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Abstract
Background  Distant metastasis (DM) in intrahepatic cholangiocarcinoma (ICC) is 
associated with poor prognosis and significantly high mortality. Therefore, developing 
an effective early prediction method for DM risk is crucial for tailoring personalized 
treatment plans and improving patient outcomes.

Methods  This study included data from eligible ICC patients collected from the 
Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 
2021. Feature selection was performed using three methods, including least absolute 
shrinkage and selection operator (LASSO) regression, the Boruta algorithm, and 
recursive feature elimination (RFE). Eight machine learning (ML) algorithms were used 
to develop predictive models. Model performance was evaluated and compared using 
metrics such as the area under the receiver operating characteristic curve (AUC), area 
under the precision-recall curve (AUPRC), decision curve analysis (DCA), and calibration 
curves. The SHapley Additive exPlanations (SHAP) method was applied to rank feature 
importance and interpret the final model.

Result  This study included 8536 ICC patients, including 2816 (33%) with DM. The 
intersection results of the three feature selection methods identified 10 predictive 
factors. Among the 8 ML models, the gradient boosting machine (GBM) model 
achieved the highest AUC (0.802), AUPRC (0.571), and accuracy (0.713), as well as the 
lowest Brier score (0.177), indicating a comparatively robust overall performance. 
Calibration curves and DCA indicated that the GBM model has good clinical decision-
making capability and predictive performance. SHAP analysis identified the top 10 
most relevant features, ranked by relative importance: surgery, N stage, tumor grade, 
T stage, tumor size, radiotherapy, tumor number, age at diagnosis, chemotherapy, and 
number of resected lymph nodes (LNs). Additionally, a web-based online calculator 
was developed to predict the risk of DM in ICC patients, available athttps://bijinzhe.
shinyapps.io/icc_dm_shiny/.
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1  Introduction
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous and aggressively 
invasive malignant tumor with a poor prognosis, ranking as the second most common 
primary liver cancer after hepatocellular carcinoma (HCC) [1, 2]. In recent years, the 
incidence and mortality rates of ICC have shown a significant increasing trend world-
wide [3, 4]. Due to the absence of typical clinical symptoms and effective early diagnostic 
methods, most cases of ICC are detected only after the tumor has advanced to locally 
advanced or metastatic stages [5, 6]. Currently, radical resection remains a key treatment 
strategy for ICC. However, despite undergoing curative surgery, approximately 60% of 
patients experience local recurrence, while nearly 40% develop distant metastases (DM) 
[7–9]. Additionally, the incidence of occult metastatic lesions in ICC patients is high, 
with studies showing that over 30% may have occult DM that were not detected by pre-
operative magnetic resonance imaging [10]. The liver is reported to be the most com-
mon site of DM in patients with ICC, followed by the lungs, bones, and brain [11]. Once 
DM occurs, the overall prognosis worsens significantly, with a median survival of only 
12.9 months [12, 13]. Therefore, it is urgent to increase the understanding of the risk 
factors and mechanisms of DM in ICC and developing accurate and effective predictive 
methods are crucial for formulating personalized diagnostic, treatment, and follow-up 
strategies, ultimately improving patient outcomes.

Machine learning (ML), a subset of artificial intelligence (AI), develops predictive 
models by automatically learning from large datasets to improve prediction algorithms, 
leading to its widespread application in medical decision-making systems in recent years 
[14]. ML-based models offer several advantages over traditional models, including the 
ability to handle complex data, identify nonlinear relationships, and improve predic-
tion accuracy by integrating multiple variables [15]. However, ML models have more 
complex structures compared to traditional predictive models and often exhibit char-
acteristics of black-box models in statistical analysis, which hinder interpretability [16]. 
Therefore, to address the challenge of “opening” black-box models, techniques such as 
SHapley Additive exPlanation (SHAP) values, derived from game theory, have been used 
to explain the results of complex algorithms, making their decision-making processes 
more transparent and easier for clinicians to understand [17].

In this study, we aim to utilize the Surveillance, Epidemiology, and End Results (SEER) 
database and apply ML algorithms to gain a deeper understanding of the risk factors for 
DM in ICC patients, while developing and validating the optimal predictive model. We 
use SHAP for both global and local explanations to clarify feature importance and inter-
pret the model’s predictions, thereby evaluating the practical significance of the model in 
predicting DM in ICC patients.

Conclusion  The GBM model demonstrated considerable potential in predicting 
the risk of DM in ICC patients. This could assist clinicians in formulating personalized 
treatment strategies, ultimately improving the overall prognosis of ICC patients.

Keywords  Intrahepatic cholangiocarcinoma, Distant metastasis, Machine learning, 
Interpretable, Prediction model
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2  Materials and methods
2.1  Patient cohort

In this study, we utilized SEER*Stat (version 8.4.4) to collect detailed data on ICC 
patients from 17 cancer registries, covering the period from 2004 to 2021, including 
demographic, clinical, and pathological characteristics. The SEER database, created by 
the National Cancer Institute (NCI) in 1973, includes survival and cancer incidence data 
representing approximately 28% of the United States population, collected from reports 
by national cancer registries [18]. The inclusion criteria for this study were: (1) primary 
tumor site classified under disease codes C22.0 and C22.1, (2) classification according 
to the International Classification of Diseases for Oncology, Third Edition (ICD-O-3), 
with a histological/behavioral code of 8160/3. The exclusion criteria were as follows: 
patients with non-pathological diagnosis, M stage was not available, unknown tumor 
size, unknown information regarding surgery, and diagnosed with ICC patients only by 
autopsy or death certificate. The complete screening process and detailed study design 
are shown in Fig. 1. Since SEER data is publicly available and does not include any identi-
fiable information or personal details, no additional ethical approval is required.

3  Study variables
The study variables included year of diagnosis, age at diagnosis, sex, race (White, Black, 
Asia-Pacific, other/unknown), marital status, annual household income, rural-urban 
classification, T-stage, N-stage, tumor size, tumor number, tumor grade, delayed treat-
ment, surgery, number of resected lymph nodes (LNs), radiotherapy, and chemotherapy. 
The optimal cutoff values for age and tumor size as continuous variables were deter-
mined using X-tile software (version 3.6.1, Yale University, New Haven, CT, USA). X-tile 
tested various threshold values and selected the value with the smallest p-value as the 

Fig. 1  Flowchart of study design and patient screening. SEER, Surveillance, Epidemiology, and End Results da-
tabase; ICDO-3, International Classification of Diseases for Oncology, 3rd Edition. CV, cross-validation; LR, logistic 
regression; SVM, support vector machine; XGB, extreme gradient boosting; RF, random forest; NBC, naive bayes 
classifier; MLP, multi-layer perceptron; KNN, k-nearest neighbors; GBM, gradient boosting machine; ROC, receiver 
operating characteristic; AUC, area under the curve; PR, precision-recall; SHAP, SHapley Additive exPlanation
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best threshold for the analysis [19]. Sensitivity analysis showed that when age and tumor 
size were converted into categorical variables, the eight ML models still exhibited robust 
performance (Supplementary Fig. 1). The continuous variable “number of resected LNs” 
was categorized into three groups: <6, ≥ 6, and unknown. This categorization adheres to 
the 8th edition AJCC staging system for ICC, which recommends the removal of at least 
6 lymph nodes as the standard for adequate lymphadenectomy. Marital status was sim-
plified into three groups: married, single, and other/unknown. The surgical treatment 
options were categorized into four groups: none, tumor ablation (surgery codes: 10–17), 
liver resection (surgery codes: 20–26, 30, 36–38, 50–52, 59, 90), and liver transplantation 
(surgery codes: 60–61, 75).

4  Selection of variables
In this study, we utilized three independent methods, including Least absolute shrink-
age and selection operator (LASSO) regression, the Boruta algorithm and Recursive 
Feature Elimination (RFE), to screen baseline variables and identify potential predictors 
in the training set. LASSO is a linear regression method that uses L1 regularization to 
select key features, simplify the model, and maintain high predictive accuracy [20]. The 
Boruta algorithm, based on random forests, evaluates feature significance by comparing 
the importance of original features with that of randomly generated “shadow features” 
to ensure no potentially significant feature is overlooked [21]. Recursive Feature Elimi-
nation (RFE) is a mainstream feature selection method in ML that selects features by 
recursively training the model and removing the least important ones to achieve optimal 
performance [22]. RFE utilizes a random forests classifier combined with 10-fold cross-
validation (CV), employing the area under the receiver operating characteristic curve 
(ROCAUC) as the evaluation metric. The overlapping variables identified through the 
intersection of LASSO regression, Boruta algorithm, and RFE were utilized to estab-
lish prediction models, ensuring the robustness of variable selection and improving the 
model’s generalization capability [23–25].

5  Model development and validation
Based on the aforementioned feature selection methods, we developed eight differ-
ent ML algorithms, including logistic regression (LR), support vector machine (SVM), 
extreme gradient boosting (XGB), random forest (RF), naive bayes classifier (NBC), mul-
tilayer perceptron (MLP), k-nearest neighbor (KNN), and gradient boosting machine 
(GBM), to predict the risk of DM in ICC patients. Considering the significant impact 
of class imbalance on model performance in binary classification, we applied the Syn-
thetic Minority Over-sampling Technique (SMOTE) in the training set to address the 
data imbalance, mitigating overfitting and loss of critical information, and ultimately 
improving model performance [26]. To optimize the prediction models, we employed 
a method based on 10 rounds of 10-fold CV combined with the default hyperparam-
eter grid search provided by the “caret” package to determine the final hyperparameters 
corresponding to the optimal feature subset for each model. Specifically, in each round, 
the dataset was randomly partitioned into 10 subsets, and a complete 10-fold CV pro-
cess was executed. Finally, using the optimal feature subset and final hyperparameters 
obtained from the 10 rounds of 10-fold CV, the model was re-fitted on the training set. 
This approach effectively reduces the risk of overfitting while enhancing the robustness 
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of the performance evaluation and the model’s generalization ability. We set random 
seed as “42” in our analysis.

We determined the best model by evaluating multiple performance metrics, including 
the area under the receiver operating characteristic (ROC) curve (AUC), area under the 
precision-recall (PR) curve (AUPRC), accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), F1 score, and Brier score. For imbalanced 
datasets, AUPRC is a more reliable metric than AUC for evaluating model performance, 
so we generated the PR curve and calculated AUPRC as a supplementary metric [27]. 
The calibration curve was used to assess the alignment between predicted probabilities 
and actual outcomes. Additionally, the Brier score is a metric used to evaluate the per-
formance of probabilistic prediction models by calculating the difference between esti-
mated and observed risks, ranging from 0 to 1, where a score closer to 0 indicates better 
calibration [28]. Decision curve analysis (DCA) was employed to evaluate the net ben-
efit of the model at various thresholds. Based on evaluation metrics, we picked the ML 
model that showed the best predictive results in both the training and validation sets.

6  Model explanation
Accurately interpreting ML prediction models can be challenging. SHAP, a cooperative 
game theory-based method, is widely employed to interpret black-box models in ML. By 
calculating each feature’s contribution to the prediction, it provides both local and global 
explanations, thereby aiding in the understanding of the decision-making processes of 
complex models [29]. Higher SHAP values indicate a greater impact of a particular fea-
ture on the model’s output. In addition, to facilitate the model’s application in clinical 
settings, we developed an accessible web calculator.

6.1  Statistical analysis

In this study, all data were processed and analyzed using R (version 4.4.1, ​h​t​t​p​:​/​/​w​w​w​
.​r​-​p​r​o​j​e​c​t​.​o​r​g​​​​​) and Python (version 3.12, http://www.python.org). Continuous data ​f​
o​l​l​o​w​i​n​g a normal distribution are analyzed using an independent t-test, reported as 
mean ± standard deviation (SD). Non-normally distributed data are analyzed with the 
Mann–Whitney U test, expressed as median and interquartile range (IQR). Categori-
cal data are presented as frequencies (%) and analyzed using Fisher’s exact test or Pear-
son’s chi-square test. All patients were divided into a training set and a validation set in 
a 7:3 ratio. Feature selection in the training set was performed using a combination of 
LASSO regression, the Boruta algorithm and RFE methods. Spearman correlation tests 
and variance inflation factor (VIF) analyses were performed on the selected features 
to avoid significant covariance or multicollinearity among variables in the model. The 
SMOTE algorithm was applied to oversample the minority class, effectively resolving 
the class imbalance in the training set. The validation set remained unchanged to retain 
the authenticity of the original data distribution. ML models were trained using the R 
package “caret” (version 6.0.94), which provides a unified interface for various algo-
rithms. Models were built with the train function and appropriate method parameters. 
The SHAP library in Python (version 0.46.0) was employed for interpretability analysis. 
A two-sided P < 0.05 was considered statistically significant.

http://www.r-project.org
http://www.r-project.org
http://www.python.org
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7  Results
7.1  Baseline population characteristics

In this study, a total of 8536 ICC patients were included and divided into a training set 
(n = 5.76) and a validation set (n = 2.60) at a 7:3 ratio. Out of these patients, 2816 cases 
(33%) had DM, while 5,760 cases (67%) did not. Baseline data comparison between the 
training and validation sets revealed no significant differences (P > 0.05). Furthermore, 
significant differences were observed in multiple clinicopathological characteristics 
between patients with DM and those without DM. For example, patients with DM were 
more likely to be male, older, and of White ethnicity, with a higher incidence of delayed 
treatment (over 1 month), elevated tumor grades (II–IV), advanced T stages (II–IV) and 
N stages (N1), larger tumor diameters, a greater likelihood of having multiple tumors, 
a lower proportion of undergoing surgery, or more limited lymph node dissection (P < 
0.001). Significant differences were also observed between patients with DM and those 
without DM in terms of receiving radiotherapy and chemotherapy (P < 0.001). The 
demographic and clinicopathological characteristics of all patients are shown in Table 1.

7.2  Feature selection and collinearity tests

Among all baseline characteristics, we utilized the Boruta algorithm to identify 12 key 
factors, including year of diagnosis, age at diagnosis, T stage, N stage, tumor size, tumor 
number, tumor grade, delayed treatment, surgery, the number of resected LNs, radio-
therapy, and chemotherapy (Fig. 2A, B). RFE, employing RF as the estimator and per-
forming 10-fold CV, narrowed the predictive factors down to 10 significant variables: age 
at diagnosis, T stage, N stage, tumor size, tumor number, tumor grade, surgery, number 
of resected LNs, radiotherapy, and chemotherapy (Fig. 2C). In this study, lambda.1se was 
determined to be the optimal value, and the 10 key variables selected through LASSO 
regression included: age at diagnosis, T stage, N stage, tumor size, tumor number, tumor 
grade, surgery, number of resected LNs, radiotherapy, and chemotherapy (Fig.  2D, E). 
The intersection of the results from three independent methods was determined to be 
the optimal feature set, ultimately including 10 clinical features as predictors for devel-
oping an ML-based predictive model: age at diagnosis, T stage, N stage, tumor size, 
tumor number, tumor grade, surgery, number of resected LNs, radiotherapy, and che-
motherapy (Fig. 2F). Spearman correlation and VIF tests indicated no strong correlation 
or multicollinearity between them (Fig. 3A, B).

7.3  Model performance

We conducted 10 rounds of 10-fold CV to construct eight ML models. To determine the 
optimal predictive model, we evaluated their performance and validated the results on 
the validation set. As shown in Fig. 4A, B, the GBM model achieved the highest AUC 
compared to other models, with an AUC of 0.905 (95% CI 0.900–0.910) on the training 
set and 0.802 (95% CI 0.785–0.819) on the validation set. The forest plot comparing the 
AUC scores of eight ML models is shown in Fig. 4C. To visually present the model’s per-
formance, we generated a plot comparing each participant’s predicted values with their 
actual disease status (Without DM/With DM). Employing a cutoff value of 0.5 for clas-
sification, the GBM model accurately identified 81.5% of DM patients in the validation 
set (Fig. 4D). The PR curve results indicate that the GBM model achieved the highest 
AUPRC values in both the training set (0.892) and the validation set (0.571) (Fig. 5A, D). 
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Characteristic Overall Without 
DM

With DM P-value Training 
set 

Validation 
set

P-
val-
ue(N = 8536), 

n (%)
   (N = 
5720), n 
(%)

(N = 
2816), n 
(%)

   (N = 
5976), n 
(%)

(N = 
2560), n 
(%)

Years <0.001 0.566
2004-2010 1620 (19.0) 1178 (20.6) 442 (15.7) 1160 (19.4) 460 (18.0)
2011-2015 2397 (28.1) 1593 (27.8) 804 (28.6) 1656 (27.7) 741 (28.9)
2016-2021 4519 (52.9) 2949 (51.6) 1570 (55.8) 3160 (52.9) 1359 (53.1)
Age <0.001 0.814
 <60 2360 (27.6) 1457 (25.5) 903 (32.1) 1675 (28.0) 685 (26.8)
 60-79 4987 (58.4) 3411 (59.6) 1576 (56.0) 3468 (58.0) 1519 (59.3)
≥80 1189 (13.9) 852 (14.9) 337 (12.0) 833 (13.9) 356 (13.9)
Sex 0.03 0.116
Female 4245 (49.7) 2902 (50.7) 1343 (47.7) 2928 (49.0) 1317 (51.4)
Male 4291 (50.3) 2818 (49.3) 1473 (52.3) 3048 (51.0) 1243 (48.6)
Race 0.031 0.408
White 6714 (78.7) 4560 (79.7) 2154 (76.5) 4693 (78.5) 2021 (78.9)
Black 664 (7.8) 428 (7.5) 236 (8.4) 489 (8.2) 175 (6.8)
Asia-Pacific 1060 (12.4) 664 (11.6) 396 (14.1) 723 (12.1) 337 (13.2)
Other/Unknown 98 (1.1) 68 (1.2) 30 (1.1) 71 (1.2) 27 (1.1)
Marital status 0.451 0.999
Single 1217 (14.3) 803 (14.0) 414 (14.7) 851 (14.2) 366 (14.3)
Married 5113 (59.9) 3403 (59.5) 1710 (60.7) 3575 (59.8) 1538 (60.1)
Other/Unknown 2206 (25.8) 1514 (26.5) 692 (24.6) 1550 (25.9) 656 (25.6)
Delayed treatment <0.001 0.918
 <1 month 2180 (25.5) 1453 (25.4) 727 (25.8) 1537 (25.7) 643 (25.1)
≥1 month 5843 (68.5) 3806 (66.5) 2037 (72.3) 4073 (68.2) 1770 (69.1)
 None 513 (6.0) 461 (8.1) 52 (1.8) 366 (6.1) 147 (5.7)
Tumor grade <0.001 0.998
 Grade I 479 (5.6) 405 (7.1) 74 (2.6) 340 (5.7) 139 (5.4)
 Grade II 2444 (28.6) 1898 (33.2) 546 (19.4) 1719 (28.8) 725 (28.3)
 Grade III & IV 2106 (24.7) 1474 (25.8) 632 (22.4) 1470 (24.6) 636 (24.8)
 Unknown 3507 (41.1) 1943 (34.0) 1564 (55.5) 2447 (40.9) 1060 (41.4)
Surgery <0.001 0.882
None 5634 (66.0) 3021 (52.8) 2613 (92.8) 3950 (66.1) 1684 (65.8)
Tumor ablation 222 (2.6) 199 (3.5) 23 (0.8) 159 (2.7) 63 (2.5)
Liver resection 2410 (28.2) 2248 (39.3) 162 (5.8) 1669 (27.9) 741 (28.9)
Liver transplantation 270 (3.2) 252 (4.4) 18 (0.6) 198 (3.3) 72 (2.8)
Number of resected LNs <0.001 0.546
<6 7858 (92.1) 5175 (90.5) 2683 (95.3) 5514 (92.3) 2344 (91.6)
≥6 592 (6.9) 489 (8.5) 103 (3.7) 398 (6.7) 194 (7.6)
Unknown 86 (1.0) 56 (1.0) 30 (1.1) 64 (1.1) 22 (0.9)
Radiotherapy <0.001 0.982
No 7099 (83.2) 4692 (82.0) 2407 (85.5) 4973 (83.2) 2126 (83.0)
Yes 1437 (16.8) 1028 (18.0) 409 (14.5) 1003 (16.8) 434 (17.0)
Chemotherapy <0.001 0.944
No 3765 (44.1) 2759 (48.2) 1006 (35.7) 2643 (44.2) 1122 (43.8)
Yes 4771 (55.9) 2961 (51.8) 1810 (64.3) 3333 (55.8) 1438 (56.2)
Tumor numbers <0.001 0.797
Single 6468 (75.8) 4144 (72.4) 2324 (82.5) 4516 (75.6) 1952 (76.3)
Multiple 2068 (24.2) 1576 (27.6) 492 (17.5) 1460 (24.4) 608 (23.8)
T stage <0.001 0.759
T1 3223 (37.8) 2588 (45.2) 635 (22.5) 2232 (37.3) 991 (38.7)

Table 1  Comparison of demographic and clinical features between patients with distant metastasis 
(DM) and those without DM, and between the training and validation sets
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Fig. 2  Feature selection results. A Box plots of attributes based on importance values in the Boruta algorithm. B 
Importance values of attributes in each classifier run of the Boruta algorithm. C Recursive feature elimination (RFE) 
based on random forest with 10-fold cross-validation. D Least absolute shrinkage and selection operator (LASSO) 
regression coefficients paths. E LASSO regression cross-validation curve. F Overlapping features selected by Boruta 
algorithm, LASSO regression and RFE

 

Characteristic Overall Without 
DM

With DM P-value Training 
set 

Validation 
set

P-
val-
ue(N = 8536), 

n (%)
   (N = 
5720), n 
(%)

(N = 
2816), n 
(%)

   (N = 
5976), n 
(%)

(N = 
2560), n 
(%)

T2 2194 (25.7) 1438 (25.1) 756 (26.8) 1517 (25.4) 677 (26.4)
T3 1535 (18.0) 943 (16.5) 592 (21.0) 1095 (18.3) 440 (17.2)
T4 1092 (12.8) 585 (10.2) 507 (18.0) 786 (13.2) 306 (12.0)
TX 492 (5.8) 166 (2.9) 326 (11.6) 346 (5.8) 146 (5.7)
N stage <0.001 0.994
N0 5649 (66.2) 4352 (76.1) 1297 (46.1) 3954 (66.2) 1695 (66.2)
N1 2437 (28.5) 1253 (21.9) 1184 (42.0) 1711 (28.6) 726 (28.4)
NX 450 (5.3) 115 (2.0) 335 (11.9) 311 (5.2) 139 (5.4)
Tumor size <0.001 0.793
<4.5 2529 (29.6) 1993 (34.8) 536 (19.0) 1778 (29.8) 751 (29.3)
4.5-7.9 2869 (33.6) 1972 (34.5) 897 (31.9) 1983 (33.2) 886 (34.6)
≥8.0 3138 (36.8) 1755 (30.7) 1383 (49.1) 2215 (37.1) 923 (36.1)
Household income 0.36 0.998
<$45,000 135 (1.6) 100 (1.7) 35 (1.2) 93 (1.6) 42 (1.6)
$45,000-$60,000 897 (10.5) 615 (10.8) 282 (10.0) 625 (10.5) 272 (10.6)
>$60,000 7504 (87.9) 5005 (87.5) 2499 (88.7) 5258 (88.0) 2246 (87.7)
Rural-urban counties 0.825 0.988
Metro < 250,000 618 (7.2) 426 (7.4) 192 (6.8) 428 (7.2) 190 (7.4)
Metro 250,000-1 million 1930 (22.6) 1284 (22.4) 646 (22.9) 1367 (22.9) 563 (22.0)
Metro > 1 million 5146 (60.3) 3430 (60.0) 1716 (60.9) 3590 (60.1) 1556 (60.8)
Non-Metro/Unknown 842 (9.9) 580 (10.1) 262 (9.3) 591 (9.9) 251 (9.8)
LNs, lymph nodes; Metro, metropolitan

Table 1  (continued) 
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The calibration curves of different ML algorithms indicate that the GBM model exhibits 
the highest consistency with the ideal prediction curve in both the training and valida-
tion sets (Fig. 5B, E). The DCA curves show that, compared to other models, the GBM 
model achieves higher net benefit across most thresholds in both the training and vali-
dation sets (Fig. 5C, F). By comparing eight different ML methods, we generated a table 

Fig. 4  A The training set ROC curve. B The validation set ROC curve. C Forest plot of AUC values. D The predic-
tive performance of the GBM model distinguishes between with distant metastases (DM) (colored in purple) and 
without DM (colored in green) in the validation set. LR, logistic regression; SVM, support vector machine; XGB, ex-
treme gradient boosting; RF, random forest; NBC, naive bayes classifier; MLP, multi-layer perceptron; KNN, k-nearest 
neighbors; GBM, gradient boosting machine

 

Fig. 3  Spearman’s correlation test (A) and variance inflation factor test (B) among selected features
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displaying evaluation metrics, including accuracy, sensitivity, specificity, PPV, NPV, F1 
score, and Brier score. Compared to the other models, the GBM model demonstrated 
higher accuracy (0.713), specificity (0.665), NPV (0.665), and F1 score (0.65), along with 
a lower Brier score (0.177). Specific values are provided in Table 2, with the correspond-
ing visualizations shown in Fig. 6A, B. In summary, the GBM model performed the best 
in both the training and validation sets, and is therefore recommended as the preferred 
model for predicting DM risk in ICC patients.

7.4  Model explanation

SHAP values provide deeper insights into how the GBM model makes predictions by 
explaining the contribution of each feature to the model’s output. Figure 7A illustrates 
the direction and strength of each feature’s impact on the model’s predictions through 
the SHAP summary plot and presents a bar chart with average SHAP values, showing 

Table 2  Performance of eight machine learning prediction models in the validation set
Model Accuracy Sensitivity Specificity PPV NPV F1-score Brier score
LR 0.671 0.87 0.573 0.87 0.573 0.635 0.202
SVM 0.686 0.808 0.625 0.808 0.625 0.629 0.216
XGB 0.678 0.859 0.589 0.859 0.589 0.638 0.249
RF 0.684 0.802 0.626 0.802 0.626 0.626 0.209
NBC 0.683 0.873 0.589 0.873 0.589 0.645 0.301
MLP 0.708 0.815 0.655 0.815 0.655 0.648 0.2
KNN 0.604 0.934 0.441 0.934 0.441 0.608 0.243
GBM 0.713 0.809 0.665 0.809 0.665 0.65 0.177
LR, logistic regression; SVM, support vector machine; XGB, extreme gradient boosting; RF, random forest; NBC, naive bayes 
classifier; MLP, multi-layer perceptron; KNN, k-nearest neighbors; GBM, gradient boosting machine.

Fig. 5  Performance comparison of different models. PR curve analysis (A, D), calibration curve analysis (B, E), and 
DCA curves for each model (C, F) assess the performance of eight machine learning (ML) algorithms in predicting 
distant metastases (DM) in intrahepatic cholangiocarcinoma (ICC) patients across the training and validation sets. 
LR, logistic regression; SVM, support vector machine; XGB, extreme gradient boosting; RF, random forest; NBC, naive 
bayes classifier; MLP, multi-layer perceptron; KNN, k-nearest neighbors; GBM, gradient boosting machine
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Fig. 7  SHAP model interpretation of feature variables based on the GBM model. A The SHAP summary plots dis-
playing the importance ranking of features; B The SHAP heatmap clusters hierarchically based on SHAP values. C 
Surgical subgroup-stratified SHAP contribution bar plot. D The SHAP force plot for intrahepatic cholangiocarcino-
ma (ICC) patients with distant metastases (DM). E The SHAP force plot for ICC patients without DM. In these plots, 
red represents variables acting as risk factors for DM, while blue represents variables acting as protective factors

 

Fig. 6  Evaluate the performance metrics of eight different machine learning methods in the training set (A) and 
validation set (B). PPV, Positive predictive value; NPV, Negative predictive value
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the contribution of features in descending order: surgery, N stage, tumor grade, T stage, 
tumor size, radiotherapy, tumor number, age at diagnosis, chemotherapy and number 
of resected LNs. The SHAP heatmap performs hierarchical clustering of patients based 
on SHAP values, visually highlighting the distribution of ICC patients with and without 
DM. Red indicates cases with a high probability of DM, while colorless or blue repre-
sents cases with low DM probability or without DM (Fig. 7B). Figure 7C illustrates the 
SHAP contribution patterns of key features across surgical subgroups. The liver resec-
tion and liver transplantation groups showed higher mean SHAP contributions than the 
tumor ablation and non-surgical groups. In contrast, among non-surgical patients, N 
stage, tumor grade, T stage, age, and local treatment-related features contributed more 
to the model predictions. The force plot offers personalized feature attribution through 
two representative examples, illustrating how SHAP can explain individual model pre-
dictions. Figure 7D shows an example of a positive prediction (the predicted probability 
of DM is 84%), with the absence of surgical treatment, N1 stage, and T4 stage identi-
fied as the primary risk factors. Conversely, Fig. 7E shows an example of a negative pre-
diction (the predicted probability of DM is 4%), where liver resection, N0 stage, small 
tumor size, and T1 stage are key factors associated with a reduced risk of DM. It starts 
from the base value, the average of all predictions, and each input feature at different 
levels can increase or decrease the predicted probability. The arrow length reflects the 
SHAP value of these features. By visualizing the SHAP values, we can assess how each 
feature impacts the model’s predictions for these cases.

7.5  Web calculator

As shown in Fig.  8, we developed a web calculator based on the GBM model to pro-
vide real-time, personalized risk estimation of DM in ICC patients for clinical use and 
dissemination. By entering the actual values of the key features required by the model, 
the tool automatically predicts the risk of DM for individual ICC patients. The web 

Fig. 8  The web-based calculator for predicting distant metastasis (DM) risk probability in intrahepatic cholangio-
carcinoma (ICC)
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calculator is accessible online via the following link: ​h​t​t​p​s​:​/​/​b​i​j​i​n​z​h​e​.​s​h​i​n​y​a​p​p​s​.​i​o​/​i​c​c​_​d​
m​_​s​h​i​n​y​/​​​​​.​​

8  Discussion
The incidence of ICC is increasing globally. ICC is a highly fatal disease, with 40% of 
cases resulting in death due to DM [30, 31]. Therefore, timely and accurate identification 
and prediction of the risk of DM in ICC patients are crucial. Currently, research on pre-
dictive models for distant metastases in ICC patients remains notably limited. Moreover, 
most of these studies rely on a single method (traditional logistic regression) for model 
construction, which may be insufficient to capture complex relationships, potentially 
limiting predictive performance [32–34]. With advancements in artificial intelligence, 
ML offers significant advantages over traditional models in handling multivariable, non-
linear relationships and complex interactions, thereby facilitating the development of 
clinical predictive models [35, 36]. To the best of our knowledge, this is the first study 
to utilize multiple ML algorithms for predicting DM in ICC patients, with the goal of 
enhancing patient outcomes through early intervention.

The lack of standardized guidelines for feature selection leaves the optimal number of 
features in predictive models uncertain. While more features may enhance information 
richness, excessive or non-causal features can reduce accuracy and limit clinical use [37]. 
To assist with feature selection, we adopted a combined strategy of LASSO regression, 
the Boruta algorithm, and RFE. Based on this, we carefully selected and finalized 10 fea-
ture variables, developing and validating 8 ML models. Among these models, the GBM 
model consistently demonstrated the highest AUC and AUPRC in both the training and 
validation sets, as well as the lowest Brier score, along with excellent accuracy, calibra-
tion, and net benefit. It should also be noted that in this study, the GBM model achieved 
an AUC of 0.905 on the training set, suggesting potential overfitting by capturing noise 
in the training data. In contrast, the 10 rounds of 10-fold CV yielded an AUC of 0.802, 
which, although slightly lower, better reflects the model’s generalizability and still dem-
onstrates excellent predictive performance.

The SHAP value analysis revealed that each of the 10 analyzed variables contributed 
uniquely and meaningfully to the model’s performance, including surgery, N stage, tumor 
grade, T stage, tumor size, radiotherapy, tumor number, age at diagnosis, chemotherapy 
and number of resected LNs (Fig. 7A). In this study, surgery was recognized as the key 
variable for predicting DM in ICC patients. Surgical resection remains a vital curative 
approach for ICC. With advancements in medical technology, an increasing number of 
patients with primary ICC are undergoing surgical treatment, including those who were 
previously considered ineligible for surgery [38, 39]. Recent studies have extended the 
application of surgical resection, including radiofrequency ablation, to advanced intra-
hepatic cholangiocarcinoma, even in cases of metastatic or multifocal disease [40, 41]. 
Thus, surgery plays an essential role in the treatment of ICC patients, offering a signifi-
cant reduction in the risk of DM and contributing to improved patient prognosis. In our 
study, higher T stage, larger tumor diameter and lymph node metastasis were identi-
fied as significant risk factors for DM. The larger the tumor diameter, the higher the T 
stage, which is associated with increased invasiveness toward surrounding organs and 
blood vessels, a greater likelihood of positive residual resection margins, and more scat-
tered microscopic lesions, thereby raising the risk of DM. Additionally, ICC can infiltrate 

https://bijinzhe.shinyapps.io/icc_dm_shiny/
https://bijinzhe.shinyapps.io/icc_dm_shiny/
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the bloodstream via lymphatic vessels within lymph nodes, leading to the formation of 
metastatic lesions in distant organs, and this mechanism is well-supported by evidence 
from studies on other tumor types [42, 43]. Consistent with previous research findings, 
poorly differentiated tumors are typically associated with higher aggressiveness and an 
increased risk of metastasis, significantly impacting patient prognosis [44]. Our study 
revealed that radiotherapy acts as a protective factor against DM in ICC patients. Effec-
tive radiotherapy can suppress tumor growth, disrupt angiogenesis, promote tumor cell 
apoptosis, and modify the immune microenvironment, ultimately reducing the risk of 
distant metastases [45, 46]. George and Keklikoglou et al. have reported that chemo-
therapy might increase the probability of distant metastases in malignant tumors, poten-
tially by promoting the expression of metastasis-related genes and enhancing exosome 
secretion [47, 48]. These studies suggest that while chemotherapy has a positive effect 
in reducing tumor size, it may also increase the risk of cancer cell metastasis. Our study 
indicates that tumor multifocality is a significant risk factor for DM. Patients with mul-
tifocal tumors typically present with larger primary lesions, higher rates of lymph node 
involvement, and increased vascular invasion, which significantly increase the risk of 
DM [49]. Therefore, accurately and effectively assessing the impact of these factors on 
DM occurrence in ICC patients, along with timely warnings and appropriate interven-
tions, is crucial for improving their long-term survival and prognosis.

ML techniques are often referred to as “black boxes,” making their predictive processes 
difficult to interpret [50]. The lack of transparency may deter clinicians from using these 
technologies, as they are reluctant to make medical decisions based on unclear or non-
interpretable information. To address this issue, a key strength of our study lies in the 
use of the SHAP method to reasonably elucidate the “black box” nature of ML mod-
els. The SHAP method provides both global and local explanations by quantitatively 
evaluating the specific contribution of each feature variable to the risk of DM in ICC 
patients, thereby enhancing clinical practitioners’ trust in the application of ML mod-
els. Specifically, the interpretability provided by our model allows clinicians to intuitively 
understand how different clinical parameters influence the predicted probability of DM, 
thereby facilitating personalized and precise risk stratification. Based on the model, cli-
nicians can identify patients with a higher predicted risk, arrange more frequent imaging 
examinations, or initiate earlier therapeutic interventions to detect and control DM at 
an early stage. For patients with a lower predicted risk, standard monitoring protocols 
can be followed, reducing unnecessary medical expenses and alleviating patient anxiety. 
Additionally, leveraging the convenient tools provided by the Shinyapps platform, we 
developed an online calculator that allows users to input key parameters and obtain the 
probability of DM in ICC patients, facilitating practical applications in clinical settings. 
Another advantage of this study is that all predictive factors incorporated into the model 
are routinely collected and easily obtainable during hospitalization, which strengthens 
the feasibility of implementing and promoting the model in clinical practice.

However, certain limitations of this study must be acknowledged. First, the data were 
derived from a retrospective analysis of the SEER database, which may introduce biases 
such as selection bias, information bias, and other data-related biases [51]. Second, 
the limitations of the SEER database made it challenging to obtain additional relevant 
information, with some critical variables, such as blood biochemical markers and nerve 
or vascular invasion, being unavailable for timely inclusion, thus constraining further 
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model optimization. Third, most ICC patients with DM do not undergo surgical inter-
vention due to tumor aggressiveness, which may lead to an overestimation of the predic-
tive significance of the surgical variable in our model. Future studies should incorporate 
additional objective diagnostic criteria, such as radiomic signatures, biomarkers, or 
molecular profiles, to further enhance the model’s robustness. Furthermore, this study 
lacks external validation data. In future studies, we aim to collect more comprehensive 
datasets and conduct in-depth supplementary research, including external validation 
using independent cohorts from different hospitals to further assess the model’s robust-
ness and generalizability.

9  Conclusion
In conclusion, we successfully developed an interpretable ML model to predict the risk 
of DM in ICC patients. Among the eight algorithms, the GBM model demonstrated the 
most reliable predictive performance. SHAP analysis provided valuable insights into 
the model’s decision-making process. Additionally, the web-based calculator we devel-
oped can assist clinicians in formulating and promptly adjusting personalized clinical 
decisions.
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