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Abstract

Heparan sulfate proteoglycans (HSPGs) consist of a core protein with side chains of the gly-

cosaminoglycan heparan sulfate (HS). We have previously identified (i) the HSPGs synde-

can-1 (SDC1), and collagen type XVIII (COL18) inside mouse and human islet beta cells,

and (ii) a critical role for HS in beta cell survival and protection from reactive oxygen species

(ROS). The objective of this study was to investigate whether endoplasmic reticulum (ER)

stress contributes to oxidative stress and type 2 diabetes (T2D) by depleting beta cell

HSPGs/HS. A rapid loss of intra-islet/beta cell HSPGs, HS and heparanase (HPSE, an HS-

degrading enzyme) accompanied upregulation of islet ER stress gene expression in both

young T2D-prone db/db and Akita Ins2WT/C96Y mice. In MIN6 beta cells, HSPGs, HS and

HPSE were reduced following treatment with pharmacological inducers of ER stress (thapsi-

gargin or tunicamycin). Treatment of young db/db mice with Tauroursodeoxycholic acid

(TUDCA), a chemical protein folding chaperone that relieves ER stress, improved glycemic

control and increased intra-islet HSPG/HS. In vitro, HS replacement with heparin (a highly

sulfated HS analogue) significantly increased the survival of wild-type and db/db beta cells

and restored their resistance to hydrogen peroxide-induced death. We conclude that ER

stress inhibits the synthesis/maturation of HSPG core proteins which are essential for HS

assembly, thereby exacerbating oxidative stress and promoting beta cell failure. Diminished

intracellular HSPGs/HS represent a previously unrecognized critical link bridging ER stress,

oxidative stress and beta cell failure in T2D.
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Introduction

Type 2 diabetes (T2D) is a metabolic syndrome disease in which obesity, insulin resistance,

hyperglycemia, dyslipidemia and chronic low-grade inflammation of pancreatic islets contrib-

ute directly or indirectly to beta cell failure [1, 2]. Under normal conditions, pancreatic beta

cells are highly metabolically active, due to their specialized role in synthesizing proinsulin/

insulin. The ER is a subcellular compartment that functions to chemically modify and fold

newly synthesized proteins, including proinsulin, into their mature state. Metabolic dysfunc-

tion in T2D and insulin (INS) gene mutations disrupt ER homeostasis, resulting in the accu-

mulation of misfolded proteins in the ER lumen and ER stress [3–5]. ER stress is exacerbated

by the reduced availability of protein-folding chaperones, inhibition of protein glycosylation,

depletion of calcium ions from the ER and local oxidative stress [6, 7]. The unfolded protein

response (UPR) is an adaptive response for relieving ER stress by decreasing “global” protein

synthesis (at the level of translation) and increasing the transcription of protective genes e.g.,

ER chaperones [6, 7]. The capacity for the UPR to prolong beta function is determined by a

delicate balance between these two processes.

Oxidative stress is also a key disorder outside the ER in T2D beta cells and is a consequence

of increased metabolic demand [5, 8–10]. Under normoglycemic conditions, beta cells pro-

duce ROS at multiple sites by (i) oxidative phosphorylation in mitochondria, (ii) disulfide

bond formation during proinsulin protein folding in the ER [11] and (iii) NADPH oxidase,

localized at the cell membrane and in insulin granules [8, 12]. Neutralization of intracellular

ROS is an essential process for preventing oxidative damage and preserving beta cell integrity.

However, beta cells have low basal levels of antioxidant enzymes, relative to other tissues [13,

14], suggesting that a compensatory antioxidant mechanism exists. Recently we discovered

that normal mouse and human beta cells have an unusually high intracellular level of highly

sulfated heparan sulfate (HS), which is critical for their survival [15, 16]. Mechanistically, beta

cell HS provides a constitutive mechanism for quenching intracellular ROS generated during

normal metabolism [15, 16]. In T2D, oxidative stress and ER stress contribute to beta cell fail-

ure [4–6, 17–19], with elevated ROS representing a mediator or by-product, respectively, in

different sub-cellular compartments [5]. This dysregulation of ROS suggests that the antioxi-

dant capacity of HS is impaired in beta cells in T2D.

HS is a sulfated linear polysaccharide containing repeating disaccharides of N-acetylated

glucosamine and uronic acid [20, 21]. HS chains are synthesized directly onto a core protein

forming a HSPG, e.g., collagen type XVIII (COL18), syndecans (SDC1-4), glypicans (1–6),

agrin, CD44 and perlecan [20–24]. The core proteins are essential to HS synthesis because they

provide the necessary serine residues required to initiate HS assembly [23]. While HSPG core

proteins undergo folding and maturation in the ER, HS chains are assembled onto the core

proteins in the Golgi apparatus and subsequently undergo chemical modification [21–23].

Conventionally HSPGs are expressed extracellularly where their HS chains function in cell

adhesion, as reservoirs for bioactive proteins and as structural components in basement mem-

branes [21–26]. In contrast, HSPG core proteins (COL18, SDC1, CD44)/HS are highly

expressed intracellularly in normal mouse and human beta cells [15, 16, 27]. HS in beta cells

functions as a non-enzymatic antioxidant [15, 16, 28], influences postnatal islet maturation

and regulates insulin secretion [29, 30]. In addition, studies in beta cell lines have also demon-

strated that desulfation of HS impairs protection from hydrogen peroxide-induced death [31]

and that the HSPG core protein syndecan (SDC4) plays an important role in insulin secretion

[32].

Beta cell HS deteriorates acutely during the isolation of normal islets in vitro and chroni-

cally during the development of type 1 diabetes (T1D), due to excessive oxidative damage and
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HS degradation by leukocyte-derived HPSE, respectively [15, 16]. In vitro, replacement of lost

HS using HS mimetics preserves the survival of isolated beta cells and provides protection

against hydrogen peroxide (ROS)-induced cell death [15, 16]. Supporting a mechanistic role

for HPSE in T1D, in vivo treatment of NOD mice with PI-88 (a heparanase inhibitor/HS

replacer), reduced the incidence of diabetes, improved islet pathology and preserved beta cell

HS [15]. We also found that beta cell HSPG core proteins were decreased in human pancreases

from donors with T1D [16], potentially due to protease(s) produced by invading leukocytes

and/or ER stress [33–35]. We reason that the substantial loss of beta cell HS following islet/

beta cell isolation in vitro and in T1D increases the sensitivity of beta cells to oxidative (ROS-

mediated) damage [15, 16, 28]. Against this background we have explored whether beta cell

HSPGs and HS are altered in T2D and impact cell viability.

In this study we investigate the relationship between spontaneous ER stress and beta cell

HSPGs/HS in the db/db mouse model of obesity-induced T2D and in Akita (Ins2WT/C96Y)

mice. In addition, we experimentally induce ER stress in MIN6 beta cells in vitro and monitor

intracellular HSPGs/HS. Intervention studies further interrogate the relationship between (i)

ER stress and beta cell HSPGs/HS in db/db mice treated with TUDCA to relieve ER stress and

(ii) intracellular HS, oxidative stress and the viability of db/db beta cells in vitro using HS

replacement and acute exposure to hydrogen peroxide. Our findings reveal a previously unrec-

ognized inter-relationship between ER stress, HSPGs, HS and oxidative stress in beta cells.

Materials and methods

Animals

C57BL/KsJ db/db, heterozygous (db/+) and wild-type (wt; +/+) mice, heterozygous Akita

(Ins2WT/C96Y) and wild-type Ins2WT/WT mice were obtained from the Australian Phenomics

Facility, The Australian National University, Canberra, ACT, Australia. Db/db mice carry a

homozygous point mutation in the leptin receptor gene and develop obesity and hyperglyce-

mia [36]; heterozygous Akita mice have a point mutation in the insulin 2 (Ins2) gene, resulting

in misfolding of proinsulin, ER stress in beta cells and rapid onset of diabetes [37]. The mice

were housed under specific pathogen free conditions in individually ventilated cages (up to 5

mice/cage). All mice were maintained with irradiated standard rodent chow and water ad libi-

tum with environmental conditions set at ~ 19˚C and an automated 12 hr light/dark cycle.

Groups of male db/db mice at 4 weeks of age were randomly selected and treated daily (a.m.)

with TUDCA (Tauroursodeoxycholic acid, 150 mg/kg; Calbiochem, EMD Millipore, Darm-

stadt, Germany) i.p. for 4 weeks [38, 39]; control mice were treated with 8 μl/g saline (diluent)

i.p. Non-fasting blood glucose levels and body weight were monitored up to 3x/week (a.m.).

After termination of treatment, HbA1c levels were measured using a HemoCue HbA1c 501

analyzer (Angelholm, Sweden). Mice were euthanized by cervical dislocation at the completion

of treatment and/or for pancreas harvest. All procedures and experiments were approved by

The Australian National University Animal Experimentation Ethics Committee.

Islet isolation

Pancreatic islets were isolated by intra-ductal infusion of collagenase P (2.5 mg/mL; Roche

Diagnostics, Mannheim, Germany) followed by hand-picking [15, 27, 40, 41]. For Akita

donors, digested pancreases were resuspended in a dithizone solution (~ 3ml at 20 mg/0.6ml;

Sigma-Aldrich, St Louis, MO, USA) to identify islets for hand-picking [42, 43].
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Preparation and culture of isolated mouse islet cells and MIN6 cells

Isolated mouse islets were dispersed into single cells by Accutase (Milllipore, Temecula, CA,

USA; 250 μl/500 islets; [16]) (https://dx.doi.org/10.17504/protocols.io.bmgjk3un) and trans-

ferred to a 96 well plate (#650180, CELLSTAR, Greiner Bio-one, Frickenhausen, Germany) for

staining and analysis by flow cytometry or for culture. Islet cells (> 90% beta cells [15]) were

cultured in RPMI 1640 media supplemented with 10% heat-inactivated fetal calf serum

(HIFCS; Sigma-Aldrich, St. Louis, MO, USA), L-glutamine (Life Technologies, Carlsbad, CA,

USA) and antibiotics (80.7 mM Penicillin G (MP Biomedicals, Santa Ana, CA, USA), 68.6 mM

Streptomycin sulfate (Sigma-Aldrich), 5 mM Neomycin sulfate (Sigma-Aldrich)) in a 96 well

plate (4 x 104 cells/well) at 37˚C in humidified 5% CO2/ 95% air. MIN6 beta cells (authenti-

cated/screened and provided by R. Laybutt/T. Biden, The Garvan Institute of Medical

Research, Sydney) [44] were maintained in culture in DMEM with high glucose (25 mM; GIB-

CO-Invitrogen, Carlsbad, CA, USA) supplemented with 10% HIFCS, 15 mM HEPES (GIB-

CO-Invitrogen) and antibiotics at 37˚C in humidified 5% CO2/ 95% air. MIN6 cells were were

treated in culture with thapsigargin (50 nM; Sigma-Aldrich) or tunicamycin (2 μM; Sigma-

Aldrich) in 6 mM glucose DMEM medium for 20–24 hrs for ER stress assessment by

qRT-PCR or for 3 days for analysis of HSPG core proteins, HS and HPSE by flow cytometry.

Real-time RT-PCR

Two-step qRT-PCR was used to measure transcripts of ER stress markers (Bip, p58, Chop and

Atf3) in isolated islets and MIN6 cells. Total RNA was extracted from isolated islets (100–743

islets) using the RNeasy kit (Qiagen, Hilden, Germany) and cDNA was synthesized using

Superscript RNase reverse transcriptase III (Invitrogen, Carlsbad, CA, USA). Real-time PCR

was performed using TaqMan gene expression assays with FAM-labelled TaqMan1MGB

probe (ThermoFisher, Waltham, MA, USA; S1 Table) and a AB17900HT real-time PCR

machine with 7900HT Sequence Detection system (v2.2.2) software (Applied Biosystems, Fos-

ter City, CA, USA). Gene expression was quantified using the comparative CT method [15, 27,

45] with values normalized to the house-keeping gene Gapdh (for islets) or Ube2d1 (for MIN6

cells) and expressed as a fold change compared to control samples (control MIN6 cells,

Ins2WT/WT islets, wt or db/+ islets or mouse kidney (irrelevant tissue) samples).

Culture of primary beta cells with HS mimetics

Isolated mouse islet cells were cultured ± heparin (an HS analogue; Celsus Laboratories, Cin-

cinnati, OH, USA; 50 μg/ml) or PI-88 (a HS mimetic; Muparfostat; Progen Pharmaceuticals,

Brisbane, Australia; 50 μg/ml) in 96 well plates (4 x 104 cells/well) for 2 days at 37˚C [15, 16]

followed by assessment of beta cell viability by flow cytometry analysis.

Flow cytometry

Primary beta cells (4 x 104 cells/well) and MIN6 cells (2 x 105 cells/well) were stained either for

cell surface or intracellular expression of HSPGs, HS and HPSE in separate aliquots of the

same cell population [27]. Briefly, primary beta cells and MIN6 beta cells were fixed and per-

meabilized using the CytoFix/Cytoperm Fixation/Permeabilization kit (BD Biosciences,

#554722) for intracellular staining. For either cell surface or intracellular staining, the cells

were incubated with Fc block (rat anti-mouse CD16/CD32 mAb) for 10 mins on ice followed

by unlabelled primary antibodies (mouse anti-mouse collagen type XVIII (COL18)), rat anti-

mouse CD138 (anti-syndecan-1 (SDC1)), rat anti-mouse CD44, 10E4 mouse anti-human HS

or HP3/17 mouse anti-human heparanase (HPSE)) for 30 mins on ice (S2 Table). The cells
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were washed with either 10% FCS/PBS (cell surface staining) or BD Perm/Wash buffer (Cyto-

Fix/Cytoperm Fixation/Permeabilization kit; intracellular staining) and incubated with sec-

ondary antibodies (goat anti-mouse Ig PE, mouse anti-rat kappa PE or rat anti-mouse Ig

FITC) for 30 mins on ice (S2 Table; https://dx.doi.org/10.17504/protocols.io.bmsyk6fw). The

stained cells were transferred to FACs mini tubes (Axygen, Salt Lake City, UT, USA) and run

on a flow cytometer. The geometric mean fluorescence intensity (GMFI) of staining was deter-

mined using FlowJo software (version 10.0.7, TreeStar Inc., Ashland, OR, USA). The viability

of primary beta cells was assessed by labelling with 0.04 μM Calcein-AM (Life Technologies,

Eugene, OR, USA) followed by 2.5 μg/ml propidium iodide (PI; BD Biosciences, San Jose, CA,

USA) for 15 min at 37˚C [15, 16]. Beta cell death ± treatment with 30% H2O2 (Chem-Supply,

Gillman, South Australia, Australia) was analyzed by labelling with Sytox Green (31.25 nM;

Life Technologies) for 15 mins [15, 16]. Flow Jo software (version 10.0.7) was used to deter-

mine % viable cells (Cal+PI-), dead cells (Cal-PI+) and damaged cells (Cal+PI+) or % Sytox

Green+ve dead/damaged cells (https://dx.doi.org/10.17504/protocols.io.bmgjk3un).

Histology and immunohistochemistry

Pancreases were fixed in 10% neutral-buffered formalin, and paraffin sections (4 μm) were

stained with haematoxylin and eosin (H&E) or by immunohistochemistry. For immunohis-

tochemistry, antigen retrieval for HS and COL18 was performed using 0.05% pronase (Calbio-

chem) whereas heat/citrate buffer (pH 6) was used for SDC1 and CD44 [16, 27]. HS was

detected immunohistochemically using either 10E4 mouse anti-human HS (recognizes N-sul-

fated/N-acetylated glucosamine in HS; [31, 46, 47]) or VSV-tagged phage display single chain

variable fragment (scFv) EV3C3 anti-HS Ab (stains for N-sulfation, C5 epimerisation and 2-O

sulfation in HS chains; [31, 48, 49]) followed by HRP-conjugated polyclonal rabbit anti-mouse

Ig (dx.doi.org/10.17504/protocols.io.bmgbk3sn) or rabbit anti-VSV-G pAb/HRP-conjugated

polyclonal swine anti-rabbit Ig, respectively (S3 Table). HSPG core proteins were identified

using mouse anti-mouse COL18 (https://dx.doi.org/10.17504/protocols.io.bmgbk3sn), rat

anti-mouse SDC1 (CD138; (https://dx.doi.org/10.17504/protocols.io.bmghk3t6) and rat anti-

mouse CD44 mAbs (https://dx.doi.org/10.17504/protocols.io.bmgfk3tn), with HRP-conju-

gated rabbit anti-mouse Ig or anti-rat Ig (Dako, Carpinteria, USA) (S3 Table). For CD44 stain-

ing, rat anti-mouse CD44 (IM7) mAb which recognizes all CD44 isoforms [50–53] and mouse

anti-human CD44v3 mAb which recognizes a CD44 isoform that carries HS side-chains [50–

52], demonstrated a similar pattern of intra-islet staining (S1 Fig). CD44 core protein analyzed

using rat anti-mouse CD44 (IM7) mAb in mouse islets therefore represents an HSPG. Insulin

was detected (without antigen retrieval) using mouse anti-insulin mAb (S3 Table) with bioti-

nylated anti-mouse IgG and Avidin-Biotin-complex (ABC) reagent [16] (https://dx.doi.org/

10.17504/protocols.io.kv6cw9e). Isotype control mouse IgMκ (for anti-HS 10E4 mAb), rat

IgG2ak, rat IgG2bk or mouse IgG2b (for anti-HSPG mAbs), mouse IgG1κ (for anti-insulin mAb)

or rabbit anti-VSV pAb alone (for anti-HS EV3C3 scFv) were used to detect background stain-

ing. 3-amino-9-ethylcarbazole (AEC; Sigma-Aldrich) was used as the chromogen. Immunos-

tained pancreas sections were deidentified for blinded analysis and the % of islet area stained

was assessed using Image J software with colour deconvolution plugin (v 1.44a; NIH) [16].

Immunofluorescence staining

For colocalization studies of COL18, paraffin sections were treated with 0.05% pronase for

antigen retrieval, blocked with M.O.M Ig block in 2% bovine serum albumin (BSA; Sigma)/

phosphate buffered saline (PBS) and incubated overnight (4˚ C) with COL18A1 mAb (1/50).

After washing, the sections were then stained with AlexaFluor 488-donkey anti-mouse IgG
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(Thermo Fisher, Rockford, IL, USA). The sections were washed and then incubated with rab-

bit anti-human glucagon IgG (Abcam, Cambridge, UK) or guinea-pig anti-insulin Ig (Dako,

Santa Clara, CA, USA). Following washing, the sections were stained with AlexaFluor

568-donkey anti-rabbit IgG or AlexaFluor 568-goat anti-guinea-pig IgG (Thermo Fisher)

(https://dx.doi.org/10.17504/protocols.io.btqynmxw). Background staining was determined

using sections stained only with the secondary antibody. Nuclei were stained with DAPI

(0.2 μg/ml; Sigma). After washing, Trueblack (Biotium, Fremont, CA; 1/20 in 70% ethanol)

was applied for 30 secs to reduce autofluorescence. The slides were washed and mounted using

a 1.5H cover glass (Marienfeld, #0107222, Lauda-Konigshofen, Germany) and antifade mount-

ing medium (ProLong Diamond, Invitrogen). Sections were imaged using an automated Axio

Observer inverted fluorescence microscope (Zeiss; Göttingen, Germany). Merged images were

prepared using ZEN (version 2.3) software (Zeiss).

Statistical analysis

Data are presented as mean ± SEM. Statistical analyses included one-way ANOVA with

Fischer’s unprotected least significant difference (LSD), unpaired t-test and Mann-Whitney

test.

Results

Age-dependent decline in intracellular HSPG core proteins and HS in db/

db islets

Firstly we investigated whether like T1D [15, 16], T2D development in db/db mice also corre-

lated with a deterioration in beta cell HS. We extended the analysis to HSPG core proteins,

based on (i) the impact of ER stress on global translation/protein synthesis and (ii) the dimin-

ished levels of intra-islet HSPGs in T1D human pancreases [16]. Strong immunohistochemical

staining for HSPG core proteins (COL18, SDC1 and CD44) and HS was observed in the islets

of lean control (wt and db/+) males at 6 weeks of age; in contrast, the islet area stained for

HSPGs and HS was significantly decreased in male db/db islets by as early as 3–4 weeks (Fig

1A–1E and S1 File). Thereafter, the area of COL18, SDC1 and CD44 staining in db/db islets

declined to 38.8–62.4% of controls by 5 weeks and 18.7–47.2% at 6–9 weeks (Fig 1B–1D and

S1 File). Colocalization studies using immunofluorescence staining confirmed that COL18 in

wt pancreas (Fig 2A–2D) and 4 wk db/db pancreas (Fig 2K–2N) was restricted to islet beta

cells and not alpha cells. A striking loss of COL18 in db/db beta cells was observed in 9 wk db/

db islets with scattered insulin-positive beta cells that were COL18-negative (Fig 2G and 2H).

The % HS+ve islet area in db/db islets was significantly decreased to 48.1% and 25.7% of lean

control islets (wt) at 4 weeks and 9 weeks of age, respectively (Fig 1E and S1 File). Unlike the

early decline in % HSPG+ve and HS+ve islet area observed in young db/db islets, the decline

observed in lean control islets at 16 weeks and/or 20 weeks may be due to an intrinsic slow

core protein turnover [54] or possibly to age-related effects [55]. Compared to lean (wt and

db/+) controls, male db/db mice were obese (1.3-fold heavier than corresponding lean con-

trols) and hyperglycemic (db/db, 19.63 ± 2.54 mmol/l vs lean controls, 8.87 ± 0.49 mmol/l) by

6 weeks (S2 Fig). Overall, compared to lean controls, HSPG core proteins and HS were dra-

matically reduced in the islets of db/db mice, with this perturbation occurring before the onset

of hyperglycemia. Similar changes were observed in female db/db islets in situ (S3 Fig and S2

File). These findings raised the possibility that the intra-islet levels of HSPG core proteins, and

indirectly HS, in db/db beta cells could be impacted by ER stress.
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Fig 1. HSPG core proteins and HS rapidly decline in the pancreatic islets of db/db mice. (A) Representative images show the

distribution of HSPG core proteins and HS in the islets of male db/db mice and wt mice at 4 and/or 6 weeks of age as demonstrated

by immunohistochemical staining. (B-E) Bar graphs for each time point show morphometric analysis of the % islet stained for the

HSPG core proteins (B) COL18, (C) SDC1, (D) CD44 and HS (E) in pancreases of lean control male mice (wt, db/+; open bars) and

db/db mice (shaded bars). Data show mean ± SEM for 3–6 pancreases/age group with n = 21–72 islets examined/group for HSPG

core proteins and n = 19–52 islets/group for HS. �p<0.05, ��p<0.01 and ���p<0.0001, Mann-Whitney test (HSPGs) and Unpaired t

test (HS). Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0252607.g001
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UPR gene expression is upregulated in db/db islets

Investigating the relationship between ER stress and levels of intracellular HSPGs and HS in

db/db and lean (wt or db/+) beta cells, we found that db/db islets from young donors (4.0–4.4

weeks) showed a significant 15.9-fold upregulation in the early adaptive ER stress-associated

gene Bip (p<0.05). We also observed trends for increased UPR transcripts for p58 (12.9-fold)

as well as Chop (3.8-fold) and Atf (3.5-fold), i.e., deleterious UPR genes (Fig 3A and S3 File).

The mRNA levels for Bip, p58, Chop and Atf3 were significantly enhanced 125-fold, 113-fold,

23-fold and 13.4-fold, respectively, in islets from older hyperglycemic db/db mice (5–8 weeks;

Fig 3B and S3 File). For both age groups we found variable expression of each UPR transcript

which we attribute to biological variability, including possible differences in the onset of ER

stress between individual young donor mice, variable levels of ER stress in older donors and

potentially variability in ER stress gene expression amongst islets from the same donor. The

expression of adaptive UPR genes in db/db islets, particularly from older donors, remained

selectively increased compared to pro-apoptotic UPR genes. These data suggest a possible

mechanism responsible for the loss of intra-islet HSPG core proteins in db/db islets.

Loss of intra-islet HSPG core proteins and HS in Ins2WT/C96Y mice

We further explored the relationship between ER stress and the loss of HSPG core proteins/HS

in beta cells using Ins2WT/C96Y (Akita) mice, an established model of ER stress-mediated diabe-

tes [56]. TaqMan qRT-PCR showed a 287–383 fold increase in adaptive UPR mRNAs (Bip
(p<0.05), p58 (p<0.05); Fig 4A and S4 File) in isolated heterozygous Ins2WT/C96Y islets and a

33 fold increase in the expression of Chop, a deleterious UPR gene (p<0.05; Fig 4B and S4

File), compared to control Ins2WT/WT islets. We also observed a trend for a 6-fold increase in

Atf3 transcripts but this increase did not reach statistical significance. Immunohistochemistry

showed that the COL18+ve islet area in Ins2WT/C96Y islets was reduced to 24.5% of control

Ins2WT/WT islets by 5 weeks (p<0.0001; Fig 4C, S4 Fig and S4 File). The intra-islet SDC1 and

Fig 2. Intra-islet COL18 core protein colocalizes with insulin not glucagon staining in wt pancreas and is progressively lost in db/db pancreas.

Immunofluorescence staining of (A, F, K,) COL18, (B, G, L) insulin (INS), (C, H, M) insulin and COL18 merged, (D, I, N) glucagon (GLUC) and

COL18 merged in 9 wk wt (A-D), 9 wk db/db (F-I) and 4 wk db/db (K-N) pancreas. (E, J, O) Nuclei were stained with DAPI. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0252607.g002
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CD44 core protein levels were also significantly reduced at 4–9 weeks (p<0.0001; Fig 4D and

4E, S4 Fig and S4 File). In parallel, the HS+ve islet area in Ins2WT/C96Y islets was significantly

decreased to 58.4% of controls at 6 weeks (p<0.001; Fig 4F, S4 Fig and S4 File). Ins2WT/C96Y

mice therefore demonstrated a significant loss of intra-islet HSPG core proteins and HS, corre-

lating with acute ER stress and early diabetes development.

Intracellular HSPG core proteins, HS and HPSE in MIN6 cells ± ER stress

We next used MIN6 beta cells [44] to experimentally induce ER stress and to monitor beta cell

HSPGs and HS levels. Firstly, we showed by flow cytometry that freshly harvested MIN6 cells

resembled primary beta cells [15, 27] with strong expression of intracellular COL18 core pro-

tein (S5A Fig), HS (S5B Fig) and HPSE (S5C Fig) and low cell surface levels (S5 Fig). Thapsi-

gargin treatment of MIN6 cells upregulated the UPR transcripts Bip (p<0.05), Chop (p<0.05)

and Atf3 (p<0.01) and treatment with tunicamycin significantly increased the expression of

Bip, p58, Chop and Atf3 mRNAs (p<0.05), confirming the induction of ER stress (Fig 5A and

S5 File). Extending the duration of in vitro treatment to 3 days, thapsigargin significantly

decreased intracellular HPSG core proteins (COL18, p<0.01; SDC1, p<0.05) and HS (p<0.05)

to 57.5–70.9% and 79.8% of controls (Fig 5B, 5C and 5E and S5 File); in parallel, HPSE levels

declined to 42.2% of controls (p<0.001; Fig 5F and S5 File). Similarly, tunicamycin treatment

also lowered intracellular SDC1 (p<0.05) and HPSE (p<0.001) levels to 52.0% and 33.6% of

control levels (Fig 5C and 5F and S5 File). Neither treatment reduced intracellular CD44 core

protein (Fig 5D and S5 File). However, the ER stress response induced pharmacologically in

MIN6 cells was much less severe than that observed endogenously in native beta cells in vivo
(Figs 3A, 3B, 4A and 4B). Accordingly, the reduced levels of a subset of intracellular HPSG

core proteins and HS were less pronounced than those observed in mouse models of ER stress

(Figs 3 and 4). Importantly, thapsigargin-treated MIN6 cells demonstrated a loss of both intra-

cellular HPSE and HS, providing evidence that ER stress-induced HS loss was not due to HS

degradation.

Fig 3. ER stress markers in the islets of male db/db mice at different ages. Relative transcript levels for ER stress genes (Bip, p58, Chop and Atf3) in

islets of (A) young (4.0–4.4 week) lean controls (db/+; open bars) and normoglycemic db/db mice (shaded bars) and (B) 5–8 week lean controls (wt;

open bars/~baseline) and db/db mice (hyperglycemic; shaded bars). The values were normalized to the house-keeping gene Gapdh. The data represent

mean ± SEM for 4 independent experiments (120–743 islets/group/experiment). �p<0.05, Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0252607.g003
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Fig 4. ER stress, intra-islet HSPG core protein and HS expression in Ins2WT/C96Y islets. Fold change in the expression of ER stress-related genes (A)

Bip, p58 and (B) Chop, Atf3 in 5–12 week male Ins2WT/WT control islets (open circles) and Ins2WT/C96Y islets (black squares) was normalized to the

house-keeping gene Gapdh. Morphometric analysis of immunostained intra-islet HSPG core proteins and HS in Ins2WT/WT (open bars) and Ins2WT/

C96Y (shaded bars) pancreases at 4, 5, 6 and 9 weeks (HSPGs) and 6 weeks (HS). Data is presented as the % islet area with positive staining for (C)

COL18, (D) SDC1, (E) CD44 and (F) HS. Data represent mean ± SEM for (A-B) n = 4 independent experiments (250–350 islets/group/experiment)

and (C-F) n = 3 pancreases/age group with n = 15–31 islets examined/group; each symbol denotes an individual islet. �p<0.05, ��p<0.001 and
���p<0.0001, Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0252607.g004
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Fig 5. Intracellular levels of HSPG core proteins, HS and HPSE are decreased in ER stressed MIN6 cells. (A) MIN6 cells were cultured with 6 mM

glucose (open bars), 50 nM thapsigargin (striped bars) or 2 μM tunicamycin (grey bars) for 20–24 hours. Transcript levels for Bip, p58, Chop and Atf3
were normalized to the house-keeping gene Ube2d1 and were quantified as a fold change compared to 6 mM control mRNA levels which were assigned

a value of 1. (B-F) MIN6 cells were cultured for 3 days with 6 mM glucose-DMEM (control cells, C), 50 nM thapsigargin (Tg) or 2 μM tunicamycin

(Tm) and intracellular HSPG core protein (B) COL18, (C) SDC1 and (D) CD44, (E) HS and (F) HPSE levels were assessed by flow cytometry and

expressed as GMFI. Data represent mean ± SEM for (A) n = 5 independent experiments and (B-F) n = 11 experiments. �p<0.05, ��p<0.01 and
���p<0.001, One-way ANOVA with Fischer’s unprotected LSD test.

https://doi.org/10.1371/journal.pone.0252607.g005
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Intracellular HSPGs, HS and HPSE are reduced in isolated db/db beta cells

Using flow cytometry, we found that HSPG core proteins, HS and HPSE are 3.2–34.2 fold, 8.0

fold and 12.6 fold more highly expressed intracellularly than at the cell surface in freshly iso-

lated wt beta cells, respectively (Fig 6, S6 Fig, S4 Table and S6 File). Furthermore, in agreement

with immunohistochemical studies of host pancreas (Fig 1), we demonstrated significantly

reduced intracellular expression of HSPG core proteins (COL18, SDC1) in db/db beta cells to

36–47% of wt cells (Fig 6A and 6D and S6 File). In addition, a rapid deterioration of COL18,

HS and HPSE to 53%, 59% and 61% of day 0 levels, respectively, was observed inside db/db

beta cells but not wt beta cells during culture for 2 days (Fig 6B and 6E, S4 Table and S6 File).

Like ER-stressed MIN6 cells (Fig 5F), intracellular HPSE was significantly reduced in db/db

beta cells to 26% of wt controls (Fig 6C and 6F, S4 Table and S6 File), indicating that the

decline in db/db beta cell HS during culture was HPSE-independent. We next investigated

whether the major loss of HS in cultured db/db beta cells contributes to their failure.

HS replacement improves db/db beta cell viability and protects against

ROS-induced cell death

We tested whether db/db beta cells, like normal mouse and human beta cells [15, 16], can be

rescued by HS replacement during culture for 2 days with heparin (a highly sulfated HS

Fig 6. Intracellular expression of HSPGs, HS and HPSE in wt and db/db isolated islet cells. Intracellular levels of (A, D) HSPG

core proteins COL18, SDC1 and CD44, (B, E) HS and (C, F) HPSE in wt (open bars) and db/db (shaded bars) isolated islet cells on

day 0 and after culture for 2 days (day 2). Data show GMFI ± SEM, n = 7 experiments/group with n = 2–4 male donors/experiment.
�p<0.05, ��p<0.01 and ���p<0.001, compared to corresponding control wt cells, Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0252607.g006
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analogue; 50 μg/ml; S7 Fig). Initially, the survival of freshly isolated wt beta cells (Cal+PI-;

41.49 ± 1.92%) was lower than for db/db beta cells from normoglycemic donors

(58.60 ± 0.78%). After culture, the viability of wt beta cells and db/db beta cells (Cal+PI-)

declined to 50.5% and 39.6% of Day 0 levels, respectively; similarly, the viability of beta cells

from other db/db donors (with blood glucose levels of 10–15 mmol/l and > 15 mmol/l) was

reduced to 42.2%-43.2% of Day 0 levels (S7 File). Culture of wt beta cells with heparin (which

replaces highly sulfated HS that is selectively localized in beta cells [31] and lost during the iso-

lation process [15]) significantly increased the live (Cal+PI-) population of beta cells by 3.5-fold

and reduced damaged Cal+PI+ beta cells and Cal-PI+ dead cells to 10.5–19.6% (p<0.001) of

untreated wt controls (Fig 7A and S7 File). Similarly, heparin significantly increased the sur-

vival of beta cells from male normoglycemic db/db mice (bg<10 mmol/l) by 2.8-fold

(p<0.001), and from mildly hyperglycemic db/db donors (bg = 10–15 mmol/l) and hypergly-

cemic donors (bg>15 mmol/l) by 1.9-fold (p<0.05; Fig 7C, 7E and 7G and S7 File). PI-88,

another highly sulfated HS mimetic and HS replacer, preserved the survival of wt beta cells as

previously reported [15] but was less effective than heparin in protecting the viability of db/db

beta cells (S8 Fig). HS replacement using heparin therefore vastly improved the survival of db/

db beta cells.

In parallel, db/db beta cells were analyzed for susceptibility to H2O2-induced damage by

Sytox Green staining (S9 Fig). Freshly isolated (Day 0) wt beta cells (Fig 7B and S7 File) and

beta cells from normoglycemic (Fig 7D and S7 File), mildly hyperglycemic (Fig 7F and S7 File)

and severely hyperglycemic (Fig 7H and S7 File) db/db mice demonstrated a significant 2.7

(p<0.0001), 2.9 (p<0.05), 4.8 (p<0.0001) and 6.4-fold (p<0.05) increase in cell death following

acute H2O2 treatment. Hyperglycemic db/db beta cells were therefore more highly sensitive to

acute oxidative damage than normoglycemic db/db beta cells or wt controls. This vulnerability

was noticeably mitigated after 2 days of culture without heparin in all groups, probably reflect-

ing protection of beta cell viability due to the induced expression of conventional oxidative

stress-related genes e.g., ROS-scavenging enzymes [3, 57]. In the presence of heparin, wt (Fig

7B and S7 File) and normoglycemic db/db (Fig 7D and S7 File) beta cells significantly

decreased Sytox Green+ve beta cell damage/death to 21.1% (p<0.001) and 23.4% (p<0.01) of

untreated controls, resembling viability assessment using Calcein/PI staining (Fig 7A and 7C

and S7 File). Strikingly, heparin treatment also protected wt and db/db beta cells from H2O2-

induced death with only ~8% Sytox Green+ve damaged/dead cells (versus 54% without hepa-

rin; Fig 7B; p<0.001; S7 File) and ~12–30% Sytox Green+ve cells (versus 39–48% without hep-

arin; Fig 7D, 7F and 7H; p<0.05; S7 File), respectively. These data illustrate that HS

replacement in vitro using heparin (i) renders db/db beta cells resistant to acute oxidative

stress and (ii) represents a more efficient mechanism than other endogenous pathways

induced/enhanced during culture in response to oxidative stress.

TUDCA treatment of db/db mice improves glycemia and beta cell HSPG/

HS levels

Our studies have revealed that ER-stress in db/db islets correlates with a rapid decline in islet/

beta cell HSPGs and HS. Similarly, the pharmacological induction of ER stress in MIN6 cells

results in loss of intracellular HSPGs and HS. Against this background we interrogated the

relationship between ER stress, T2D and loss of beta cell HSPG/HS in vivo by treating db/db

males from 4 weeks of age with the ER chemical chaperone TUDCA. TUDCA-treated male

db/db mice showed impaired progression of T2D (Fig 8A and S8 File), decreased body weight

(Fig 8B and S8 File) and improved control of glycemia (Fig 8C and S8 File). Also at termina-

tion, isolated db/db islets showed a significant 3.1–3.5 fold (p<0.01) increase in the expression
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Fig 7. HS replacement protects db/db beta cells from dying in culture and from acute hydrogen peroxide-induced damage. The viability of (A) wt

and (C, E, G) db/db beta cells was analyzed by flow cytometry using the fluorescent dyes Calcein (Cal) and PI after culture for 2 days without (open

bars) or with (shaded bars) the highly sulfated HS analogue heparin (50 μg/ml). Cell death/damage due to acute treatment with hydrogen peroxide was

measured by uptake of the fluorescent dye Sytox Green. Donors were (A, B) wt; (C, D) normoglycemic db/db (bg<10 mmol/l); (E, F) mildly

hyperglycemic db/db (bg = 10–15 mmol/l) and (G, H) severely hyperglycemic db/db (bg>15 mmol/l). Beta cells were identified as viable (Cal+PI-),

damaged (Cal+PI+) or dead (Cal-PI+) and expressed as % total cells; alternatively, damaged/dead cells were identified as Sytox Green+ve. Data represent

mean ± SEM for n = 3–11 experiments/group; n = 2–4 male donors/experiment. �p<0.05, ��p<0.01 and ���p<0.0001, ANOVA with Fisher’s

unprotected LSD post-test.

https://doi.org/10.1371/journal.pone.0252607.g007
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Fig 8. Effect of TUDCA treatment of db/db mice on glycemic control, ER stress-related gene expression and intra-islet COL18 and HS. 4 week old

male db/db mice were treated with saline (black line) or TUDCA (150 mg/kg/day; broken line) i.p. for 28 days. (A) The non-fasting blood glucose levels

and (B) body weight were monitored 3x/week. (C) HbA1c levels were measured at termination of treatment. (D) ER stress-related gene transcripts were

analyzed in islets isolated from saline-treated (open bars) and TUDCA-treated (shaded bars) db/db mice. Fold-change refers to mRNA expression

relative to gene expression in wt kidney (broken line) which was assigned a value of 1 and normalized to the house-keeping gene Gapdh. The in situ
expression of (E) HSPG core protein (COL18), (F) HS and (G) insulin was determined by immunohistochemistry and evaluated as % islet area stained.

(A-B) Data represent mean weekly measurements ± SEM with n = 12–14 male mice/group, n = 3 measurements/mouse; (C) mean ± SEM for n = 12–13

mice/group; (D) mean ± SEM, each data point represents an independent experiment, n = 4 mice/group (100–140 islets/donor); (E-G) n = 4–9

pancreases/group with n = 86–88 (COL18), n = 38–44 (HS) and n = 92–105 (insulin) islets examined/group. �p<0.05, ��p<0.01, ���p<0.001, and
����p<0.0001, Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0252607.g008
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of adaptive UPR genes (Bip and p58) and a 2.3–2.6 fold (p<0.01) increase in the expression of

pro-apoptotic UPR genes (Chop and Atf3), compared to saline controls (Fig 8D and S8 File).

These findings suggest that TUDCA elevated the UPR to enhance beta cell compensation,

maintain beta cell function and thus improve glycemia.

We next assessed whether relieving ER stress influenced the intra-islet expression of HSPG

core protein COL18 and HS. Immunohistochemical staining of host pancreas showed that the

COL18+ve islet area was significantly increased by 1.7-fold in the islets of TUDCA-treated db/

db mice (23.79 ± 2.12%), compared to controls (13.65 ± 1.17%, p<0.001; Fig 8E and S8 File).

Compared to saline-treated controls which demonstrated loss of intra-islet COL18 and only

scattered insulin-positive beta cells (Fig 9A and 9B), TUDCA treatment resulted in widespread

intra-islet COL18 staining (Fig 9F) and uniform staining of intra-islet insulin (Fig 9G) which

colocalized with COL18 (Fig 9H). The HS+ve islet area also increased 1.6-fold (24.22 ± 3.95%

versus 14.80 ± 1.72% in saline controls; Fig 8F and S8 File) and was accompanied by a 1.5-fold

increase in the insulin+ve islet area (p<0.0001; Fig 8G and S8 File). The striking improvement

in db/db beta cell HS therefore correlated with a significant increase in the expression of

HSPG core proteins and an enhanced adaptive UPR to help compensate for ER stress and

counter pro-apoptotic UPR effects.

Discussion

We report here that beta cell HSPG core proteins and highly sulfated HS are both significantly

depleted in prediabetic 3–5 week db/db mice. These events correlated with the preferential

increase in Bip and p58 (Dnajc3) mRNAs, representing markers of the UPR, and preceded

both overt hyperglycemia and significant weight gain from 6 weeks of age. Similarly, we dem-

onstrated by quantitative immunohistochemical analyses, a dramatic decline in beta cell

HSPGs and HS in the islets of young 4–5 week Ins2WT/C96Y mice, a transgenic model of ER-

stressed beta cells [56]. Flow cytometry studies revealed that, in vitro, acute pharmacological

induction of ER stress in MIN6 cells by thapsigargin and tunicamycin, significantly reduced

intracellular levels of the HSPG core proteins COL18 and SDC1. This outcome is attributed to

a general decrease in protein expression resulting from the activation of UPR genes. Further-

more, the impact of ER stress is likely to be influenced by the rate of protein turnover, which

may vary for different HSPGs. Ultimately a decline in HSPG core proteins would have the

downstream effect of decreasing intracellular HS. We also observed a parallel decline in

Fig 9. TUDCA treatment restores the colocalization of intra-islet COL18 core protein and insulin in db/db pancreas. Immunofluorescence

staining of (A, F) COL18, (B, G) insulin (INS), (C, H) insulin and COL18 merged, (D, I) glucagon (GLUC) and COL18 merged in (A-D) saline-treated

control and (F-I) TUDCA-treated db/db pancreases. (E, J) DAPI was used to identify nuclei. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0252607.g009
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intracellular HPSE (HS-degrading endoglycosidase) in both ER stressed MIN6 cells and db/db

beta cells, which precluded HS degradation as the mechanism responsible for HS loss.

We have previously reported that beta cell HS is depleted during the isolation of normal

mouse and human islets in vitro, and renders isolated beta cells especially susceptible to ROS-

induced death [15, 16, 27]. Furthermore, HS replacement using HS mimetics reverses this

heightened vulnerability and preserves beta cell viability [15, 16]. From our current study, we

propose that the significant decrease in intracellular HSPG core proteins (COL18 and SDC1)

and HPSE in freshly isolated db/db beta cells, compared to wt beta cells, is due to ER stress in

the donor db/db mice. While there was a trend for a greater reduction in intracellular HS in

db/db beta cells in vitro (Fig 6), we reason that any pre-existing impact of ER stress was masked

by the acute loss of HS during the isolation of wt beta cells used for comparison. This in vitro
manipulation-induced loss of HS is most likely due to the depolymerization of HS by excessive

ROS generated during the islet isolation procedure [15, 27, 58, 59]. Paradoxically, freshly iso-

lated db/db beta cells initially demonstrated better viability than wt beta cells. We reason that

in contrast to wt islets, islets derived from db/db donors have higher endogenous levels of anti-

oxidant enzymes [3, 57, 60], induced in vivo in response to endogenous oxidative stress associ-

ated with ER stress-induced loss of HSPG core proteins/HS. We propose that this induced

antioxidant response compensates for loss of HS (Fig 10) in the initial post-isolation period.

We observed a continued decline in HSPGs (COL18 and SDC1), HS and HPSE during the

culture of db/db beta cells, a finding not observed in wt beta cells and consistent with the per-

petuation of endogenous ER stress in vitro. Interestingly, treatment of both wt and db/db beta

cells with the HS replacer heparin significantly improved the survival of beta cells (Cal+PI-

cells) from normoglycemic, mildly hyperglycemic and severely hyperglycemic db/db donors

and protected them from hydrogen peroxide-induced death. On this basis, we propose that

the loss of HS from beta cells of prediabetic db/db mice in vivo exacerbates oxidative stress.

Surprisingly, another highly sulfated HS mimetic, PI-88, acted as a HS replacer and protected

wt beta cells but not db/db beta cells (S8 Fig). It is possible that different heparin-binding pro-

teins [25] may be used in the uptake and/or intracellular distribution of heparin and PI-88 in

db/db beta cells and could lead to a difference in susceptibility to ER stress effects.

Consistent with previous reports of genetically obese mice treated with chemical chaper-

ones [38, 61], treatment of db/db mice with the ER chaperone TUDCA significantly reduced

non-fasting blood glucose levels, body weight and HbA1c levels. In parallel, we observed a sig-

nificant increase in the intra-islet distribution of COL18+ve which was accompanied by a

striking increase in highly sulfated HS. In addition, we observed a significantly higher insulin-

positive islet area, a finding consistent with improved islet insulin content after TUDCA treat-

ment in a T1D mouse model [62]. Our findings therefore revealed a positive impact of

TUDCA on beta cells and glycemic control. Paradoxically, TUDCA treatment of db/db mice,

unlike a previous report of TUDCA-treated db/db mice [61], failed to mitigate the expression

of apoptotic UPR mRNAs. The difference between the studies could be due to differences in

the age of the mice at commencement of treatment, duration of treatment, tissues analyzed

and to the lower dosage regimen of TUDCA in our study. Additionally, the activation of pro-

apoptotic pathways could be due to ER stress-independent activation of c-Jun N-terminal

kinase (JNK) by oxidative stress or lipotoxicity [63–65]. Increased Chop expression has previ-

ously been observed during beta cell adaptation in other obese rodent models (Zucker fatty

rats, HFD mice), suggesting that a balance between Chop expression and adaptive UPR is

important for maintaining beta cell function and survival [18, 66]. Since TUDCA treatment of

db/db mice improved glycemic control, we propose that the accompanying preferential

increase in the expression of adaptive UPR genes compared to deleterious pro-apoptotic genes
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(Chop, Atf3) relieved ER stress, prolonged beta cell compensation and promoted recovery of

beta cell HSPGs/HS.

Together our in vitro and in vivo intervention studies highlight a previously unrecognized

inter-relationship between HS/HSPGs, oxidative stress and ER stress. While ER stress and oxi-

dative stress have long been recognized as accomplices in beta cell failure in T2D, mechanistic

links have remained elusive. Based on our studies we propose a novel pathway which bridges

ER stress and oxidative stress in T2D. Here, we postulate that ER stress, prior to the onset of

Fig 10. The proposed model: ER stress inhibits the synthesis of HSPG core proteins and HS in T2D-prone beta cells. In pre-T2D pancreatic beta

cells, ER stress initiates the unfolded protein response (UPR) which acts to alleviate the stress by increasing molecular chaperones for protein folding,

increasing ERAD and reducing the translation of mRNAs to a range of “general” proteins. As a consequence, HSPG core protein synthesis is impaired,

which in turn severely reduces the synthesis of HS, a constitutive non-enzymatic antioxidant in beta cells. Depletion of beta cell HS increases

intracellular ROS and elevates oxidative stress. Oxidative stress induces the expression of secondary antioxidant enzymes to help maintain beta cell

homeostasis [57]. Failure to compensate for this stress results in UPR failure, the preferential expression of apoptotic genes and beta cell apoptosis/

death. ERAD, ER-associated degradation; T2D, Type 2 diabetes; HS, heparan sulfate; HSPG, heparan sulfate proteoglycan; ROS, reactive oxygen

species.

https://doi.org/10.1371/journal.pone.0252607.g010
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T2D, results in a UPR-induced decline in the synthesis of HSPG core proteins within the ER.

Consequently, HSPG core proteins fail to be transferred to the Golgi compartment, impairing

or blocking HS synthesis because HSPG core proteins are an essential scaffold for HS assembly

[20, 21, 23]. HS deficiency in the beta cells results in increased intracellular ROS and thus,

debilitating oxidative stress (Fig 10). This new understanding provides a rational basis for the

previously observed upregulation of antioxidant enzyme transcripts [60] and the therapeutic

effect of chemical and physiological antioxidants on beta cell mass and/or function in db/db

mice [60, 67, 68], a strategy that would compensate for the depletion of endogenous beta cell

HS. It is possible that glucotoxicity-associated ER stress in the db/db (genetic) model of T2D,

resulting in the depletion of ER Ca2+, contributes to the decline in beta cell HSPG core proteins

[69]. Future studies could investigate whether obesity, lipotoxicity and ER stress induced by a

long-term high-fat diet (for 16 weeks) in normal mice [70] also impacts beta cell HSPGs and

HS.

T2D and T1D have distinct metabolic and autoimmune aetiologies, respectively, and differ-

ent mechanisms of beta cell death [65, 71]. We demonstrate here that prediabetic db/db mice,

like pre-diabetic NOD mice, display a loss of HS from beta cells. However, we reveal in this

study that the HS-depleting pathways are vastly different. In T1D, the primary mechanism is

due to HPSE-dependent degradation of HS [15, 16]. In contrast, our data strongly suggest that

HS depletion in T2D beta cells is HPSE-independent; instead, our findings are consistent with

the inhibition of HS synthesis, a secondary effect of ER stress on the synthesis/maturation of

HSPG core proteins. However, since loss of HSPGs [16] and ER stress have been reported in

human T1D beta cells [6, 7, 34, 35, 65], we cannot exclude the possibility that ER stress-

induced deprivation of HSPG core proteins may function as an ancillary mechanism for HS

loss in T1D. Altogether, loss of beta cell HS is a fundamental defect underpinning pre-diabetes

and culminates in insurmountable oxidative damage.

In summary, our studies highlight that intracellular HS acts as a critical link between ER

stress and oxidative stress in T2D beta cells i.e., ER stress indirectly reduces beta cell HS, which

in turn heightens the susceptibility of beta cells to oxidative stress. Based on the reported islet-

associated ER stress in obesity-driven human T2D [17], we speculate that loss of beta cell

HSPGs/HS is likely to precede beta cell failure in human T2D. We suggest that treatment with

a heparin-like HS replacer, possibly combined with a chemical chaperone, could represent a

novel therapeutic strategy for rescuing beta cell survival, prolonging beta cell compensation

and alleviating oxidative stress in T2D.
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S4 Table. Cell surface and intracellular expression of HSPG core proteins, HS and HPSE in

wild-type and db/db mouse beta cells.
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S1 Fig. Localization of CD44 core protein in pancreatic islets of wild-type mice. Immunos-

taining of the same islet in wt (+/+) pancreas (9 weeks of age) shows similar localization of
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CD44 using (A) rat anti-mouse CD44 (IM7) mAb and (B) mouse anti-human CD44v3 mAb.

Scale bar = 100 μm.

(TIF)

S2 Fig. Blood glucose and body weight of male lean controls and db/db mice at 3–20 weeks

of age. (A) Non-fasting blood glucose levels and (B) body weight of male lean controls (open

bars), and db/db (shaded bars) mice were measured at 3–20 weeks of age during T2D develop-

ment. The black dotted lines define the normal blood glucose range for lean control males i.e.,

3.85 mmol/l—11.65 mmol/l (mean ± 2 SD). Data show mean ± SEM for n = 5–13 mice/group.
�p<0.05, ��p<0.01 and ���p<0.001, compared to corresponding lean control group, Mann-

Whitney test.

(TIF)

S3 Fig. The intra-islet expression of HSPG core proteins rapidly declines in the islets of db/

db female mice. Bar graphs show morphometric analysis of the % islets stained for the HSPG

core proteins (A) COL18, (B) SDC1, (C) CD44 in pancreases of lean control female mice (wt,

db/+; open bars) and db/db mice (shaded bars). Data show mean ± SEM for 3–6 pancreases/

age group with n = 17–62 islets examined/group. �p<0.05, ��p<0.01 and ���p<0.0001, Mann-

Whitney test.

(TIF)

S4 Fig. Distribution of HSPG core proteins and HS in the pancreatic islets of Ins2WT/WT

and Ins2WT/C96Y islets. Representative images show intra-islet localisation of HSPG core pro-

teins (A, B) COL18, (C, D) SDC1, (E, F) CD44 and (G, H) HS in Ins2WT/WT (A, C, E, G) and

Ins2WT/C96Y (B, D, F, H) pancreas at 6 weeks of age. Scale bar = 100 μm.

(TIF)

S5 Fig. Cell surface and intracellular expression of HSPG core proteins, HS and HPSE in

MIN6 cells. Flow cytometry analysis of (A) HSPG core proteins COL18, SDC1 and CD44, (B)

HS and (C) HPSE in MIN6 cells show significantly higher intracellular expression (shaded

bars) of COL18, HS and HPSE compared to cell surface levels (open bars). Data represent geo-

metric mean fluorescence intensity (GMFI) ± SEM, n = 4 independent experiments. �p<0.05,

compared to corresponding cell surface expression, Mann-Whitney test.

(TIF)

S6 Fig. Cell surface expression of HSPGs, HS and HPSE in wt and db/db isolated islet cells.

(A, D) HSPG core proteins COL18, SDC1 and CD44, (B, E) HS and (C, F) HPSE in wt (open

bars) and db/db (shaded bars) isolated islet cells show comparable weak cell surface expression

at day 0 (upper panel) and after culture for 2 days (lower panel). The data show GMFI ± SEM,

n = 3 experiments/group with n = 2–4 male donors/experiment. Mann-Whitney test.

(TIF)

S7 Fig. HS replacement protects db/db beta cells from dying in culture. Representative flow

cytometry dot plots show improved viability (Cal+PI-; upper left quadrant) of male (A) wild-

type and (B) db/db beta cells (donors bg<10 mmol/l) after culture (C, D) without (Control)

and (E, F) with heparin for 2 days. Cal+PI+ (upper right quadrant) identifies damaged cells;

Cal-PI+ (lower right quadrant), dead cells; Cal-PI- (lower left quadrant), cell debris. Each quad-

rant shows data as a % of the total cell population. n = 2–4 male islet donors/group.

(TIF)

S8 Fig. Protection of wt beta cells in vitro using PI-88 as a HS replacer. Beta cells isolated

from male (A) wt and (B) db/db (bg<15 mmol/l) donors were cultured without HS replacer
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(open bars) or with heparin (striped bars) or PI-88 (shaded bars) at 50 μg/ml for 2 days. (A, B)

Cell viability (Cal+PI-) was examined on day 0 and day 2 by flow cytometry. Data show

mean ± SEM; n = 3 experiments/group; n = 2–3 donor mice/experiment. ��p<0.001, and
���p<0.0001, compared to corresponding controls, ANOVA with Fisher’s unprotected LSD

post-test.

(TIF)

S9 Fig. HS replacement renders male wt and db/db beta cells resistant to hydrogen perox-

ide (H2O2)-induced damage. Representative flow cytometry dot plots of Sytox Green uptake

(boxed regions) show that H2O2 treatment of freshly isolated (G) wt and (H) db/db (donors

bg<10 mmol/l) beta cells substantially increased beta cell damage/death compared to

untreated controls on day 0 (A, B). Culture with heparin for 2 days protected (C, D, I, J) wt

and (E, F, K, L) db/db beta cells from (C-F) culture-induced and (I-L) H2O2-induced damage/

death. n = 2–4 male islet donors/experiment.

(TIF)

S1 File. Percentage of islet area stained for HS, HSPGs (COL18, SDC1 and CD44) in male

lean control (wt, db/+) and db/db pancreases.

(XLSX)

S2 File. Percentage of islet area stained for HSPGs (COL18, SDC1 and CD44) in female

lean control (wt, db/+) and db/db pancreases.

(XLSX)

S3 File. Fold change in mRNA expression of ER stress associated genes in db/db islets.

(XLSX)

S4 File. (A, B) Fold change in the mRNA expression of ER stress associated genes in Akita

Ins2WT/C96Y islets; (C-F) The expression of HS and HSPG core proteins in the islets of

Akita wild-type and Ins2WT/C96Y pancreases.

(XLSX)

S5 File. (A) Fold change in the mRNA expression of ER stress associated genes in ER-

stressed MIN6 beta cells; (B-F) Intracellular expression of HS, HSPGs and HPSE in control

and ER- stressed MIN6 beta cells.

(XLSX)

S6 File. Geometric mean fluorescence intensity values for the expression of HSPG core

proteins (COL18, SDC1 and CD44), HS and HPSE in wt and db/db islet cells.

(XLSX)

S7 File. (A, C, E, G) Viability of isolated wt and db/db mouse islet cells ± culture with HS

mimetic (heparin); (B, D, F, H) Viability of isolated wt and db/db mouse islet

cells ± culture with HS mimetic (heparin) and subsequent treatment with hydrogen perox-

ide.

(XLSX)

S8 File. (A, B) Blood glucose and body weight of saline- and TUDCA-treated db/db mice;

(C) HbA1c levels of saline- and TUDCA-treated db/db mice; (D) Expression of ER stress

associated genes in the islets of saline- and TUDCA-treated db/db mice; (E-G) Expression

of HS, COL18 and insulin in the islets of saline- and TUDCA-treated db/db mice.

(XLSX)
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