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Abstract: Raman spectroscopic imaging has shown great promise for improved cancer detection and
localization with the use of tumor targeting surface enhanced Raman scattering (SERS) nanoparticles.
With the ultrasensitive detection and multiplexing capabilities that SERS imaging has to offer,
scientists have been investigating several clinical applications that could benefit from this unique
imaging strategy. Recently, there has been a push to develop new image-guidance tools for
surgical resection to help surgeons sensitively and specifically identify tumor margins in real time.
We hypothesized that SERS nanoparticles (NPs) topically applied to breast cancer resection margins
have the potential to provide real-time feedback on the presence of residual cancer in the resection
margins during lumpectomy. Here, we explore the ability of SERS nanoparticles conjugated with a
cluster of differentiation-47 (CD47) antibody to target breast cancer. CD47 is a cell surface receptor
that has recently been shown to be overexpressed on several solid tumor types. The binding potential
of our CD47-labeled SERS nanoparticles was assessed using fluorescence assisted cell sorting (FACS)
on seven different human breast cancer cell lines, some of which were triple negative (negative
expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor-2 (HER2)). Xenograft mouse models were also used to assess the ability of our Raman
imaging system to identify tumor from normal tissue. A ratiometric imaging strategy was used to
quantify specific vs. nonspecific probe binding, resulting in improved tumor-to-background ratios.
FACS analysis showed that CD47-labeled SERS nanoparticles bound to seven different breast cancer
cell lines at levels 12-fold to 70-fold higher than isotype control-labeled nanoparticles (p < 0.01),
suggesting that our CD47-targeted nanoparticles actively bind to CD47 on breast cancer cells. In a
mouse xenograft model of human breast cancer, topical application of CD47-targeted nanoparticles
to excised normal and cancer tissue revealed increased binding of CD47-targeted nanoparticles on
tumor relative to normal adjacent tissue. The findings of this study support further investigation
and suggest that SERS nanoparticles topically applied to breast cancer could guide more complete
surgical resection during lumpectomy.
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1. Introduction

Raman imaging of surface enhanced Raman scattering (SERS) nanoparticles (NPs) is an optical
technique that offers unsurpassed sensitivity (on the order of fM) and multiplexing capabilities to the
field of molecular imaging [1,2]. Incorporating these unique characteristics into a new diagnostic tool
that surgeons can use in the operating room (OR) has the potential to significantly impact their ability
to successfully identify and remove the entire tumor while minimizing damage to healthy neighboring
tissue and decreasing the chances of recurrence and the need for repeat surgery.

Identifying tumor margins during surgical resection is a critical determinant of patient outcome.
One of the biggest challenges faced by oncologic surgeons in the OR is determining where the tumor
they are resecting begins and ends. Obtaining negative tumor margins can be essential to the patient’s
survival [3]. Current intraoperative surgical guidance depends largely on visual cues and tactile
feedback, which may be highly subjective and inaccurate in diseased tissues. In addition to the negative
oncologic consequences, positive tumor margins may necessitate reoperation, thereby increasing
associated patient morbidity and healthcare expenditure (e.g., imaging, anesthesia, pathology) [4–6].

There is a major unmet need for imaging technologies that can guide more complete resection of
breast cancer. In the US, over 200,000 women are diagnosed with breast cancer and 40,000 women
will die from the disease each year [7,8]. Approximately 75% of new breast cancer cases undergo
lumpectomy, a breast-conserving surgery, which removes the cancerous tumor while preserving as
much of the breast as possible [9]. Unfortunately, up to 60% of lumpectomy patients require additional
surgery due to positive margins [4–6,10–12].

For breast lumpectomies, the current standard of care at most institutions relies on calcifications
seen on a mammography to target and delineate the tumor mass, such that the tumor may be resected
along with an arbitrary 2 cm margin beyond the presumed edge of the tumor. The excised tumor is
then taken and prepared for histopathological examination. Several days later, a pathology report is
compiled to reveal whether the surgeon was able to achieve negative tumor margins. If positive tumor
margins are detected, the patient is called in again for re-excision of the residual tumor. In 20–60% of
cases, complete tumor removal is not achieved during the first resection procedure, especially when
the tumor is not perfectly round, or adjacent tumor areas are not detected on either mammography or
magnetic resonance imaging (MRI) [13]. Impedance monitoring has also been used to determine if
abnormal-looking areas are cancerous; however, its role in the operating room remains uncertain as
it can add up to an hour to the total surgery time. Every minute in the operating room is precious,
especially when a single minute can cost over $100 [14].

Our proposed imaging strategy involves the use of a Raman imaging device to detect SERS
nanoparticles that will act as tumor-targeting contrast agents. Surgeons will be able to utilize the
Raman imaging device in the OR to sensitively detect these tumor-targeting contrast agents and help
guide tumor resection. A ratiometric imaging strategy will be implemented to quantify specific vs.
nonspecific probe binding, resulting in a higher tumor-to-background ratio and improved detection of
residual tumor in the OR.

In this study, we investigated the expression level of CD47 on several breast cancer cell lines to
evaluate if it could be a useful breast tumor target for our SERS nanoparticle imaging strategy. CD47 is
a glycoprotein expressed on the surface of many cells in the body. CD47 binds to signal regulatory
protein alpha (SIRPα), which is a receptor on macrophages. When this particular ligation occurs,
a signal is released to prevent phagocytosis of the cells with CD47. This signal ensures that healthy
autologous cells are not inadvertently phagocytosed [15]. Although CD47 expression protects some
normal cells from being phagocytosed, CD47 transcript and protein expressions are also seen, and
in some cases to a higher degree, in cancer cells to protect themselves from being phagocytosed [16].
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Cancerous cells, including those of acute myeloid leukemia, bladder cancer, and breast cancer, have
been found to overexpress CD47 as a means to evade the immune system [15]. The increased CD47
expression on cancer cells would also increase the chance of cancer cell survival and is sometimes
responsible for new tumor masses and even tumor relapse [15]. Researchers have capitalized on
this trait to target tumor cells for therapy. Monoclonal antibodies are employed to bind with CD47,
resulting in increased phagocytosis and even tumor death [17]. The CD47 blocking antibodies have
been found to decrease tumor size and metastasis in several pre-clinical studies as well as initiate an
antitumor cytotoxic T cell immune response [15,18–20].

As a result of its previous preclinical and clinical success for tumor targeting, we believe CD47
antibody has the potential to be labeled with our SERS nanoparticles for effective targeting of breast
cancer. In this study, breast cancer cell lines with combinations of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor (HER2) biomarkers as well as triple
negative cell lines (Table 1) were interrogated for CD47 expression. Surface-enhanced Raman scattering
(SERS) nanoparticles conjugated with CD47-specific antibodies were then assessed for tumor targeting
efficiency in cell culture and xenograft models. Since our SERS nanoparticles are also fluorescently
labeled, FACS analysis may be utilized to determine the binding levels of our CD47 antibody-labeled
SERS nanoparticles to various breast cancer cell lines in vitro. Subsequently, the binding efficiency was
also tested in mouse xenograft models. This approach is intended to guide surgeons during tumor
resection by providing them with a tool to sensitively and specifically identify tumor margins while
still in the OR, thus avoiding costly follow-up surgeries.

2. Materials and Methods

2.1. SERS Nanoparticles

The thiol functionalized NPs were obtained from Cabot Security Materials Inc., Mountain
View, CA. The particles consist of a 60 nm gold core coated with a Raman reporter dye and
encapsulated within a 30 nm silica shell (Figure 1). The Raman reporters used in this study included
S440 (Trans-1,2-Bis(4-pyridyl)-ethylene) and S421 (d8-4,4′-dipyridyl) [2]. Extensive characterization,
including transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and
energy-dispersive X-ray scattering (EDS), of these materials has been undertaken previously [1,2,21–23].
Additional DLS measurements provided here also correlate with the uncoated particle diameter of
140 ± 5 nm. After coating with the SM(PEG)12 and CD47 antibodies, we see an increase to a diameter
of 150 ± 5 nm. Given the length of the polyethylene glycol (PEG) and antibody molecules, an increase
in the hydrodynamic radius of ~10 nm is expected using DLS to measure these materials.

Table 1. Breast cancer cell lines interrogated for CD47 expression.

Cell Line Tumor Type Estrogen Progesterone HER2

BT474 Primary, IDC * + + +
BT483 Primary, IDC * + + −

HCC202 Primary, DC * − − +
MCF7 Metastatic, Pulmonary Effusion + + −

HCC1806 Primary, Squamous Carcinoma − − −
HCC70 Primary, DC * − − −

MDA231 Adenocarcinoma − − −
* DC: Ductal Carcinoma, IDC: Invasive Ductal Carcinoma.

2.2. Conjugation of Fluorophore and CD47 Antibody to SERS Nanoparticle Surface

To ensure all the thiol groups on the surface of the NPs are available and reduced prior to
conjugation, the NPs were briefly treated with Dithiothreitol (DTT). NPs in their storage buffer were
centrifuged at 1500 g for 10 min, the storage buffer was removed, and the particles were resuspended in
10 mM DTT in 10 mM 3-(N-morpholino) propanesulfonic acid (MOPS) buffer at pH 7.4 and incubated
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at room temperature for 30 min. After incubation, the NPs were washed via centrifugation at 1500 G
for 10 min and resuspended in MOPS buffer 5 times to ensure all the DTT had been removed.
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Figure 1. Schematic illustration of SERS NP conjugation with various elements, including Dylight
650 fluorophore, and PEGylated CD47 antibody.

The stock NPs were suspended at 400 pM in 10 mM in MOPS buffer at a pH of 7.4. As described
in Figure 1, Dylight 650-maleimide (Thermo fisher #62295) was diluted in dimethylformamide (DMF)
and mixed into the NP solution at a molar ratio of 60,000 dye molecules per nanoparticle and incubated
at room temperature for 2 h. The resulting NP solution was then washed via centrifugation at 2000 G
and resuspended in 10 mM MOPS 3 times.

Antibody conjugation (either anti-CD47 or IgG4K (isotype control)) was carried out using
SM(PEG)12 (Sigma Aldrich, St. Louis, MO, USA #670278) as the crosslinker. The SM(PEG)12 was
diluted to 0.25 mM with anhydrous DMF of which 5.12 µL was added to the NP solution giving a ratio
of 3200 SM(PEG)12 per nanoparticle. The SM(PEG)12 was then added to a volume of the Dylight 650
conjugated SERS nanoparticles along with the specified antibody at a ratio of 200 per nanoparticle. This
solution was then incubated at room temperature for 2 h (Figure 1). Following this conjugation reaction,
methyl-terminated, polyethylene glycol with maleimide (MM-PEG) (Thermo Fisher, Waltham, MA,
USA #22711) was added at a ratio of 600,000 per particle and incubated for 2 h at room temperature to
saturate/protect any remaining unbound thiols (Figure 1). The resulting NP solution was then washed
via centrifuge at 2000 G and resuspended in phosphate buffered saline (PBS) with 1% BSA three times
before the final resuspension in the storage buffer, which consisted of PBS with 1% BSA at pH 7.4
and 0.03% sodium azide as preservative, and then stored at 4 ◦C (Figure 1). Dynamic light scattering
indicated an increase in overall NP size of approximately 10 nm post conjugation of the CD47 antibody
as described above.

2.3. Cell Culture and Flow Cytometry

Breast cancer cell lines listed in Table 1 were maintained using their respective culturing medias
as suggested from the American Type Culture Collection (ATCC). The media was supplemented with
10% fetal bovine serum (FBS) and 1% Antibiotic/Antimycotic. Cells were cultured in an incubator at a
temperature of 37 ◦C and 5% CO2. TrypLE express (Thermo Fisher Scientific, Waltham, MA, USA) was
used to detach adherent cells for flow cytometry. In addition to the cell lines listed in Table 1, we used
two separate DLD1 cell lines that were positive and negative for CD47 expression to act as our positive
and negative controls, respectively. CD47 knock-out in DLD1 cells was achieved with a TALEN, and
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both cell lines were provided by D. Kurtz and I. Weissman. In preparation for flow cytometry, each cell
line was diluted to a concentration of 2 million cells per mL. We tested 4 binding scenarios, including
(1) control of cells alone, (2) cells with SERS-IgG NPs, (3) cells with SERS-CD47 NPs, and (4) cells with
CD47 antibody (no NPs). The SERS NPs were conjugated with DyLight 650 to assess binding via FACS.
The group given CD47 antibody alone was also conjugated with DyLight 650.

To assess binding of these various groups to each of our cell lines, 200,000 cells in 100 uL were
placed in a microfuge tube. Then, 10 uL of our SERS-NPs at a concentration of 1.5 nM were incubated
with the 100 uL of 200,000 cells in the microfuge tube in a cold room for 15 min. The reaction was
quenched by adding 1 mL of PBS with 1% BSA. The cells were centrifuged at 150 g for 3–5 min to bring
down the cells, but keep the unbound nanos in the supernatant. The supernatant was removed and the
cell pellet was resuspended with 1 mL of PBS + 1% BSA to achieve a final volume of ~200,000 cells/mL
for FACS. We used a Guava EasyCyte (Millipore Sigma, Burlington, MA, USA) flow cytometer, which
has a convenient 96 well plate reader format. We plated 200 uL of our final volume to each well to
achieve a cell count of ~40,000 cells per well. The fluorescence intensity for each of the cell populations
counted was measured and analyzed using the GuavaSuite Guavasoft version 3.2 software package,
(Millipore Sigma, Burlington, MA, USA).

2.4. Xenograft Tumor Models

Female 8-week-old nude mice (Charles River, Wilmington, MA, USA) were used for all tumor
inoculation studies. All procedures performed on the animals were approved by the University’s
Institutional Animal Care and Use Committee (APLAC# 30018/20786) and were within the guidelines
of humane care of laboratory animals. Various breast cancer cell lines, as listed in Table 1, were cultured
under standard conditions along with the positive and negative-expressing CD47 DLD1 cell lines.
The xenograft tumor models were generated by subcutaneous injection of 5 million cells in 50 µL HBSS
mixed with 50 uL of Matrigel on the flanks of the mice. Tumors were then harvested for SERS NP
staining and Raman imaging from euthanized mice when the tumor volume reached approximately
200–300 mm3.

2.5. Human Tissue Specimen Acquisition

Deidentified human breast tissue specimens were obtained from consenting patients and imaged
within 1 h after lumpectomy or mastectomy at the University of Washington Medical Center (informed
consent was obtained from all patients). Tissue collection was managed by the Northwest BioTrust
under an Institutional Review Board exemption for these deidentified tissues. The use of human
specimens was approved by the University of Washington Institutional Review Board and was
conducted in accordance with the provisions of the Declaration of Helsinki.

2.6. Tissue Staining with SERS NPs

Excised tissues were put on ice in preparation for staining. The tissues were cut in half to properly
expose the flat tissue area to our NP stain. A mixture of S440-CD47 NPs (300 pM) and S421-Isotype
NPs (300 pM) was used for staining the tissues. The isotype nanoparticles served as a control to assess
non-specific binding. A glass slide was blotted with ~20 uL of this NP mixture for each tissue sample to
be stained. The tissues were placed flat-side down in the NP mixture for a total of 5 min, during which
they were briefly lifted and then re-dipped into the NP mixture at 20 s intervals to achieve optimal
binding results, as described in a convection-enhanced topical staining protocol by Wang et al. [24].
After the 5 min of convection-enhanced staining, the tissues were rinsed in PBS for 20 s and placed
upright on a quartz slide for Raman imaging.

2.7. Raman Imaging

The tissues were imaged using our home-built Raman endoscope system as described in
Zavaleta et al. [1,25]. The SERS NP imaging system consists of a semiconductor diode near-infrared
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excitation laser operating at 785 nm with a laser power of approximately 42 mW measured at the
surface of the tissues. The excitation beam is collimated to a ~1 mm spot size to maintain a consistent
Raman signal as the beam is scanned across the heterogeneous tissue surface. Raman images were
obtained by raster scanning the tissue of interest and creating intensity maps of respective nanoparticle
concentrations. A computer-controlled x–y translation stage was used to raster-scan the tissues in
order to obtain a laser-induced spectrum (primarily SERS and autofluorescence background) at each
individual pixel within the area of interest with a 1 mm step size. The spectral integration time
(each pixel) was 200 ms.

2.8. Raman Spectral Analysis

Images of NP concentrations (or concentration ratios) were generated by using either a principle
component analysis (PCA) [26] or a direct classical least squares (DCLS) method, also known as the
linear un-mixing and K-matrix methods [27,28]. DCLS finds the linear combination of spectra from
the pure components within the sample that most closely matches the mixed spectrum acquired from
each pixel of the sample. A component reference spectrum of the SERS nanoparticles used in this
study was acquired for 1 s from a pure 5 µL mixed sample of S440-CD47 NPs and S421-Isotype NPs
pipetted onto a piece of quartz under the microscope and used as the reference spectrum for the Raman
analysis of the tissues harvested from the mice. Each CCD acquisition is saved and tagged with the
respective x–y coordinate at which it was acquired. The acquisitions are then converted to a weighting
factor using the DCLS algorithm and stored in a matrix, where each element of the matrix represents a
pixel corresponding to the x–y coordinate at which the signal was acquired. The matrix of weighting
factors (i.e., relative concentrations of the various NP “flavors” used in the staining mixtures) was
then transformed into an image that is scaled to make use of the full 32-bit grayscale range. Finally,
the Amide medical imaging data software was used to apply a Gaussian blur to the mapped image to
give it smooth contours [29].

2.9. Statistics

The data collected from this study were analyzed for statistical significance using a 95% confidence
interval (p < 0.05). A Student’s t-test was used to compare the Raman imaging data of the tumor groups
to the data of the normal adjacent tissue groups. An equality of variances test was performed and
revealed little variance between the groups. Therefore, a one-tailed t-test assuming equal variances
was performed to determine statistical significance because it was hypothesized that the tumor groups
would have more localized Raman signal from the NPs targeting CD47 on the breast cancer, whereas
the normal adjacent tissue group would have less Raman signal due to less expression of CD47
and therefore less specific targeting. The values herein are reported as mean ± standard error of
mean (SEM). The data from each of the time points correlated well with each other. Therefore, a
Bonferroni correction was not indicated as it was too conservative, and there was little chance of
getting a significant result from multiple t-testing.

3. Results

In this study, we first assessed the expression levels of CD47 in various breast cancer cell lines
using FACS. We evaluated seven different breast cancer cell lines with varying expression levels of
estrogen, progesterone, and HER2 (Table 1).

We also evaluated two DLD1 colon cancer cell lines to serve as our positive and negative controls.
DLD1 is known to overexpress CD47, so we used this cell line to serve as our positive control and
our negative control was derived from the same DLD1 cell line that underwent a TALEN-mediated
knockout of CD47.

The various cell lines were incubated with a fluorescently labeled CD47 antibody to evaluate
the expression levels of CD47 within each cell line. Figure 2 shows the binding efficiency of the
CD47 antibody to the various cell lines tested. Note the negatively expressing cell line, DLD−, shows
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little expression of CD47 whereas all the breast cancer cell lines show overexpression of CD47 to
varying degrees.
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Figure 2. FACS data showing the binding efficiency of fluorescently labeled CD47 antibodies to various
cell lines.

The CD47-targeted NPs were also evaluated using FACS to assess their binding efficiency to each
of the cell lines described above. We had two distinct nanoparticle constructs, (1) SERS NPs (S440)
conjugated to anti-CD47 mAb, and (2) SERS NPs (S421) conjugated to IgG, an isotype control antibody.
Each of the nanoparticle constructs were labeled with the fluorophore, DyLight 650, as described in the
materials and methods section. The unlabeled cell lines alone were also run through FACS to serve as
our non-fluorescent control cell population. FACS revealed consistent binding of our SERS-CD47 NPs
to each of the breast cancer cell lines as opposed to the negatively CD47 expressing cell line DLD−
(Figure 3).
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Figure 3. FACS plots showing the fluorescence intensity associated with each cell line tested including:
(a) DLD−; (b) DLD+; (c) BT474; (d) BT483; (e) HCC202; (f) MCF7; (g) HCC1806, (h) HCC70; and
(i) MDA231. The following experimental groups were tested within each of the cell lines (1) Unstained
cells (red), (2) cells incubated with IgG SERS NPs (blue), (3) cells incubated with CD47 antibody
(orange), and (4) cells incubated with CD47 SERS NPs (green). FACS was used to assess which cell
lines demonstrated significant binding with our CD47 SERS NPs.

As shown in Figure 4, the isotype IgG-labeled SERS NPs showed significantly less binding
(p < 0.01) in the breast cancer cell lines than CD47-targeted SERS NPs. Since this isotype NP construct
was labeled onto a different “flavor” of SERS NP (S421), we will be able to administer a mixture of both
the CD47 labeled SERS NP (S440) and the Isotype IgG labeled SERS NP (S421) simultaneously and
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perform ratiometric imaging to account for non-specific binding of the NPs. This unique multiplexing
strategy allows for real-time evaluation of the specific vs. nonspecific binding of NPs to tissues (tumor
and benign) and is valuable for tumor margin imaging applications in which a large number of
nonspecific (and misleading) sources of contrast can arise [30,31]. Figure 4 shows the ratio of CD47
labeled SERS NPs to isotype IgG labeled SERS NPs. Notice how all the breast cancer cell lines show
significant binding with our CD47 labeled SERS NPs, apart from our negatively expressing CD47 cell
line, DLD−.
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For a more comprehensive and quantitative assessment of all the FACS runs performed in this
study refer to Figure 5. Notice how the overexpression of CD47 antibody correlates well with the
CD47 SERS NP binding. In most cases, there appears to be more fluorescence signal associated with
the cells incubated with the CD47 NPs as opposed to the cells incubated with the CD47 antibody
alone. This could be explained by the fact that the binding event of one NP with several bound
fluorophores will likely “outshine” the binding event of one CD47 antibody bound with a single
fluorophore. The multi-valent binding potential that the hundreds of antibodies on a single NP have
over single antibodies could also play a significant role in the increased binding behavior observed.
These FACS results clearly support the idea of utilizing CD47 SERS NPs as imaging contrast agents in
these breast cancer cell lines.
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Moving forward, we chose to assess the binding potential of our CD47 SERS NPs on fresh tissue
samples. We grew subcutaneous tumor xenografts in mice and then excised the tumors to evaluate
the binding efficiency of CD47 SERS NPs on fresh tissue samples excised from the mice. Our first
tissue study looked at the binding potential of our SERS NPs on the positive and negative control cell
lines, DLD+ and DLD−, respectively. The cells were grown on the flanks of mice to a tumor size of
~300 mm3. The mouse was euthanized, and the tumors were harvested for SERS NP administration.
The tumors were cut in half to expose fresh tissue to a mixture of CD47 SERS NPs (S440) and IgG
SERS NPs (S421). The respective tissues (DLD+ and DLD−) were dipped in a solution of NPs for
5 min as described in Section 2.4 of the Materials and Methods. The unbound NPs were then rinsed
away from the tissue with PBS for 20 s. The tissues were then imaged with our home-built Raman
system to reveal specific binding of the NPs. Figure 6 reveals significant binding of our CD47 SERS
NPs to the DLD+ tissue overexpressing CD47 as opposed to the negative control tissue (DLD−). This
data suggests that Raman imaging can detect the presence of positively expressing CD47 on a freshly
excised tissue sample.
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Figure 6. Raman imaging of positive and negative CD47 expressing tissues (DLD+ and DLD−,
respectively) harvested from mouse xenograft. (a) Digital photo of excised tissue after NPs
administration; (b) Raman imaging of tissue samples; (c) overlay of Raman imaging with tissue sample,
notice the increased NP binding in the tissue expressing CD47 as opposed to the negatively CD47
expressing tissue; (d) quantitative ratiometric analysis of specific CD47 SERS NP binding to non-specific
Isotype IgG SERS NP binding on tissue samples Notice the significant differences represented by
* (p < 0.05) between the positive control (DLD CD47+) and the negative control (DLD CD47−) tissues;
error bars represent standard error of mean (SEM). Color bar to the right of Raman images represents
Raman intensity, where red represents the highest Raman signal and black represents no associated
Raman signal.

Next, we assessed the tumor targeting ability of our Raman imaging approach on multiple breast
cancer tissues. We chose to focus on three distinct breast cancer cell lines: BT474, BT483, and HCC70.
Each of these cell lines had varying expression characteristics of estrogen receptor, progesterone
receptor, and HER2, including the triple negative cell line, HCC70 (Table 1). The cells were grown
on the flanks of mice to a tumor size of ~300 mm3. The mouse was euthanized, and the tumors as
well as the normal adjacent tissues were harvested for SERS NP administration as described above.
The tissues were rinsed and then imaged with our Raman imaging system to reveal specific binding of
the NPs. Figure 7 reveals significant binding of our CD47 SERS NPs to all three breast tissue cell lines
as opposed to the normal adjacent tissue taken from each of the mice. This data suggests that Raman
imaging can detect the difference between the positively expressing CD47 breast cancer tissue and the
neighboring normal tissue surrounding it. Note that the difference in expression levels of estrogen
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receptor, progesterone receptor, and HER2 between the different cell lines does not significantly affect
the ability of our approach to detect the breast cancer. This is an important feature of this approach
since it does not exclude triple negative breast cancer patients from its potential benefits. These results
strongly support this Raman imaging approach for image-guided surgery during lumpectomy.
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xenograft. (a) Digital photo of excised tissue after NPs administration; (b) Raman imaging of tissue
samples; (c) overlay of Raman imaging with tissue sample, notice the increased NP binding in the
breast cancer tissue as opposed to the normal adjacent tissue; (d) quantitative ratiometric analysis of
specific CD47 SERS NP binding to non-specific Isotype IgG SERS NP binding on each of the tissue
samples. Notice the significant differences represented by * (p < 0.05) between the cancer tissue and the
normal adjacent tissues; error bars represent standard error of mean (SEM). Color bar to the right of
Raman images represents Raman intensity, where red represents the highest Raman signal and black
represents no associated Raman signal.

4. Discussion

Breast cancer continues to rank among the most common cancers in women, affecting one in eight
women in the United States [32]. Currently, roughly one in four women who have a lumpectomy must
undergo additional surgery, which indicates the importance of improved surgical precision [33]. Our
results suggest that Raman imaging of our CD47 targeting SERS nanoparticles could play a significant
role in identifying and localizing residual breast cancer to help guide surgeons in the OR. As outlined
in Table 1, we assessed seven breast cancer cell lines, each expressing varying combinations of the
three main biomarkers (ER, PR, HER2) used to clinically manage breast cancer patients. Our results
showed that all the breast cancer cell lines overexpressed CD47 to a significant degree regardless of
their expression of ER, PR, or HER2.

More recently, image guided surgery has generated quite a bit of interest in the field of molecular
imaging, with several investigators assessing various contrast agents along with various imaging
techniques [34–43]. Both preclinical and clinical studies have shown the benefits that image guidance
can offer during all sorts of surgical applications. Wang et al. recently reported the use of near-infrared
II fluorescent emitting nanoparticles modified with tumor targeting peptides to improve surgical
resection of metastatic ovarian cancer in preclinical models [43]. Their technique was able to identify
and remove metastases ≤1 mm with better image quality and deeper tissue penetration than that
of clinically approved small molecule indocyanine green (ICG). Gao et al. reported on an entirely
different application for utilizing fluorescent imaging to guide head and neck squamous cell carcinoma
surgery [36]. They evaluated their strategy on 21 adult patients scheduled for standard of care surgery.
Patients received a tumor targeting fluorescent dye, panitumumab-IRDye800CW, via intravenous (IV)
administration. Images revealed three-fold signal difference between positive and negative specimens
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with a high correlation of fluorescent signal associated with the tumor’s location revealing high
sensitivity and specificity >89%. These results suggest that fluorescence imaging can be used to guide
head and neck surgeries with improved resection and patient outcome. Another group investigated
the use of image guidance during video-assisted thoraoscopic surgery for the resection of pulmonary
nodules [44]. ICG dye was administered to patients percutaneously under cone beam computed
tomography to mark/localize the tumor. Real-time fluorescence imaging was then performed to guide
subsequent resection. All pulmonary lesions were identified via NIR imaging, with no adverse events
supporting that this strategy can successfully localize non-visible, non-palpable pulmonary nodules.
More recently, the food and drug administration (FDA) approved aminolevulinic acid hydrochloride,
known as ALA HCl, as an imaging agent for patients with gliomas to aid in visualization of malignant
brain tissue during surgery. This imaging agent elicits accumulation of fluorescent protoporphyrin
IX (PPIX) in malignant glioma tissue and is used for fluorescence-guided tumor resections. Several
clinical trials supported its efficacy, revealing a more “complete” resection of tumor in patients as
compared to the control arm [45,46].

The added advantages that Raman imaging with SERS nanoparticles has to offer over other
conventional approaches, like fluorescence imaging, include its ultrahigh sensitivity and multiplexing
capabilities [2,22]. Our group has previously reported that Raman imaging with SERS NPs is
~1000 times more sensitive than the fluorescence imaging equivalent with quantum dot NPs [2].
Raman imaging, being an optical-based technique, is an ideal modality for surface imaging on fresh
tissues as it is relatively fast and non-destructive. In the future, it may be possible to topically apply a
cocktail of various tumor targeting SERS nanoparticles each targeting various breast cancer biomarkers
simultaneously. This approach would greatly increase the imaging specificity of breast cancer.
Wang et al. have demonstrated the use of a similar Raman imaging strategy for the detection of four
biomarkers: EGFR, HER2, CD44, and estrogen receptor (ER) [31,47]. As our understanding of breast
cancer biomarkers continues to improve, we hypothesize that multiplexed molecular imaging of breast
cancer will improve the completeness of resection and thus improve breast cancer patient outcomes.

The addition of CD47 to this SERS nanoparticle cocktail could have beneficial effects, especially in
cases where breast cancer patients do not express HER2 or ER. Around 20% of breast cancer patients
have triple negative breast cancer [48], in which their tumors do not express ER, PR, or HER2. Since
these women are not eligible for certain hormone therapies, complete surgical resection is even more
important [49]. African American and Hispanic women have a higher incidence of triple negative
breast cancer and poorer survival rates [50], representing a subpopulation of patients in need of
alternative biomarkers. As validated in this study, CD47 has shown high levels of expression on breast
cancer cells, including triple negative breast carcinoma cells, and could serve as a valuable biomarker
to target for both imaging and therapy [51].

CD47 has already been investigated as a biomarker for therapy, so its promise as an imaging
target is well justified. As a result of the overexpression observed on several solid tumors, researchers
have begun to investigate the potential of CD47 as a diagnostic imaging target. Ying Pan et al. showed
the potential of using a CD47 antibody to image human bladder cancer with fluorescence imaging [52].
They used fluorescent quantum dots labeled with CD47 antibodies, which were topically delivered
to fresh intact resected bladder specimens. They reported an 82.9% sensitivity and 90.5% specificity
for CD47-targeted imaging of bladder cancer with their fluorescent imaging approach, suggesting its
potential for improving cancer detection and enabling image-guided surgery. The same group recently
reported on the use of CD47 tumor targeting SERS nanoparticles using Raman imaging for the detection
of bladder cancer and found similar results supporting the use of CD47 as a diagnostic imaging target
to potentially guide transurethral surgery [53]. They also observed a passive accumulation of SERS
nanoparticles to the bladder cancer that they describe as an enhanced surface permeability and
retention effect in human bladder cancer [53].

Nanoparticles have had a challenging time translating to the clinic, especially in the context of
imaging applications. This is often due to their prolonged retention and potential systemic toxicity
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post IV administration. As a result, several researchers are looking toward utilizing topical approaches
to avoid negative systemic delivery effects [24,31,47,52–58]. Our topical approach of administering
nanoparticles directly to the resected tissue, investigated here, supports the idea that our tumor
targeting nanoparticles can still provide both sensitive and specific information between tumor and
normal adjacent tissue specimens post resection. This approach, investigated here, in turn eliminates
any concern regarding systemic toxicity since there is no direct administration of nanoparticles to the
patient. As an example, we were able to generate some preliminary data to show the potential this
strategy has for targeting breast cancer in a human breast cancer specimen resected from a 55-year-old
patient with invasive ductal carcinoma. Notice the specific binding of our CD47 targeted nanoparticles
to the breast cancer specimen as opposed to our isotype labeled nanoparticles (Figure 8). This
preliminary data supports further investigation of this nano-based imaging approach on clinical human
samples with normal adjacent tissue margins to evaluate its potential in guiding surgical resection.
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Figure 8. Raman imaging of resected invasive ductal carcinoma specimen from a 55-year-old patient.
(a) Digital photo of excised tissue after NPs administration; (b) Raman imaging of tissue sample;
(c) quantitative ratiometric analysis of specific CD47 SERS NP binding to non-specific Isotype IgG SERS
NP binding on the human tissue sample. Scale bar represents the specific/non-specific binding ratio of
our targeted/isotype-labeled nanoparticles.

Notably, our proposed approach is not limited to breast cancer surgery, but generalizable to other
solid cancers where organ-sparing surgery is paramount (e.g., head and neck cancers, melanoma,
pancreatic cancer, brain cancer, and kidney cancer). As previously mentioned, CD47 has been
shown to be overexpressed in several tumor types, including ovarian, colon, stomach, bladder,
glioblastoma, hepatocellular carcinoma, and prostate cancers [20]. Our CD47 tumor targeting SERS
nanoparticles could be applied topically to a number of these tissues during intraoperative tumor
resection. Alternatively, we recently reported that oral delivery of our nanoparticles reveals no
evidence of systemic toxicity and complete clearance from the body via the gastrointestinal (GI) tract
within 24 h post ingestion [21]. This approach could be particularly useful in areas along the GI tract
that overexpress CD47, like the stomach and colon, when used with a Raman endoscopic imaging
device [1,25,30,47]. This approach could provide endoscopists and surgeons with a molecular map
that offers real-time information to either sensitively diagnose or resect cancer.
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5. Conclusions

In summary, all seven of the breast cancer cell lines we investigated, including three triple-negative
lines, showed overexpression of CD47. Consequently, we investigated the tumor targeting and imaging
potential of CD47-targeted SERS nanoparticles in cells and on excised preclinical tissue samples.
Raman images revealed effective targeting of our SERS nanoparticles to positively expressing CD47
breast tumors as opposed to normal adjacent tissue. Despite the toxicity concerns associated with
nanoparticles, their many advantages over small molecule contrast agents should encourage further
investigation for clinical translation. This study clearly shows a non-toxic path forward for utilizing
these ultrasensitive SERS nanoparticles in guiding surgical resection with Raman imaging, and is an
important first step towards their clinical translation. In conclusion, the imaging strategy presented
here successfully distinguished tumor vs normal adjacent tissue in preclinical models and should be
further investigated in clinical human samples to assess its potential role in guiding surgical resection.
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