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ABSTRACT
Human milk glycans present a unique diversity of structures that suggest different mechanisms by 
which they may affect the infant microbiome development. A humanized mouse model generated 
by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc 
(3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and 
host–microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera 
significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) 
in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consump-
tion of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance 
of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of 
Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative 
abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quanti-
tative real-time PCR, did not significantly increase. OTUs corresponding to the species 
Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present 
in the control after the 3-week intervention, but were shared among the donor and specific 
disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. 
The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and 
decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cyto-
kine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like 
receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show 
efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN 
demonstrated physiological and immunomodulatory roles.
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Introduction

Microbial colonization of the infant gastrointestinal 
tract plays a fundamental role in maintaining 
a healthy status.1,2 Disruption or inappropriate 
development of the neonatal gut microbial com-
munity is linked to diseases such as necrotizing 
enterocolitis, diarrhea and allergies.3–5 The postna-
tal microbiota structure of the infant gut is closely 
related to the mother’s breast milk microbiota and 
the unique human milk glycan composition.6–8 

This includes free oligosaccharides (HMOs), 
mucins, glycoproteins and glycolipids.9,10 HMOs 
constitute the third largest solid component of 
human milk and over 200 different structures 
have already been identified.9 Fecal microbiota of 

breastfed infants is generally dominated by the 
phylum Actinobacteria, with Bifidobacterium as 
the main genus, and Firmicutes, with diverse repre-
sentation from numerous genera.11 Several studies 
have demonstrated that the fermentation of HMOs 
and the glycan moiety of mucins stimulate the 
growth of specific strains belonging to the genus 
Bifidobacterium and to a lesser extent to 
Lactobacillus.10 HMOs are also associated with var-
ious beneficial effects, including immunomodula-
tion, protection against infectious diseases, 
stimulation of intestine barrier functions and 
brain development.12–14 Compared to human 
milk, infant formula contains low amounts of 
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oligosaccharides with limited structural diversity 
and fucosylation.15 Indeed, the gut microbiome 
composition and health outcomes of formula-fed 
infants differ markedly from that of exclusively 
breastfed infants.16 Therefore, it will be important 
to identify glycan structures that are crucial for 
developing a beneficial gut microbiota composi-
tion, and that can be easily produced for using 
individually or combined in a glycan mix.

A few studies using in vivo animal models high-
light the ability of individual HMOs to modify the 
composition of the gastrointestinal microbiota. The 
levels of Barnesiella in the gut increased in a baby 
mouse model exposured to 2ʹ-fucosyllactose (2ʹFL) 
and 3-fucosyllactose (3FL), and these changes in 
the microbiota affected the susceptibility of mice 
to dextran sulfate sodium-induced colitis.17 

Supplementation of 2ʹFL also changed the compo-
sition of cecal microbiota, improved metabolic pro-
files and gut-brain signaling, and downregulated 
the expression of pro-inflamatory cytokines in 
a high-fat fed mouse model.18 Mice fed with a diet 
containing 3ʹ-sialyllactose (3’SL) and 6ʹ- 
sialyllactose (6’SL) have lesser colonic microbiota 
alterations and better anxiety-like behavior than 
control mice fed with a standard diet.19 

Humanized microbiome animal models are emer-
ging as powerful tools for analyzing human micro-
biota in a controlled mode. The microbial 
populations of fecal and jejunal content of germ- 
free mice inoculated with a model of human baby 
microbiota, which comprises seven bacterial 
strains, were modulated with galactosyl- 
oligosaccharides co-administrated with the probio-
tics Lactobacillus paracasei or Lactobacillus 
rhamnosus.20 An increase in the number of specific 
Bifidobacterium species and a reduction of 
Clostridium perfringens was observed. In addition, 
host metabolic pathways as lipid profiles and glu-
coneogenesis among others were modulated.20 An 
important reduction of clostridia numbers was 
observed recently in a germ-free mouse model 
with fecal microbiota from infants born by cesarean 
section and in the presence of a combination of 
Bifidobacterium infantis and human milk or 
HMOs.21

The disaccharides fucosyl-α1,3-GlcNAc (3FN) and 
fucosyl-α1,6-GlcNAc (6FN) that form part of HMOs 
and core-fucosylated N-glycans, respectively, have 

been synthetized in our laboratory.22,23 In vitro fer-
mentation analysis, using pure cultures23 and batch 
cultures with infant fecal microbiota,24 has demon-
strated that 3FN stimulates the growth of the species 
Lactobacillus casei and Bifidobacterium breve, respec-
tively. We have also produced lacto-N-biose (LNB; 
Gal- β1,3-GlcNAc), the main building block of type-1 
HMOs, and galacto-N-biose (GNB; Gal- 
β1,3-GalNAc), the core type-1 sugar from mucins.25 

LNB is also present as free sugar in human milk.26 

Both disaccharides have been shown to efficiently 
promote in vitro the growth of specific 
Bifidobacterium species.24,27 In this work, 
a humanized mouse model, which was generated by 
infant fecal microbiota transplantation, was utilized to 
evaluate the effects of 3FN, 6FN, LNB and GNB on 
the development of the gut microbiota composition 
(Figure 1). Short-chain fatty acids production and 
interactions host–microbiota, through the assessment 
of serum lipid profile and cytokines expression, were 
also measured.

Results

Modification of the fecal murine microbiota by 
infant fecal microbiota transplantation

We first assessed if the antibiotic treatment followed 
by infant fecal microbiota transplantation shifts the 
murine microbiota composition toward the donor 
microbiota profile. A PCoA plot of the 16S rRNA 
fecal microbial composition data using Bray–Curtis 
and Jaccard distance metrics showed that the mice 
groups, untreated, treated with antibiotics and treated 
with antibiotics followed by oral administration of 
infant fecal microbiota (control), and the pooled 
donor feces clustered separately (Figure 2a,b). Both 
mice groups, treated with antibiotics and control, 
were separated from the untreated mice group along 
the PCoA1 axis and from each other along the PCoA2 
axis. The significant separation between the antibio-
tics-treated and control mice groups was confirmed 
by statistical analysis (ANOSIM R = 1, p = 0.025; 
Adonis R2 = 0.919, p = 0.029). The control mice 
group has a lower distance to the donor microbiota 
than the mice group only treated with antibiotics 
(Figure 2a, b). A Venn diagram showed that 24 
OTUs were absent from untreated and antibiotics- 
treated mice groups and shared by the pooled infant 
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donor and the control humanized mice group (Figure 
2c and Supplemental Table 1). 
They belonged to the genera Bacteroides, 
Parabacteroides, Phascolarctobacterium, Klebsiella 
and Eggerthella, and the families Ruminococcaceae 

and Enterobacteriaceae. In addition, ten OTUs from 
the genera Bacteroides, Parabacteroides and 
Phascolarctobacterium were present in all the groups 
except in the antibiotic-treated group, indicating that 
their presence in the control group, which is also 
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Figure 1. Schematic representation of the experimental design. n = 5 mice in each group: untreated, antibiotic-treated, control, 3FN 
(fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and GNB (galacto-N-biose).

a
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Figure 2. Fecal microbial diversity of mice in response to antibiotic-treatment and infant fecal transplantation. Principal coordinates 
analysis (PCoA) plot of fecal microbiota composition using Bray–Curtis (a) and Jaccard (b) distance metrics. (c) Venn diagram of shared 
OTUs between the infant donor fecal mix and the fecal microbiota of the untreated, antibiotic-treated and control mice groups. FMT, 
fecal microbiota transplantation.
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treated with antibiotics, is due to the transplanted 
infant microbiota and not due to the indigenous 
bacteria. All these results revealed that antibiotic treat-
ment followed by oral inoculation led to successful 
engraftment of the infant microbiota. However, 
a limitation of this humanized animal model is that 
seven OTUs (belonging to the genera 
Bifidobacterium, Collinsella, Lactobacillus and 
Streptococcus, and to the order Clostridiales) specific 
to the donor were not transferred to the recipient 
mice. As well 19 OTUs (belonging to the genera 
Lactococcus and SMB53, the families Clostridiaceae, 
Peptostreptococcaceae and Rikenellaceae, and to the 
order Clostridiales) were shared by the untreated, 
antibiotic-treated group and the control humanized 
group, indicating that a proportion of the indigenous 
bacteria remain in the transplanted mice (Figure 2c 
and Supplemental Table 1). It cannot be ruled out that 
some of the residual microbiota influence the effects 

of the disaccharides, described below, on the infant 
gut microbiota.

Human milk-associated disaccharides produce 
compositional changes in the gut microbiota

The effect of the consumption of the disacchar-
ides 3FN, 6FN, LNB and GNB was tested in 
mice pre-treated with antibiotics followed by 
infant fecal transplantation. To understand the 
global changes of fecal microbial composition 
due to the consumption of these disaccharides, 
PCoA analysis was performed using Bray–Curtis 
distance metrics. The results showed that the 
control and each disaccharide feeding groups 
clustered separately (Figure 3a). The consump-
tion of the disaccharides has a strong effect on 
the fecal microbiota as PCoA 1 and PCoA 2 axes 
explain 42% and 20% of the total variance, 

Figure 3. Fecal microbial diversity and richness of infant fecal transplanted mice in response to disaccharide-supplemented diets. 
Principal coordinates analysis (PCoA) plot of fecal microbiota composition using Bray–Curtis (a), Shannon index (b), Chao1 index (c) and 
absolute richness (d) at OTU level. Box plots present the median (interquartile range) and min/max. 3FN (fucosyl-α1,3-GlcNAc), 6FN 
(fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and GNB (galacto-N-biose). Statistical significant differences compared to control are 
indicated: *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001.
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respectively, and it was confirmed by statistical 
analysis (ANOSIM R = 0.992, p = 0.001; Adonis 
R2 = 0.829, p = 0.0003). The microbiota α- 
diversity of all disaccharide-supplemented mice 
groups was significantly higher than that in con-
trol mice, with the only exception of the Chao1 
index for the GNB group (Figure 3b, c, d). 
Therefore, these results indicate that each of 
the disaccharides evaluated here is able to mod-
ify the fecal bacterial community diversity and 
richness.

Analysis of the relative abundance of fecal 
microbiota at the family level identified 12 
families that were differentially abundant 
between at least one of the four disaccharide- 
fed mice groups and the control group 
(Supplemental Figure 1). Notably, LNB supple-
mentation significantly increased the abundance 
of Bifidobacteriaceae, Lachnospiraceae, 
Ruminococcaceae, S247 and Turicibacteraceae. 
The four disaccharides increased Clostridiaceae 
and unclassified Clostridiales, and significantly 
decreased Enterobacteriaceae and 
Erysipelotrichaceae with respect to the control 
without carbohydrate supplementation. 
Regarding the relative abundance of fecal micro-
biota at the genus level, the results showed dif-
ferences among the five mice groups (Figure 4). 
Interestingly, a clustered bar-chart analysis with 
the top 30 more abundant genera showed two 
main clusters that differentiate control group 
from disaccharide-treated groups, and within 
these two main clusters the analysis clearly dif-
ferentiates the consumption of fucosyl- 
oligosaccharides from the consumption of galac-
tosyl-oligosaccharides (Figure 4b). Relative 
abundance changes of 19 genera were signifi-
cantly associated with at least one of the four 
disaccharide-supplementation mice groups with 
respect to the control group (Figure 5). The 
relative abundance of Bibidobacterium and 
unclassified S247 was significantly increased by 
LNB and Lactobacillus abundance decreased 
with GNB. Coprococcus abundance increased by 
3FN, and an unclassified genus of the 
Lachnospiraceae family was significantly 
increased by both, LNB and GNB. Mice fed 
with any of the fucosyl-disaccharides tested 
here showed a significantly decrease in 

abundance of Akkermansia while in GNB-fed 
mice its abundance increased. 3FN and LNB- 
supplemented mice groups showed an increase 
in Turicibacter abundance, and 6FN and GNB 
a decrease in unclassified Erysipelotrichae. The 
abundance of Megasphaera, Enterococcus, 
SMB53, unclassified Peptostreptococcaceae and 
unclassified Ruminococcaceae decreased in three 
out of the four disaccharide-fed mice groups. 
Certain bacterial genera were affected by all 
four treatments. Thus, the relative abundance 
of Ruminococcus, Oscillospira and an unclassified 
genus of the Clostridiaceae family was signifi-
cantly increased with the four disaccharides 
tested (Figure 5). Contrarily, the genus 
Eubacterium, an unclassified genus of the 
Enterobacteriaceae family and Clostridium 
decreased with the four disaccharides.

In order to evaluate if the disaccharides pro-
mote selectively the growth of bacteria from the 
donor, we compared the fecal microbiota data in 
a Venn diagram (Figure 6 and Supplemental 
Table 2). The results showed that six OTUs 
corresponding to the species Bifidobacterium 
longum and Ruminococcus gnavus, and to the 
order Clostridiales are shared among the donor 
and specific disaccharide groups, indicating that 
their survival possibly relies upon disaccharide 
supplementation. As well, one OTU belonging to 
Bifidobacterium adolescentis species is only 
shared by the donor and the GNB group, and 
it is not present in the control group (Figure 
6b). This result suggests that the persistence of 
this species depends on the GNB 
supplementation.

Effects of human milk-associated disaccharides on 
short-chain fatty acid (SCFA) concentrations in the 
colon

SCFAs are the major end products of the carbo-
hydrate fermentation processes by the intestinal 
microbiota. Acetate, propionate and butyrate 
represent more than 90% of the total SCFA 
produced in the colon.28 To determine whether 
supplementation of the specific human milk dis-
accharides tested here affected microbial meta-
bolic activity, those colonic SCFAs were 
measured (Figure 7). Formate, a main 
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fermentation end-product,29 was also analyzed. 
None of the assayed disaccharides affected sig-
nificantly the production of formate and propio-
nate by the microbiota. However, acetate levels 
increased significantly in the 3FN supplemented 
mice group compared to the control group. 

Interestingly, butyrate was not detected in the 
fecal samples of the control group; however, 
consumption of the disaccharides evaluated 
here resulted in butyrate production by the 
microbiota, being statistically significant for the 
3FN feeding group (Figure 7).

Figure 4. Fecal microbial composition of infant fecal transplanted mice in response to disaccharide-supplemented diets. (a) Fecal 
microbial relative abundances at genus level. Bars represent each diet group and values are mean relative abundance of each bacterial 
genus. (b) Clustered bar-chart analysis of fecal mice samples at genus level. Bars represent each mouse. Control group (n = 4); diet 
groups (n = 5). 3FN (fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and GNB (galacto-N-biose).
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Impact of human milk-associated disaccharides on 
lipid metabolism
Changes in the gut microbial composition and 
derived metabolites have been shown to influence 
lipid metabolism.30,31 Therefore, we analyzed the 
effect of the oligosaccharides on body weight, and 
concentrations of serum triglycerides and choles-
terol. At the end of the experimental procedure 
(week 7), the mice groups supplemented with 3FN 

and GNB had significantly higher weight gain as 
percentage of initial body weight in comparison 
with control mice group (Supplemental Figure 2). 
The 6FN-feeding group presented significantly 
higher levels of triglycerides than the control 
group, and mice consuming 3FN showed signifi-
cant decreased levels of HDL-cholesterol (Figure 8). 
None of the tested disaccharides resulted in 
a significant reduction of total cholesterol and LDL- 

Figure 5. Abundances of the fecal bacterial genera that showed statistically significant differences for at least one of the disaccharide- 
supplemented mice groups compared to control group. 3FN (fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and 
GNB (galacto-N-biose). Box plots present the median (interquartile range) and min/max. n = 4 (control group); n = 5 (diet group). 
Statistical significant differences compared to control are indicated: #p < 0.1, *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001.

GUT MICROBES e1914377-7



cholesterol levels. The results obtained here may be 
relevant since breastfed infants have higher levels of 
triglycerides, total cholesterol and LDL-cholesterol 
than formula-fed infants.32,33 Unexpectedly, in 

spite of their high serum lipid concentration, long- 
term breastfed infants have lower cardiovascular 
risk in adulthood than their formula-fed 
counterparts.34

Bifidobacterium longum_3291730
Bifidobacterium longum_72820
Ruminococcus gnavus_258969

Ruminococcus gnavus_173722
Ruminococcus gnavus_3715618
Clostridiales_4217959

Bifidobacterium longum_72820
Ruminococcus gnavus_173722
Clostridiales_4217959

Bifidobacterium longum_3291730

Ruminococcus gnavus_258969
Ruminococcus gnavus_3715618

Bifidobacterium adolescentis_4347159

a b

Figure 6. Venn diagram of shared OTUs between the infant donor fecal mix, the fecal microbiota of the control and fucosyl- 
oligosaccharides (a) or galactosyl-oligosaccharides (b) mice groups. 3FN (fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB 
(lacto-N-biose) and GNB (galacto-N-biose).

Figure 7. Effect of 3FN (fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and GNB (galacto-N-biose) on short-chain 
fatty acid concentrations in large intestine content of infant fecal transplanted mice. Box plots present the median (interquartile range) 
and min/max. n = 5 (control group); n = 5 (diet groups). Statistical significant differences compared to control are indicated: *p < 0.05.
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Effects of human milk-associated disaccharides on 
immunological biomarkers expression at intestinal 
tissue level

The expression of genes encoding pro- 
inflammatory (IL-1β, IL-6, Cxcl15 (IL-8), IL-12, 
TNF-α, IFN-γ) and anti-inflammatory (IL-4, IL- 
10 y IL-13) cytokines, and Toll-like receptors 
(TLR2 y TLR4) were evaluated in the large intestine 
tissue (Figure 9). Supplementation with 6FN or 
LNB did not modify significantly the expression 
of any of those genes involved in the activity of 
the immune system. However, the supplementation 
of the disaccharide 3FN resulted in a significant 
increase in expression of IL-10 and IL-13 and 
a significant decrease of TNF-α with respect to the 
control mice group. Moreover, the expression of 
the gene encoding TLR2, which is involved in the 
immune response mediated by gut microbiota, is 
significantly increased in the 3FN mice group 
(Figure 9a). The other three feeding groups, 6FN, 

LNB and GNB, showed a trend (p = 0.182, 0.164 
and 0.171, respectively) toward increased expres-
sion levels of that TLR gene (Figure 9b, c, d). The 
cytokine IL-1β was up-regulated in the GNB sup-
plemented mice group compared to the control 
group (Figure 9d).

Discussion

The gut commensal microbiota and associated 
metabolic products from breastfed infants have 
long been considered as contributors to infant 
health.16 However, substantial differences have 
been found between the gut microbiota composi-
tion of formula-fed and breastfed infants.16,35 

Those differences are due in part to the low con-
centrations and different structures of oligosac-
charides found in infant formulas compared to 
human milk.15 Infant formulas are based in bovine 
milk, which does not contain type-1 

Figure 8. Effect of 3FN (fucosyl-α1,3-GlcNAc), 6FN (fucosyl-α1,6-GlcNAc), LNB (lacto-N-biose) and GNB (galacto-N-biose) on serum lipid 
profile of infant fecal transplanted mice. Box plots present the median (interquartile range) and min/max. n = 5 (control group); n = 5 
(diet groups). Statistical significant differences compared to control are indicated: #p < 0.1, *p < 0.05; **p < 0.01.
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Figure 9. Effect of 3FN (fucosyl-α1,3-GlcNAc) (a), 6FN (fucosyl-α1,6-GlcNAc) (b), LNB (lacto-N-biose) (c) and GNB (galacto-N-biose) (d) on 
gene expression of cytokines and Toll-like receptors in the large intestine tissue of infant fecal transplanted mice. The values, expressed 
as fold-changes, represent relative expression in treated mice groups compared to control group. Box plots present the median 
(interquartile range) and min/max. n = 5 (control group); n = 5 (diet groups). Statistical significant differences compared to control are 
indicated: #p < 0.1, *p < 0.05.
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oligosaccharides,15 lacking therefore the predomi-
nant LNB structural unit of HMOs. Another differ-
ence with human milk is that oligosaccharides from 
bovine milk are highly sialylated and to a lesser 
extent fucosylated. While about 70% of HMOs are 
fucosylated, only 1% of the oligosaccharides from 
bovine milk are fucosylated.36 Therefore, there is 
a need to search for functional carbohydrates that 
can fulfill the oligosaccharide scarcity from infant 
formulas. In this work, we established a humanized 
mouse model to evaluate the impact of the disac-
charides LNB, GNB and two fucosyldisaccharides, 
3FN and 6FN, on the gut microbiota composition 
and host–microbiota interactions. Germ-free mice 
colonized with infant fecal microbiota have been 
previously used to evaluate the effect of probiotics 
and synbiotic mixes.20,21,37 Since germ-free mice 
have many biological and technological 
limitations,38,39 a strategy using conventional mice 
treated with antibiotics40 followed by oral adminis-
tration of infant fecal microbiota was successfully 
used here. There are some host factors that may 
impact the mice bacterial colonization from infant 
donors, indeed intestinal mucin glycans that are 
utilized by some bacterial species as growth sub-
strates differ between humans and mice.41 As well, 
the mucus thickness and many immunological 
functions are affected by the age of the mice.42 In 
our study, we have used young mice, but whether 
differences in the mucus layer and the immune 
system due to mice age would affect the ability of 
infant gut bacteria to colonize mice merits further 
research. In the mice model used here, 3 weeks after 
the infant fecal transplantation about 41% OTUs of 
the infant donor pool remain in the transplanted 
mice (Figure 2c). Additionally, seven OTUs were 
just present in the donor sample and in at least one 
of the disaccharide-supplemented groups (Figure 
6). These results evidenced the suitability of the 
infant microbiota-associated mice as a model to 
study the role of human milk glycans on infant 
gut microbiota development.

Unlike formula-fed infants, the fecal microbiota 
of breastfed infants is dominated by 
bifidobacteria.43 Using in vitro fermentation analy-
sis, our group and others have demonstrated that 
LNB is metabolized by infant-gut associated 
bifidobacteria.24,27 Here, this disaccharide is tested 
for the first time using an in vivo model and it has 

been demonstrated that it significantly increased 
the relative abundance of the genus 
Bifidobacterium in feces. However, the absolute 
levels of this genus in the LNB mice group were 
similar to the control group (Supplemental Figure 
3), suggesting that the high relative abundance of 
Bifidobacterium in LNB could be due to reductions 
in the relative abundances of other taxa. Regarding 
GNB, two OTUs belonging to B. longum and 
B. adolescentis species, respectively, that were pre-
sent in the infant donor sample, persisted in the 
GNB supplemented group but not in the control 
group. These results suggest that this disaccharide 
might have a role in the survival of particular spe-
cies or strains of bifidobacteria. B. longum species 
persisted also in the LNB and 6FN diet groups. All 
the B. longum strains tested in vitro fermented LNB 
and all of them contain the gene lpnA encoding the 
GNB/LNB phosphorylase specific not only to LNB 
if not also to GNB.44 Indeed, a B. longum strain 
isolated from fermented cultures with infant gut 
microbiota was able to grow in the presence of 
GNB.24 The positive effect of LNB, GNB or 6FN 
in the persistence of B. longum species in the gas-
trointestinal tract is a relevant outcome, since this 
bacterium has been widely associated with preven-
tion and fighting of several intestinal and immune 
diseases.45,46 Regarding B. adolescentis species, it 
has been shown previously that this species is not 
able to metabolize 3FN and 6FN.23 Unlike these, 
the utilization of LNB and GNB by B. adolescentis 
has not been tested. Then, we analyzed here if the 
type strain B. adolescentis ATCC 15703 utilizes 
those disaccharides as substrates and the results 
showed that this strain can be cultured in the pre-
sence of both LNB and GNB (data not shown). 
Survival of B. adolescentis in the GNB diet group 
might be important for serious infant gastrointest-
inal disorders such as necrotizing enterocolitis, for 
which a protection effect has been shown by that 
species.47

R. gnavus is a human gut symbiont present at 
early and adult life stages,48,49 and various studies 
have pointed toward a key role of this species in 
modulating gut inflammatory responses.50,51 The 
four disaccharides tested here significantly 
increased the relative abundance of the 
Ruminococcus genus in feces and allowed the per-
sistence of three OTUs corresponding to the species 
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R. gnavus (Figures 5 and 6). The genomes of strains 
belonging to this species harbor several genes 
encoding for glycosidases potentially implicated in 
the breakdown of mucin-derived glycans (https:// 
www.ncbi.nlm.nih.gov/genome). Four α- 
L-fucosidases from two R. gnavus species have 
been recently characterized and they catalyzed the 
release of α-1,2, α-1,3 or α-1,4-linked fucose.52 The 
presence of fucosidases with α-1,3 specificity in this 
species is in agreement with its survival in the 3FN 
supplemented group. The activity of α-fucosidases 
on 3FN and 6FN will produce the constituent 
monosaccharides fucose and GlcNAc. The action 
of specific β-galactosidases on LNB and GNB 
would generate galactose and the corresponding 
N-acetylhexosamines GlcNAc and GalNAc, respec-
tively. R. gnavus has been shown to metabolize all 
those monosaccharides with the exception of 
GalNAc.53

In recent years, the Akkermansia genus has 
received much attention because of its controversial 
involvement in human health and disease.5,54 Low 
levels of Akkermansia muciniphila in the human 
intestine have been associated with several diseases, 
including inflammatory bowel disease, atopic der-
matitis and type-2 diabetes.54 Conversely, a recent 
study showed that the relative abundance of this 
genus in a group of infants with allergic diseases is 
significantly higher than that in the healthy group.5 

A. muciniphila is known as an intestinal mucin- 
degrading bacterium, and possibly because of this, 
the members of this genus have been linked to 
reduced integrity of the intestinal barrier and infil-
tration of allergens through the intestinal wall.55 

Alternatively, a role in maintaining intestinal integ-
rity has also been claimed for that bacterium.56 

A striking difference has been shown between the 
galactosyl-disaccharides and the fucosyl- 
disaccharides tested here in relation to the relative 
abundance of Akkermansia genus in feces (Figure 
5). While with LNB and GNB (a mucin-derived 
disaccharide) the levels of these bacteria remained 
and significantly increased, respectively, with both 
fucosyl-disaccharides were significantly reduced. 
This latest result is in agreement with a previous 
work that showed that the gut of newborn mice fed 
with regular core-fucosylated milk N-glycan had 
less abundance of members of the Akkermansia 

spp. than those fed with low-core-fucosylated milk 
N-glycan.57

A desirable effect of HMOs is also to protect 
children from pathogenic diarrhea caused by the 
intestinal viruses rotavirus and norovirus. 
Interestingly, we have demonstrated in previous 
studies that those bacterial groups (Akkermansia 
spp. and Ruminococcus spp.) had divergent effects 
in rotavirus and norovirus susceptibility. 
Ruminococcus spp. correlated negatively with both 
rotavirus and norovirus IgA antibody titters, show-
ing a lower susceptibility to these two virus infec-
tions in individuals with higher amounts of 
Ruminococcus spp. (revealing its potential as anti-
viral bacteria). Contrarily, the IgA antibody titer to 
rotaviruses positively correlated with the amounts 
of Akkermansia spp., pointing to this bacterial 
group as a facilitator of rotavirus infections.58

SCFAs, the end products of carbohydrate fer-
mentation by the intestinal microbiota, are effi-
ciently absorbed by the gut mucosa and have 
important effects on host physiology though their 
involvement in gene expression regulation and 
action as signaling molecules.30 Acetate, propionate 
and butyrate are the most abundant SCFAs in the 
colon, and they are substrates for colonocytes and 
peripheral tissues.30,59 In addition, SCFAs decrease 
the luminal pH helping to inhibit potential patho-
gens growth and to increase nutrients absorption.60 

Butyrate has also been associated with protection 
against colorectal cancer and atherosclerosis, and it 
showed immune-modulatory activities.61,62 

Compared with formula-fed infants, exclusively 
breastfed infants present a higher proportion of 
acetate with respect to other SCFAs in the gut,63 

and this may provide protection against intestinal 
pathogens and allergic disease.64,65 Therefore, it is 
particularly relevant to provide specific carbohy-
drates that shift the microbiota toward the produc-
tion of those catabolic products. In this study, the 
supplementation with 3FN significantly increased 
the levels of butyrate and acetate. Interestingly, 
a significant increment of the abundance of 
Coprococcus genus presented in the 3FN-feeding 
group clearly differentiates this group from the 
other three disaccharide-feeding groups (Figure 
5). The species belonging to that genus have been 
described to ferment carbohydrates and produce 

e1914377-12 A. RUBIO-DEL-CAMPO ET AL.

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome


butyrate and acetate as end products.66,67 However, 
other possibilities for the increment of those SCFAs 
in the 3FN group cannot be discarded, including 
cross-feeding of intermediary and end metabolites 
between different gut bacteria.66

HMOs are known to affect the mucosal and 
systemic immunity of newborns, either directly by 
interacting with the immune cells or indirectly 
through the microbiota.68 Immunomodulatory 
activity has been previously described for fucosy-
lated HMOs such as 2ʹFL69 and lacto- 
N-fucopentaose.70 Here, the supplementation of 
3FN significantly decreased the expression of the 
pro-inflammatory cytokine TNF-α and enhanced 
the expression of the anti-inflammatory cytokines 
IL-10 and IL-13 in the mice large intestine tissue 
(Figure 9a). Therefore, these results suggested an 
anti-inflammatory potential for 3FN. This oligosac-
charide enhanced the production of butyrate, 
which has been previously involved in immune 
homeostasis, for example, by reducing the expres-
sion of pro-inflammatory cytokines, including 
TNF-α.71 We observed that the butyrate levels cor-
related positively with the expression of the cyto-
kine IL-10 (r = 0.6), while it correlated negatively 
with TNF-α (r = −0.7), showing a trend toward 
statistical significance (p = 0.175 and 0.233, respec-
tively). Interestingly, 3FN forms part of the Lewis 
x antigen and the presence of Lewis x-type oligo-
saccharides on the human milk glycoprotein mucin 
1 have been shown to interact with the dendritic 
cell-specific intercellular adhesion molecule- 
3-grabbing non-integrin (DC-SIGN), a specific 
C-type lectin on dendritic cells that binds 
fucose.72 DC-SIGN is expressed in the entire gas-
trointestinal tract of neonates and its interaction 
with fucosylated oligosaccharides has been sug-
gested to be an important mechanism of human 
milk to shape the infant immune system.72,73 

Whether butyrate and/or C-type lectins are 
involved in the immunomodulatory effects of 3FN 
requires further investigations. The 3FN feeding 
group also showed a significant increment of the 
expression of the gene encoding TLR2. The other 
three feeding groups, 6FN, LNB and GNB, tended 
to increase the expression of that TLR compared to 
the control group, although they did not reach 
statistical significance. TLR2 stimulation has an 
important role in protecting gut epithelial barrier 

function.74 This immunological receptor recog-
nizes microorganism-associated molecular pat-
terns, such as peptidoglycan, lipoteichoic acid and 
exopolysaccharide from Gram-positive bacteria.75 

Indeed, its activation has been demonstrated for 
Bidifobacterium strains isolated from breastfed 
infant feces.76

Even knowing the many benefits of HMOs in 
infant health, only 2ʹFL and lacto-N-neotetraose are 
currently added to infant formula, possible because 
their synthesis is still difficult and expensive.12 In 
this study, we demonstrated that four different dis-
accharides (3FN, 6FN, LNB and GNB) that are 
present in HMOs and glycoconjugates of human 
milk and mucosa, may play a role on infant micro-
biome building. However, this study may have lim-
itations due to the variability usually observed in 
animal experimentation, and should therefore be 
corroborated by further research. Within the four 
disaccharides, it is important to highlight that LNB 
increased the relative abundance of Bifidobacterium 
genus, whose high levels is the most outstanding 
differential characteristic of the gut microbiota in 
breastfed infants. In addition, the efficacy of 3FN in 
changing the microbiota concomitant with an 
increase in SCFA levels and an immunomodulation 
activity was also demonstrated. These results 
allowed to gain insights in the mechanisms by 
which human milk glycans are associated with 
infant health benefits, and the simple structure of 
those disaccharides, which facilitates their synth-
esis, make them good candidates for being utilized 
in infant functional food development.

Material and methods

Animals, infant fecal samples and disaccharides

Thirty-five C57BL/6 J female mice, 6 weeks old, 
were acquired from Charles River Laboratories 
(Saint Germain Nuelles, France). They were ran-
domly separated into seven groups of five mice each 
in individually ventilated cages in an environmen-
tally controlled room, following the standard pro-
tocols of the animal facilities and the rules of animal 
wellness.

The study includes four infants, whose parents 
were volunteers. Our inclusion criteria were that 
the infants were healthy, receiving no antibiotic or 
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probiotic treatment, between 1 and 3 months old, 
and exclusively breastfed. Stool samples were col-
lected in anaerobic jars with Oxoid AnaeroGen 
anaerobic atmosphere generation system sachets 
(Thermo Scientific), immediately stored at 4 °C 
and cryopreserved within the next 12 h as pre-
viously described with some modifications.77 

Briefly, cryopreservation media contained 80% 
BHI (Brain Heart Infusion, Pronadisa) 2X concen-
trated supplemented with 0.1% of cysteine and 20% 
skim milk (200 g/l) (Scharlab). Feces were diluted 
in cryopreservation media 1:2 (vol/vol) and stored 
in aliquots at −80°C.

The disaccharides 3FN, 6FN, LNB and GNB 
were synthesized in our laboratory by enzymatic 
transglycosylation reactions and purified by high- 
performance liquid chromatography (HPLC) as 
previously described.23,25

Experimental design, fecal transplant and 
treatments

The experimental protocol is outlined in Figure 
1. The seven groups of mice (untreated, antibio-
tic-treated, control, 3FN, 6FN, LNB and GNB) 
were acclimated in the animal facility for 1 week 
and then an antibiotic cocktail (0.5 g/l vancomy-
cin, 1 g/l neomycin sulfate, 1 g/l metronidazole, 
1 g/l ampicillin) was administered in drinking 
water ad libitum for 3 weeks to all the groups 
except the untreated group. That antibiotic com-
bination has been previously used.40 The anti-
biotic cocktail was renewed every 3 d and 
removed 24 h before infant fecal microbiota 
transplant. One mouse from the antibiotic- 
treated group died for unknown reasons during 
the study. Mice were fed a standard diet until 1 
week before fecal transplantation that was sub-
stituted by purified-defined germ-free diet (AIN- 
93 G, Envigo).

For the fecal transplant (control, 3FN, 6FN, 
LNB and GNB groups) a pool mix was prepared 
everyday with four fecal samples, one of each 
infant, and was kept on ice during the process. 
Each mouse received a volume of 100 μl of the 
pool mix in 3 consecutive days through oral 
gavage. Regarding oligosaccharide supplementa-
tion, 100 μl of 3FN, 6FN, LNB or GNB at 
10 mM were supplied through oral gavage 

every day to each mouse (5 mice in each feeding 
group) for 3 weeks. Control mice received water. 
Feces were collected from each mouse before the 
sacrifice. After this, intestines content and tissues 
were also collected. Feces and intestines content 
were kept frozen at −80°C until analysis. 
Intestine tissues were preserved in RNA Later 
(Sigma) and kept the first 24 h at 4°C and then 
at −80°C until use.

All animal experimentation procedures were 
validated by the Ethical Committee for Use of 
Laboratory Animals of the University of Valencia, 
and the Department of Agriculture, Livestock and 
Fisheries of the Generalitat Valenciana, with regis-
tration number 2018/VSC/PEA/0181. The use of 
human samples was approved by the Ethical 
Committee for Human Research of the University 
of Valencia, with registration number 
H1544010468380. Written informed consent was 
obtained from a parent of each of the subjects.

DNA extraction from fecal samples

Total DNA was extracted from fecal samples of each 
mouse at the end of the experiment (Figure 1) using 
the MasterPure Complete DNA & RNA Purification 
Kit (Epicenter) according to the manufacturer’s 
instructions with some modifications that included 
a 60 min incubation with 2 μl of lysozyme 20 mg/ml 
and 1 μl of mutanolysin 10 U/ml followed by 
mechanical disruption using 3-µm diameter glass 
beads in a FastPrep 24-5 G Homogenizer (MP 
Biomedicals, CA, USA). Total DNA concentration 
was measured using a Qubit® 3.0 Fluorometer (Life 
Technologies, Carlsbad, CA, United States) and 
DNA integrity-quality was analyzed by gel electro-
phoresis. A DNA sample from the control group was 
discarded for failing to pass the quality control.

16S rRNA amplicon sequencing and data analysis

The amplification of the V3-V4 variable region 
of the 16S rRNA gene of total DNA from fecal 
samples was conducted following the 
Metagenomic Sequencing Library Preparation 
Illumina protocol (Cod. 15044223 Rev. A). 
Gene-specific primers (PCR1_f: 5′- 
TCGTCGGCAGCGTCAGATGTGTATAAGAG-
ACAGCCTACGGGNGGCWGCAG-3′; PCR1_r: 5′- 
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GTCTCGTGGGCTCGGAGATGTGTATAAGA-
GACAGGACTACHVGGGTA

TCTAATCC-3′) containing Illumina adapter 
overhang nucleotide sequences were selected as 
previously described.78 A multiplexing step was 
performed using Nextera XT Index Kit and 
a Bioanalyzer DNA 1000 chip (Agilent 
Technologies) was used to verify the amplicons 
size (~550 bp). Libraries were sequenced using 
a 2 × 300 pb paired-end run (MiSeq Reagent kit 
v3) on a MiSeq Sequencer according to manufac-
turer’s instructions (Illumina) by the Central 
Service of Research Support of the University of 
Valencia (Spain).

Sequencing data have been demultiplexed 
using Illumina bcl2fastq© program. Forward 
and reverse raw reads were checked for quality, 
adapter trimmed and filtered using AfterQC79 

and FastQC v0.11.8 (http://www.bioinformatics. 
babraham.ac.uk) tools. QIIME software V1.9.1 
was used to analyze the MiSeq sequencing 
data,80 including forward and reverse reads join-
ing, chimera removal, data filtering and taxo-
nomic annotation. Chimeric sequences were 
removed from the reads using the USEARCH 
6.1 algorithm.81 Reads were clustered into opera-
tional taxonomic units (OTUs) based on a 97% 
identity threshold value. Alignment of the 
sequences was carried out using PyNAST82 

with reference to the Greengenes core reference 
database (version 13_8).83 Taxonomic assign-
ment was made using the UCLUST classifier.81

Microbiota data were analyzed in the Calypso 
online platform (v8.84) (http://cgenome.net/wiki/ 
index.php/Calypso/) and data was normalized by 
the Total-Sum Scaling (TSS) method with square 
root transformation. Total Richness and alpha 
diversity indexes (Shannon and Chao1) were deter-
mined. Beta diversity was represented by PCoA 
plot based on Bray–Curtis and Jaccard distance. 
Analysis of similarities (ANOSIM) and permuta-
tional multivariate analysis of variance (Adonis) 
based on Bray–Curtis distance were also achieved. 
Linear discriminant analysis effect size (LEfSe) was 
used to identify differences in microbial genera and 
families between control and oligosaccharide trea-
ted mice groups.

Raw sequences are deposited into the Sequence 
Read Archive (SRA) of NCIB (http://www.ncbi. 

nlm.nih.gov/sra) and can be assessed with the 
accession number PRJNA668130.

Quantification of Bifidobacterium genus by 
specific real-time PCR

Quantitative real-time PCR (qPCR) assays were 
performed as previously described24 and using the 
Bifidobacterium-specific 16S rRNA gene primers 
Bifido5ʹ (GAT TCT GGC TCA GGA TGA) and 
Bifido3ʹ (CTG ATA GGA CGC GAC CCC). The 
qPCR amplification and detection were conducted 
in a LightCycler 480 Real-Time PCR System 
(Roche). Each reaction mixture of 10 μl contained 
NZYSpeedy qPCR Green Master Mix (NZytech), 
0.25 μl of each primer (10 μM) and 1 μl of template 
DNA. All samples were analyzed in triplicate. 
Standard curves of specific DNA amplicon- 
fragments obtained with the primers pair were 
used to calculate bacterial concentration in each 
sample.

Short-chain fatty acids’ (SCFAs) analysis

SCFAs were extracted from large intestine con-
tent and analyzed by gas chromatography mass 
spectrometry (GC/MS) as described in the 
Agilent application note.84 Briefly, 30 mg of 
intestinal content were suspended in 1 ml 10% 
isobutanol and mechanically homogenized with 
glass beads The mixtures were centrifuged at 
17,000 g for 5 min. Sample supernatants and 
standards were treated and subjected to the 
derivatization procedure as described in the 
Agilent application note, and 3-methylpenta-
noic acid was used as internal standard. 
Analysis of SCFAs was performed on an 
Agilent 7890B GC/5977 MSD (Agilent, Santa 
Clara, CA, USA) using a Agilent HP-5 ms col-
umn (30 m × 0.25 mm × 0.25 µm). The injector 
temperature was set at 260°C in split mode 
(10:1) and a volume of 1 µl was automatically 
set. The column temperature was initially 40°C 
for 5 min and then increased to 120°C at 10°C/ 
min and then ramped to 310°C at 40°C/min 
and held for 2 min. The MS transfer line was 
maintained at 280°C and the ion source at 
230°C.
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Serum lipid analysis

About 1 ml of blood from the heart of mice was 
collected at the time of sacrifice and then centri-
fuged at 1,500 × g for 5 min. The serum was used to 
determine total cholesterol, triglycerides and low- 
density lipoproteins (LDL) by Echevarne 
Laboratories (Spain) using standard methods.

RNA isolation

Five mg of large intestine tissue were homogenized 
using a Polytron PT10-35 GT (Thermo Fisher 
Scientific). After tissue disruption, the RNA was 
purified using the NZY total RNA isolation kit 
(Nzytech) following the manufacturer instructions. 
RNA quality was checked by gel electrophoresis 
and quantified spectroscopically using 
a NanoDrop ND-1000 system (NanoDrop 
Technologies).

Analysis of cytokines and Toll-like receptors 
expression

The expression of genes encoding cytokines (IL-1β, 
IL-6, Cxcl15 (IL-8), IL-12, TNF-α, IFN-γ, IL-4, IL- 
10 y IL-13) and Toll-like receptors (TLR2 y TLR4) 
were evaluated using reverse transcription- 
quantitative PCR (RT-qPCR). First-strand comple-
mentary DNA (cDNA) was obtained from 1 μg of 
total RNA using Maxima first-strand cDNA synth-
esis kit (Thermo Scientific™). RT-qPCR was per-
formed for each cDNA in triplicate using the 
LightCycler 480 System (Roche Technologies). 
Each qPCR reaction mixture (10 μl) contained 
5 μl of NZY Speedy qPCR Green Master Mix 2X 
(Nzytech), 0.4 μl of each primer (10 mM) and 2 μl 
of diluted 1:20 cDNA template. Primer sequences 
are listed in Supplemental Table 3. The expression 
level of GAPDH and RPLPO housekeeping genes 
was used as reference.

The qPCR conditions were 95°C for 2 min, fol-
lowed by 40 cycles of 10 s denaturation at 95°C and 
15 s of annealing/extension at 60°C or 65°C 
(Supplemental Table 3). Relative expression values 
were calculated using the Relative Expression 
Software Tool (REST 2009, Qiagen). Linearity and 
amplification efficiency were determined for each 
primer pair using LinRegPCR software.85

Culture of Bifidobacterium adolescentis with LNB 
and GNB

The growth of B. adolescentis ATCC 15703 in the 
presence of each disaccharide at 10 mM was tested 
in MRS basal medium as previously described.23

Statistical analysis

The data obtained were analyzed by one-way 
ANOVA with Dunnett´s multiple comparisons 
test using GraphPad Prism, version 6.07 
(GraphPad Software Inc., San Diego, CA, USA). 
Correlation of the expression levels of cytokines 
with butyrate concentrations were analyzed using 
the Spearman’s correlation coefficient. Statistical 
significant differences were accepted at different 
levels # p < 0.1, *p < 0.05; **P < 0.01; ***p < 0.001, 
****p < 0.0001.
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