia are

dispersed in this way. Whether hosts themselves are the

principle means by which fungal pathogens disperse

between patches in a fragmented landscape has yet to

be determined.

McCallum and Dobson (2002) further developed

this framework to consider a ‘generalist’ pathogen, the

abundance of which is maintained in a second host

species which acts as a reservoir. In contrast to Hess

(1996), they concluded that greater landscape connec-

tance enhanced the stability of the host-pathogen

interaction. Habitat corridors allow host species to

disperse and ‘escape’ pathogens, effectively creating a

form of refuge. However, complete connectance is

equivalent to a homogenous habitat; and a degree of

habitat partitioning actually promotes co-existence of

host species by, for example, relaxing apparent com-

petition mediated by a shared natural enemy (Holt

1984). A general principle that emerges from these and

other studies is that the spatial complexity of popula-

tion structure is a source of heterogeneity that can

promote the co-existence of hosts and pathogens.

However, the precise dynamics will depend upon the

spatial distribution of hosts, the productivity of patches

(in terms of host growth rates), the life history

characteristics of the pathogens and the mobility

patterns of hosts and pathogens (Namba et al. 1999;

Rodriguez and Torres-Sorando 2001). Consequently,

the response of fungal entomopathogens to habitat

fragmentation would be best explored in specific host

populations using models of intermediate complexity

that have been adapted to incorporate species specific

information.

Conclusions

Fungal entomopathogens are ubiquitous in semi-nat-

ural habitats and play a role in insect population

dynamics. There is, however, a scarcity of empirical

data available to evaluate their relative importance in

controlling and regulating insect populations in semi-

natural ecosystems. Even within well studied crop

systems such as forest insects, we have a limited

understanding of the role of fungal entomopathogens

and insect population dynamics. Anticipated changes

in disease prevalence due to key anthropogenic drivers

(Millennium Ecosystem Assessment 2005) such as

climate change and habitat fragmentation as well as the

arrival of invasive species are likely to affect the

prevalence of all entomopathogens in semi-natural

ecosystems (Roy et al. 2009). The effects of such

changes in disease prevalence will be relevant to the

management of both pest insects and insects of

conservation interest (Roy et al. 2009). The practical-

ities of studying fungal entomopathogens in any

system can be challenging; there are limitations

Challenges in modelling complexity of fungal entomopathogens
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imposed by the research tools available and many of

the complex multitrophic interactions are yet to be

revealed (Cory and Ericsson 2009). However, it is

imperative that we drive research effort forward by

coupling rigorous research in the field with theoretical

modelling in order to unravel the complexity of

interactions between fungal entomopathogens and

their hosts in semi-natural habitats.
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