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Waveguide array lenses are waveguide arrays that focus light incident on all waveguides at the input side into
a small number of waveguides at the output side. Ideal waveguide array lenses provide complete (100%)
power concentration of incident light into a single waveguide. While of great interest for several
applications, ideal waveguide array lenses have not been demonstrated for practical arrays with large
numbers of waveguides. The only waveguide arrays that have sufficient degrees of freedom to allow for the
design of an ideal waveguide array lens are those where both the propagation constants of the individual
waveguides and the coupling constants between the waveguides vary as a function of space. Here, we use
state-of-the-art numerical methods to demonstrate complete power transfer into a single waveguide for
waveguide array lenses with large numbers of waveguides. We verify this capability for more than a
thousand waveguides using a spatial coupled mode theory. We hereby extend the state-of-art by more than
two orders of magnitude. We also demonstrate for the first time a physical design for an ideal waveguide
array lens. The design is based on an aperiodic metallic waveguide array and focuses ~100% of the incident
light into a deep-subwavelength focal spot.

aveguide (WG) arrays have been of great interest in optics for several decades'. They were first

introduced in the context of integrated optical circuits®. The initial applications of WG arrays included

switches and beam splitters®”, high-power semiconductor lasers®* ', and lenses'"'*. In recent years,
there has been a renewed interest in WG arrays for various linear and nonlinear optics applications'*'*. From a
fundamental point of view, they have been studied in the context of optical analogues of semi-classical electron
dynamics'>**. Early studies focused primarily on dielectric WG arrays, but metallic WG arrays have attracted
much of the attention recently'*~*>. When compared with dielectric WG arrays, metallic WG arrays have different
dispersion characteristics and waveguides can support deep-subwavelength modes, which provide important new
opportunities for manipulating light at the nanoscale®.

WG array lenses are arrays of axially invariant waveguides that propagate light incident on all waveguides at the
input side of the device and focus or concentrate it into a small number of waveguides at the output side of the
device. One may, for example, construct a WG array lens using a ray-optics approach in analogy with a graded
index (GRIN) lens”. The focal spot in a WG array lens constructed in this manner is confined to quite a few
waveguides. In contrast to these conventional WG array lenses, we define here an ideal WG array lens as a
waveguide array that provides complete power concentration of incident light at its input into a single waveguide
at the output'. Ideal WG array lenses are of great importance in photonic applications ranging from imaging,
where they can provide deep-subwavelength resolution®, to the combining of optical power generated by an array
of laser diodes into a single high-power spot'?. Reference 12 presents a theoretical design of an ideal WG array
lens, based on a coupled mode theory (CMT), for a very small number of waveguides. The design of an ideal WG
array lens with a large number of waveguides, which is more relevant for practical applications, is a long-standing
unsolved problem.

To solve this problem, two challenges have to be overcome. First, it is not at all evident that an ideal WG array
lens exists conceptually for a large number of waveguides. The approach in Ref. 12 is analytic and restricted to a
very small number of waveguides (=7). The only WG arrays of arbitrary size that have been solved completely are
fully uniform or synchronous systems both in waveguides and coupling’®, systems with uniform waveguides and a
parabolic variation in coupling'’, and systems with a periodic variation in propagation constants and with
uniform coupling between the waveguides®. None of these systems, however, exhibit ideal WG array lens
behaviour. Second, a design for a physical WG array lens structure that achieves complete power concentration
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in a single waveguide has never been demonstrated for any number
of waveguides. Indeed, Ref. 12 only described a way to obtain the
CMT parameters of an ideal WG array lens design without reducing
this design to practice by showing a physical WG array structure.

Here, we report substantial progress on these two fronts. First, we
provide a theoretical plausibility argument for complete power trans-
fer into single waveguide for waveguide array systems with any num-
ber of waveguides. A key realization here is that the number of
degrees of freedom required to achieve an ideal WG array lens is
only available in the most general waveguide arrays where both the
propagation constants of individual waveguides and the coupling
constants between the waveguides vary as a function of space (in
the dimensions transverse to propagation). We verify this argument
explicitly with spatial CMT for more than one thousand waveguides.
Our theoretical result extends the state-of-art in the field by more
than two orders of magnitude. Secondly, we note from our CMT
computations that the coupling coefficients of ideal WG array lenses
are often negative. This turns out to be the case for metallic wave-
guide arrays (MWGA)*. This observation inspires us to optimize a
MWGA structure and demonstrate numerically that it behaves as an
ideal WG array lens. The optimized MWGA focuses ~100% of a
beam, which is incident on twenty-one waveguides at the input, into
a single waveguide at the output. Thus, we show for the first time a
physical structure design for an ideal WG array lens. Importantly,
our ideal MWGA lens focuses all light into a single deep-subwave-
length waveguide (<<4/10), which in itself is an unusual and remark-
able capability. The advances reported here on these two separate
fronts solve a longstanding problem in the field of WG arrays. They
bring within reach the design of novel light focusing devices and
optical power concentrating components for a whole range of excit-
ing photonic applications.

Results

Complete power transfer into a single waveguide: necessary
conditions for ideal WG array lenses. Using a spatial CMT, we
describe WG arrays in terms of propagation constants (one for
each waveguide) and coupling coefficients (between the wave-
guides). We consider a system with an odd number (N) of wave-
guides, which are uniform in the axial direction (z) and distributed
symmetrically about a centre waveguide (Fig. 1). Further, assume
coupling between pairs of nearest neighbour waveguides only,
which is reasonable for weakly coupled waveguides. The coupled
mode equations for a system with N waveguides are

da,
dz

where a,, is the amplitude of the field in guide n with 1 =< n = N. The
0, represent the propagation constant of each waveguide. An overall
shift of all the propagation constants by the same amount does not
change the dynamics of the intensities in the waveguides, therefore
the d,,'s are the shifted propagation constants where the overall shift
is chosen to facilitate numerical treatment. The J,’s are symme-
trically distributed about the centre waveguide n = (N + 1)/2. The
coupling between waveguides is given by the coupling coefficients ,,,
where 1y = K = 0 for the outside waveguides n = 1 and n = N.
Power conservation and reciprocity require (d/dz)Z,|a,|* = 0 and
real k,,'s in lossless systems. For exp(—jfz) dependence, the system
eigenvalues f3, (propagation constants) are real and the charac-
teristic modes of the system are given by the eigenvectors v,,.

We assume an initial excitation with uniform amplitude and ident-
ical phase for all the waveguides. This excitation is symmetric with
respect to the centre waveguide and only the (N + 1)/2 symmetric
eigenvectors are of interest. We define an equivalent “reduced” wave-
guide array system with (N + 1)/2 eigenvalues. The reduced (N + 1)/2
-waveguide system has the same eigenvalues f, and, therefore, the
same J,, and x,, as the original system for 1 = n =(N — 1)/2. Only
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Figure 1| Waveguide (WG) array with an odd number (N) of waveguides
that are uniform in the axial (z) direction and distributed symmetrically
about a centre waveguide. (a) Spatial coupled mode theory (CMT)
description of WG array in terms of each waveguide’s propagation
constant J,, and the coupling coefficient x, between adjacent waveguides
with 1 = n= N. The input of the WG array is at z = 0 and the output at z =
L. The a,, are the amplitudes of the fields in guide n. (b) Equivalent
“reduced” CMT description of the WG array making use of symmetry
about the centre waveguide.

the coupling coefficient of the centre waveguide of the original N-th
order system K(y—_1), differs’®. The reduced waveguide system has (N
+ 1)/2 ¢'s and (N — 1)/2 k's. These can be adjusted independently,
which results in (N + 1)/2 + (N — 1)/2 = N degrees of freedom.
By imposing boundary conditions at the output, we now dem-
onstrate that this system has the necessary number of degrees of
freedom to provide complete power concentration in a single wave-
guide. We consider the general case where the complex input ampli-
tudes in all waveguides are specified. The desired system response at
the output consists of zero amplitude in all waveguides except for one
in which all light is concentrated at focus. This yields a set of (N + 1)/2
complex equations. Shifting the phase of the light in the single wave-
guide at focus does not affect the output intensity. The set is thus
reduced to N real system constraints. Since there are also N real
adjustable parameters, the system constraints can in principle be sat-
isfied. This proves that WG arrays with (N + 1)/2 ¢’s and (N — 1)/2
Kk's have the necessary number of adjustable parameters to design an
ideal WG array lens that focuses all light into a single waveguide.
The theoretical plausibility argument we provide here is very gen-
eral, and points to the possible existence of an ideal WG array lens
with any number of waveguides. This argument, however, does not
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Figure 2 | Ideal WG array lens designs with up to more than one thousand waveguides optimized for single waveguide focusing. The power distribution
at the input of the guides (z = 0) is uniform. Bar plots show power versus waveguide number in the WG array lens at the focal length (z = L = 20)
for N =401 (a), N= 601 (b), N =801 (c), and N = 1001 (d). Results are obtained starting from a random set of initial values for coupling coefficients r,,

and shifted propagation constants J,,.

provide us with an ideal WG array lens design. Reference 12 shows
that designs exist for N = 7 with an approach that requires full
analytical expressions for the eigenvalues f3,, and eigenvectors v,, (in
terms of J,, and x,,). This approach can not be generalized for N > 7.

Complete power transfer into a single waveguide for large-scale
WG array lenses: a numerical optimization based on spatial CMT.
Instead of requiring a full analytical treatment of the eigensystem
solutions, which limits the size of the problem that can be solved, we
combine spatial CMT with efficient numerical eigensystem solvers
and optimization methods that run on high performance
computational hardware. This allows us to specify and optimize
the parameters for very large WG array lenses. We use local
optimization schemes in this work, but our approach is very
general and can easily be extended to take advantage of modern
global optimization methods. This way, in principle, we can design
ideal WG array lenses with any number of waveguides. The
optimization of a design involves computing the eigenvalues of a
system matrix a large number of times before convergence is
achieved. Thus, the use of efficient numerical eigensystem solvers
is essential to complete the optimization process. In this work, we use
an implementation of the algorithm of multiple relatively robust
representations (MRRR), which computes orthogonal eigenvectors
of a symmetric tridiagonal system matrix with O(n*) cost®.

Figure 2 shows numerical results for ideal WG array lens designs
up to more than one thousand waveguides optimized for focusing
into a single centre waveguide at the focal length. In these CMT
calculations, we assume an initial condition with a uniform phase

distribution, corresponding to normal incidence for a physical WG
array lens. The insets show bar plots of the power in the centre
waveguides, as a function of waveguide number, at focus for N =
401 (a), N = 601 (b), N = 801 (c), and N = 1001 (d). In all cases,
100% of the power is concentrated in the centre waveguide at the
focus of the WG array lens design. These results confirm, for the first
time, that it is possible to design an ideal WG array lens with a very
large number of waveguides. We note that these designs are scale
invariant. In our calculations, we chose a focal length L=20 and that
determined the range of (dimensionless) x,, and d,, values. To convert
this design into physical units, one can convert this focal length into
an absolute distance with a scalar scaling factor and that in turn
dictates the scaling of x,,and J,, as well. We also note that each design
is obtained by starting from a random set of initial values for x, and
0,. This demonstrates the robustness of our (local) optimization
approach for designing ideal WG array lenses.

We now consider the angular response of ideal WG array lenses.
For oblique incidence, we apply a linear phase tilt in the initial con-
dition in the CMT formalism. Next, we will analyze an ideal WG
array lens with N = 801 waveguides, which has been optimized to
focus into a single waveguide under uniform phase illumination.
Figure 3 shows the response of the ideal WG array lens when the
incident illumination has a linear phase tilt quantified by the total
phase shift across the device. A bar plot insets show the power in the
centre waveguides as a function of waveguide number at the focal
length of the ideal WG array lens. Figure 3a reviews uniform phase
illumination (normal incidence). The ideal WG array lens is opti-
mized for this normal incidence and focuses 100% of the incident
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Figure 3 | Angular response of an ideal WG array lens design with N = 801 waveguides optimized for single waveguide focusing. The power
distribution at the input of the guides (z = 0) is uniform. Bar plots show power versus waveguide number in the WG array lens at the focal length

(z =L = 20) for (a) normal incidence (optimized for this type of illumination) and for oblique incidence with a phase shift across the array of (b)
1.20 rad, (c) 2.46 rad, and (d) 4.36 rad. Results are obtained starting from the same random set of initial values for coupling coefficients x, and shifted

propagation constants J,, as for the design shown in Fig. 2c.

light in a single waveguide. Figure 3b shows the response for oblique
incidence illumination with a 1.20 radians phase shift across the
array. The WG array lens still focuses ~90% of the optical power
into a single waveguide. As the phase shift is increased to 2.46 radians
in Fig. 3¢, the focal spot shifts further away from the centre wave-
guide and is contained in two adjacent waveguides. For larger phase
shifts (e.g., 4.36 radians in Fig. 3d), the focal spot remains very well
defined and shifts to the next waveguide. Note that these phase shifts
can be converted into oblique illumination angles when the CMT is
applied to a physical structure. This analysis demonstrates that an
ideal WG array lens design exhibits excellent focusing even when a
tilted wavefront is present at the input. The result is near 100%
concentration in a single waveguide. This ideal behaviour persists
for a wide range of phase shifts. The angular response of the focusing
behaviour in ideal WG array lenses is therefore reminiscent of the
optical “memory effect”**! and the role it plays in focusing or even
imaging through disordered media by means of wavefront-shaping®.
The memory effect refers to the fact that phase gradients are partially
conserved when light propagates through disordered or random
media. When a wavefront shape is engineered to achieve a focal spot
at a certain location following propagation through random media, it
has been shown that a small tilt of the same wavefront also results ina

First, we derive the CMT parameters of a GRIN WG array lens.
One may design a GRIN WG array lens by obtaining Eq. (1) as a
discretized version of the paraxial wave equation for a medium with
gradient index n(x). To produce focusing, we consider a medium
with a half-width h and a quadratic index profile ranging from n,
at the centre to 1 at the edge,

n(x) = (1— ”"n:l’];—z) 2)

We can write the paraxial wave equation in this inhomogeneous
medium as

2V =V y -V ©

2
where k(x) =ko n(x) = Tcn(x) V(x) is a quadratic potential due to
A
the index gradient,
ng—1x?
V(x)=2kyn; o0 2 (4)

We discretize Eq. (3) using central differences with a step size A

focal spot, albeit it in a location shifted from the original spot®. ) (%) 2 1
We now illustrate that the design of an ideal WG array lens devi- 2jkono Tz {P + V(xn)} W (xn) + A2 ¥(xa+4)
ates significantly in its parameter values from an intuitive design, (5)
such as that based on a GRIN lens design where a quadratic index + i ¥(x,—A)
profile is known to produce focusing>**. A?
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Figure 4 | Focusing in WG array lenses. The WG array lens designs comprise N = 101 waveguides and the power distribution at the input of the guides
(z=0) is uniform. (a,b) Graded index (GRIN) WG array lens design in which the focal spot at z= L= 20 consists of the excitation of quite a few waveguides
at the centre of the array. (c) The parameter values for the GRIN WG array lens in (a,b) with a quadratic dependence of J,, versus waveguide number and
constant k.. (d,e) Ideal WG array lens design which provides complete power concentration of light incident on its waveguides at the input into a single
waveguide at the output (z = L = 20). (f) The parameter values for an ideal WG array lens with optimized J, and «,,.

and compare the result with the coupled mode equations Eq. (1).
This allows us to identify the CMT parameters

1 P ny— 1 x2 1
— —kon 2. -
k0ﬂ0A2 om0 h? Zkol’loAz

S(xn) = (6)

of a GRIN waveguide array lens with quadratic index profile Eq. (2).

Figure 4 shows the focusing behaviour of a conventional GRIN
WG array lens (a,b) and the single-waveguide focus in an ideal WG
array lens (d,e) with N = 101 waveguides. The GRIN WG array lens
design results in good focusing, but only <<40% of the light is con-
tained within the centre waveguide. The ideal WG array lens, by
contrast, focuses 100% of the power that is incident on the lens into

the centre waveguide at the focal plane. Figure 4c,f contrasts the
parameter values for «,, and J,, for the respective WG array lenses.
Figure 4c represents the conventional GRIN WG array lens para-
meters with a quadratic dependence of J,, and constant «,,. Figure 4f
shows the optimized parameter values for an ideal WG array lens
obtained via a numerical parameter optimization. The parameters
for the ideal WG array lens in Fig. 4f deviate significantly from those
of the GRIN WG array lens design in Fig. 4c. These results illustrate
explicitly that an ideal WG array lens requires highly counter-intu-
itive design parameters, ie., parameters that deviate significantly
from those of more intuitive designs, such as a quadratically varying
index profile that leads to focusing in continuous GRIN lenses and
discrete GRIN WG array lenses.
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We observe that the coupling coefficients for an ideal WG array
lens design have both negative and positive signs (Fig. 4f), in contrast
to the more intuitive GRIN WG array lens where the coupling con-
stant is positive. It turns out that negative coupling between adjacent
waveguides occurs naturally in a MWGA*. MWGAs are also quite
interesting due to their unusual capabilities for deep sub-wavelength
light manipulation. This motivates the design of physical structures
using MWGAs. We note that negative coupling, in general, can be
achieved when the fundamental waveguide mode is odd™.
Incidentally, this is also possible in all-dielectric arrays based on
photonic crystal waveguides™.

Near-complete power transfer into single waveguide for a physical
structure based on MWGAs. In this section, we demonstrate that
ideal WG array lenses can be realized in MWGA structures (Fig. 5a).
The choice of MWGAs is motivated in part by the CMT study above,
which observes that an ideal WG array lens tends to have negative
coupling constants. While waveguide arrays have been studied
before, none of the physical designs, including MWGA designs
previously published, has been shown to focus all of the incident
power into a single waveguide.

Figure 5 shows an ideal WG array lens design based on a MWGA
structure using a lossless metal. The MWGA geometry using lossless
gold (yellow regions) and air (blue regions) is shown in Fig. 5a. The
parameters of the structure design, i.e., the widths of the waveguides
(air) and their separations (gold), are optimized using a semi-analytic
beam propagation method based on finite-differences so that the lens
achieves focusing of all incident light into a single waveguide.
Figure 5b,c show the cross-sectional plot of magnetic field magnitude
squared versus distance and at the focal plane (focal length L =
19.5 um), respectively. The structure focuses 100% the power incid-
ent optical power into the centre waveguide and thus acts as an ideal
MWGA lens with N = 21 waveguides (1 = 1 um).

Figure 6 shows an ideal WG array lens structure based on a
MWGA using realistic metal properties. A semi-analytic beam pro-
pagation method is used to optimize the MWGA lens design at 4 =
1 pm with measured optical properties for gold”. Figure 6a shows a
cross-sectional plot of the squared magnitude of the magnetic field
versus distance inside an ideal MWGA lens design (N = 21).
Figure 6b shows the squared magnitude of the magnetic field versus
transverse spatial coordinates at focus (L = 19.5 pum). Despite mater-
ial loss, the MWGA structure focuses 99% of the power at the focal
plane into the centre waveguide. It clearly demonstrates that an ideal
WG array lens can be designed using realistic (lossy) metals.

These ideal MWGA lenses demonstrate for the first time that it is
possible to design a structure that focuses 100% of the incident power
into the centre waveguide at the focal length (lossless MWGA struc-
ture) and that a properly designed lossy MWGA structure can collect
nearly 100% of the light into a single waveguide.

Discussion

We used spatial CMT and state-of-the-art numerical methods to
demonstrate the design of ideal WG array lenses with a very large
number of waveguides. Our results suggest that complete power
transfer into single waveguide is achievable for WG arrays of any
size. We verified this behaviour explicitly up to more than a thousand
waveguides, thereby extending the state-of-art in the field by several
orders of magnitude.

The ideal WG array lens designs have parameter values that differ
significantly from those that one might obtain using physical intu-
ition derived from a GRIN lens based approach. They are obtained
through our systematic design approach based on spatial CMT,
numerical optimization with fast eigensystem solvers, and semi-ana-
Iytic beam propagation. Notably, the CMT coupling parameters
observed in ideal WG array lens designs are often negative, which
motivated us to demonstrate this capability in MWGA geometry. We

C 10 ‘

M
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EO 6
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2

-1.5 -0.75 0 0.75 1.5
X (um)

Figure 5 | Ideal WG array lens structure based on a metallic waveguide
array (MWGA) using lossless metal. (a) MWGA structure geometry using
gold (yellow regions) and air (blue regions). (b,c) Cross-sectional plot of
field magnitude squared versus distance and at focus (focal length L =
19.5 pm) for an ideal MWGA lens with N = 21 waveguides (1 = 1 um).
This lossless design was optimized using a semi-analytic beam propagation
method based on finite-differences.

designed and numerically demonstrated ideal WG array lens beha-
viour for the first time in a physically realizable MWGA structure.
Moreover, MWGAs have been shown to enable deep-subwavelength
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Figure 6 | Ideal WG array lens structure based on a MWGA using
realistic metal properties. A semi-analytic beam propagation method is
used to optimize the MWGA lens structure (N = 21) with measured
optical properties for gold at A = 1 um. (a) Cross-sectional plot of field
magnitude squared versus distance inside the ideal MWGA lens structure.
(b) Field magnitude squared versus transverse spatial coordinates at focus
(L =19.5 um).

focusing over a long focal distance, which is of substantial interest in
nanophotonics®>. We have now shown that all the power can be
focused into a single waveguide that is deep-subwavelength (<A/
10) in a structure that has a simple planar geometry. This makes
our practical realization even more remarkable.

The spatial CMT approach used in this work is very general. It
does not imply or restrict the design to a specific structure, geo-
metry or material system. The results can therefore apply to any
WG array system where nearest neighbour coupling dominates.
The theoretical results presented here are thus relevant for dielec-
tric WG arrays, e.g., with conventional low index contrast wave-
guides or integrated high index contrast waveguides, as well as for
MWGAs.

In summary, our methodology applied on two separate fronts
solves a longstanding problem in the field. Moreover, it propels
WG array lens design forward, bringing within reach a whole range

of very exciting applications, including deep-subwavelength imaging
and high-power solid-state laser arrays.

Methods

Spatial coupled mode theory (CMT). Our approach for specifying the parameters
for any order waveguide array lens is based on spatial CMT. In the numerical CMT
method, we use optimization, rather than finding analytical expressions for the
eigenvalues and eigenvectors in terms of the propagation constants J,, and the
coupling coefficients x,, followed by applying the input/output boundary conditions
to determine x,, and J,,. Based on Eq. (1), we derive the full system matrix assuming
nearest neighbour coupling

0 K1

K1 0y Ky

Kooy Ow-ny Koy (7)
7 B 7

Ky 0y K
K1 O
and the equivalent “reduced” system matrix
01 K
K1 0y K
A== ®)

V2kin-n2 Stz

with appropriately scaled input amplitude and output amplitude for the centre
(N + 1)/2 waveguide. The general solution of Egs. (7-8) has the form

N
am(z): ZAn"n(m)e_jﬁ"Z (9)
n=1

where f3,, is the n™ eigenvalue of the system matrix, v, is the corresponding
eigenvector, and A, is the coefficient determined by the boundary conditions. We
start with a given set of initial values for the k,, and J,,, and we calculate numerically
how well the field amplitudes a,, at the output satisfies the output boundary condition
following a uniform field excitation at the input. We then optimize this initial design
until it provides the required output field amplitudes with all light in the centre
waveguide and no light (zero amplitudes) in the remaining waveguides. Unlike the
analytical approach, which is limited to a small number of waveguides N =< 7, this
numerical method allows us to design WG array lenses with hundreds and even
thousands of waveguides. To achieve this, it requires the efficient computation of the
full set of eigenvalues of the system matrix Egs. (7-8).

Semi-analytic beam propagation method based on finite-differences. We are
interested in transverse-magnetically (TM) polarized propagation in longitudinally
(z) invariant waveguiding structures. The dielectric constant is assumed to be
piecewise constant in the transverse direction (x). Starting with Maxwell’s equations,
we consider the propagation direction to be z, and the transverse direction is x. For
TM polarization, there is only H, and E, and E.. Hence, the expressions reduce in
terms of H,, to

010
0z? >Hy (10)

o H 2ot el
—H,=—(0?ue+e—-—
7 : Ox & 0x

We discretize the propagation equation using finite differences. Choosing N interior
nodes (so there are N + 1 intervals, assuming the endpoint nodes are fixed to zero).
Collecting all equations, this immediately leads to a system of coupled ordinary
differential equations:

—_H=—AH (11)

where A is tridiagonal with positive diagonal elements when ¢ > 0. Note that this
discretization does not result in symmetric matrices. In order to obtain a symmetric
system, we must form

LG P (12)
022 ¢

The solution to the propagation equation requires solving the eigenvalue problem to
determine the full modal decomposition in the x direction. We obtain a matrix system

Kv=f*Mv (13)
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where K and M are both symmetric tridiagonal matrices (note that M is not
necessarily positive definite, although it is almost always non-singular, and possibly
complex). If the system is assumed to possess mirror symmetry in the x direction,
then the matrices are also persymmetric.

Numerical eigensystem solvers. The numerical eigenvalue problems that arise in the
spatial CMT approach and the finite-difference simulations of physical structures
lead to tridiagonal system matrices. The conventional widely-used state-of-the-art
method is the QR or QZ iteration, which does not preserve the tridiagonal structure.
The expected runtime of this approach is therefore O(N?). Here, we use the algorithm
of multiple relatively robust representations (MRRR) that computes orthogonal
eigenvectors of a symmetric tridiagonal system matrix A (or A") with O(N?) cost™.
There exists also an experimental method based on the Ehrlich-Aberth iteration with
an expected runtime of approximately O(N?)**. Preliminary experiments have been
very promising for this method, however generalizations of the method to the fully
tridiagonal system have encountered non-converging cases.
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