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Abstract

Background: Spi-B and PU.1 are highly related members of the E26-transformation-specific (ETS) family of transcription
factors that have similar, but not identical, roles in B cell development. PU.1 and Spi-B are both expressed in B cells, and
have been demonstrated to redundantly activate transcription of genes required for B cell differentiation and function.
It was hypothesized that Spi-B and PU.1 occupy a similar set of regions within the genome of a B lymphoma cell line.

Results: To compare binding regions of Spi-B and PU.1, murine WEHI-279 lymphoma cells were infected with retroviral
vectors encoding 3XFLAG-tagged PU.1 or Spi-B. Anti-FLAG chromatin immunoprecipitation followed by next
generation sequencing (ChIP-seq) was performed. Analysis for high-stringency enriched genomic regions demonstrated
that PU.1 occupied 4528 regions and Spi-B occupied 3360 regions. The majority of regions occupied by Spi-B
were also occupied by PU.1. Regions bound by Spi-B and PU.1 were frequently located immediately upstream
of genes associated with immune response and activation of B cells. Motif-finding revealed that both transcription
factors were predominantly located at the ETS core domain (GGAA), however, other unique motifs were identified
when examining regions associated with only one of the two factors. Motifs associated with unique PU.1 binding
included POU2F2, while unique motifs in the Spi-B regions contained a combined ETS-IRF motif.

Conclusions: Our results suggest that complementary biological functions of PU.1 and Spi-B may be explained by
their interaction with a similar set of regions in the genome of B cells. However, sites uniquely occupied by PU.1 or
Spi-B provide insight into their unique functions.
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Background
Development and survival of the B cell lineage is regulated
by a number of important transcription factors, and dys-
regulation of the expression of these proteins can lead to
impaired B cell function and disease such as leukemia [1].
Two highly related transcription factors involved in devel-
opment of B cells are the E26-transformation specific
(ETS) family members PU.1 (encoded by Spi1, also known
as Sfpi1) and Spi-B (encoded by Spib). PU.1 is expressed
in hematopoietic stem cells and common lymphoid pro-
genitors, and throughout B cell development [2]. PU.1-
null mice die during late gestation and do not generate
progenitors for B cells, T cells, monocytes, or granulocytes
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[3,4]. Development of lymphoid progenitor cells requires
PU.1, making it a key regulator of B-cell fate specification
[5]. In comparison, Spi-B deficient mice are viable and de-
velop mature B and T cells, although their B cells are func-
tionally deficient and die in response to BCR signalling
[6]. Therefore, PU.1 cannot completely compensate for
Spi-B, as functionally deficient Spi-B-/- B cells still express
PU.1 at wild-type levels [6].
Several lines of evidence suggest that PU.1 and Spi-B

have at least some complementary function in the B cell
lineage. First, PU.1 and Spi-B have 43% overall amino
acid identity and share 67% amino acid identity within
their ETS DNA binding domain [7]. The ETS domains
of PU.1 and Spi-B can interact with identical purine-rich
5′-GGAA-3′ motifs and can both activate transcription
of a number of genes important for B cell differentiation
and function through interaction with the same ETS mo-
tifs. Genes with demonstrated regulation by both PU.1
and Spi-B include Fcgr2b (encoding FcγRIIb) [8] and Blnk
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(encoding B cell linker protein) [9]. At other genomic re-
gions, binding to the ETS domain may be preferred by
one factor over another, particularly at combined ETS-IRF
elements where Spi-B is the principal partner for recruit-
ing IRF4 to regulatory regions [10]. PU.1 and Spi-B exhibit
differential DNA binding at the c-fes promoter in some
cell lines, which is predicted to be through the function of
distinct activation domains outside of the ETS-binding
domain, particularly at the N terminus where there is low
homology between the two proteins [11,12].
PU.1 and Spi-B appear to have complementary function in

the B cell lineage in vivo. Heterozygosity for Spi1 encoding
PU.1 on a Spib-/- mutant background leads to defects in BCR
signalling and reduced frequencies of splenic follicular B cells
that are more severe compared to Spib-/- mice, demonstrat-
ing a degree functional overlap between PU.1 and Spi-B
[13,14]. Conditional deletion of the Spi1 gene after B cell
commitment under the control of the B cell-specific
CD19-Cre leads to mild defects in B-cell development
and function [4,15,16]. However, conditional deletion of
Spi1 under the control of CD19-Cre on a Spib-/- (CD19-
CreΔPB) background leads to severely impaired B cell de-
velopment and B cell acute lymphoblastic leukemia, which
is partially attributed to loss of Blnk [9,17]. Bruton tyro-
sine kinase (Btk) is also directly regulated by Spi-B and
PU.1, and induction of PU.1 in cultured CD19-CreΔPB
Pro-B cells restores Btk expression and induces apoptosis
[18]. While decreased levels of PU.1 and Spi-B are associ-
ated with defects in lymphoid development and some
forms of leukemia, elevated levels of PU.1 and Spi-B have
been demonstrated in lymphoma [19,20]. SPIB is ampli-
fied in Activated B Cell Diffuse Large B Cell Lymphomas
(ABC-DLBCL) compared with other B cell lymphoma
subtypes, and is translocated in the OCI-Ly3 ABC-
DLBCL cell line leading to over-expression of SPIBmRNA
compared with other lines [20,21]. Spi-B is required for
the survival of ABC-DLBCL cell lines, as depletion of Spi-
B using lenalidomide or RNA interference leads to de-
creased survival in vitro [21,22]. It is predicted that the re-
quirement for Spi-B and PU.1 in lymphoma cells is due to
an “addiction” to B cell receptor signaling, which is
enforced by over-expression of these factors in activated
lymphoma subtypes [22].
Next-generation sequencing (NGS) technologies allow

for high-resolution analysis and detection of transcription
factors across the entire genome. By combining chromatin-
immunoprecipitation with high-throughput sequencing,
all regions within the genome bound by PU.1 and Spi-B
can be identified. Based on the demonstrated comple-
mentary function of PU.1 and Spi-B, we hypothesize that
PU.1 and Spi-B can interact with the same set of binding
sites in the genome of B cells. In this study, we report a
genome-wide comparison of genomic regions of inter-
action by PU.1 and Spi-B in the murine lymphoma cell
line WEHI-279. To remove bias introduced by different
antibodies, expression levels, or gene regulation we
expressed 3XFLAG-tagged PU.1 and Spi-B at similar
levels in WEHI-279 lymphoma cells. Chromatin immuno-
precipitation was performed using anti-FLAG antibodies.
Our results support the hypothesis that PU.1 and Spi-B
occupy similar regions within the genome, but also identi-
fied a unique subset of regions only occupied by one fac-
tor. Additionally, motif analysis has suggested that these
regions contain binding regions for different co-activator
partner proteins. In summary, these experiments provide
biochemical insight into both the similarities and differ-
ences between the biological functions of PU.1 and Spi-B.

Results
Determination of target regions for Spi-B and PU.1
To determine if the transcription factors PU.1 and Spi-B
occupied identical regions within the mouse genome
ChIP-seq was performed. To ensure a fair comparison,
WEHI-279 B lymphoma clones expressing 3XFLAG-
tagged full-length PU.1 or Spi-B protein were selected to
ensure equivalent levels of protein expression [9]. Unin-
fected WEHI-279 cells expressed Spi1 and Spib mRNAs
at a ratio of 1:1.3, relative to the normalizer gene Gapdh.
3XFLAG-PU.1-infected WEHI-279 cells expressed Spi1
mRNA and Spib mRNA at ratio of 1.2:1. 3XFLAG-Spi-
B-infected WEHI-279 cells expressed Spi1 mRNA and
Spib mRNA at a ratio of 1:2.6. These results suggested
that Spib mRNA was modestly overexpressed relative
to Spi1 mRNA. However, protein levels of the FLAG-
tagged products were similar between 3XFLAG-tagged
PU.1 and 3XFLAG-tagged Spi-B, as described in Xu et al.
[9]. This system is expected to provide the advantage of
eliminating variability between antibody specificity and
ChIP-Seq yield, while allowing sustained expression of
PU.1 and Spi-B in a mouse B cell line. ChIP was per-
formed on fixed WEHI-279 cell lines using anti-FLAG
mAb and immunoprecipitated chromatin was validated by
qPCR (Figure 1A).
PU.1 or Spi-B binding peaks were determined using

replicate data from two experiments, sequenced by two
independent sequencing core facilities with over 20 mil-
lion reads per sample. Replicate ChIP-seq experiments
were merged in MM-ChIP, which estimates sample-
specific shift-size of ChIP-seq tags with MACS modeling
and then pools shifted tags from different samples to
identify ChIP-peaks with a dynamic Poisson model [23].
This method allowed combining of separate datasets
with different tag-sizes, noise features, and dynamic
ranges. Using a model fold of 10, 30 and a p-value cut-off
for peak detection of 1e-05, MM-ChIP identified 4528
high-stringency regions bound by PU.1 and 3360 high-
stringency regions bound by Spi-B. The PU.1-bound
regions called by MM-ChIP had an average size of 1469 bp,



Figure 1 ChIP sequencing of PU.1 and Spi-B in a mouse B lymphoma cell line. A. Workflow for generating ChIP sequencing data. B. Venn
diagram for regions of significant ChIP binding determined by MM-ChIP. Regions with at least 100 base pair overlap were considered common to
both factors. C. Venn diagram of peakset regions analyzed in DiffBind. The majority of regions in the matrix demonstrated less than 2 fold
difference in enrichment between PU.1 and Spi-B. D. Scatter plot of ChIP signal between PU.1 and Spi-B binding. Binding of these transcription
factors was similar across most of the genome. E. De-novo motif analysis from ChIP. From extracted DNA sequences, frequently occurring motifs were
discovered using MEME-ChIP. The most frequently occurring motif for each sample contained the canonical ETS binding sequence F. Representative
ChIP-seq binding at a region considered to be regulated by PU.1 and Spi-B. The histocompatibility 2 Q region on chromosome 17 demonstrates high
peaks for PU.1 and Spi-B at gene promoters.
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while the Spi-B-bound regions called by MM-ChIP had an
average size of 1460 bp.
PU.1 and Spi-B-bound regions were compared to de-

termine if significantly enriched regions were common to
both sets. Of these 4528 regions, 1900 had a minimum of
100 bp of overlap between the two sets of regions, and the
average length of overlap between significantly enriched
regions was 1337 out of 1460 base pairs (92%) (Figure 1B).
There were also a number of MACS-defined regions that
had a PU.1 or Spi-B peak in one sample, but not the other,
but did not have a significant 2-fold difference in terms of
number of aligned reads. Using DiffBind, 5974 PU.1/Spi-B
matrix peak regions were called. 596 high-confidence
peak regions were found to differ significantly in tag count
between the two conditions (2-fold change, p <0.05).
Differentially bound regions were classified as PU.1-
higher or Spi-B higher, in which local enrichment of se-
quence tags for one factor was 2-fold higher than tags for
the other. Of these 596 regions, 470 were considered to be
PU.1-higher and 126 Spi-B-higher (Figure 1C). The correl-
ation coefficient on the genome scale was calculated using
Cis-regulatory Element Annotation System (CEAS) appli-
cation. Protein-DNA binding signals (Wiggle tracks) were
correlated between two samples in 1 kb bins. PU.1 and
Spi-B signals demonstrated a high degree of correlation
with an r2 correlation coefficient of 0.8196 (Figure 1D).
These results demonstrated that 1 kb intervals of the gen-
ome with a high degree of PU.1 binding were likely to
have strong Spi-B binding, and many regions containing
significant ChIP-seq peaks for one factor also had a peak
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for the other. Taken together, these results showed that
most regions in the genome of WEHI-279 cells occupied
by PU.1 were also occupied by Spi-B.

Identification of enriched sequence motifs
Members of the ETS superfamily recognize similar purine-
rich sequences with a 5′-GGAA-3′ core [24]. To validate
the enrichment of ChIP chromatin at ETS motifs, se-
quences of ChIP-seq peak regions were screened for
enriched motifs using MEME, DREME and CentriMO
using MEME-ChIP [25]. The top motif for PU.1-bound
regions was the Spi1 motif, with an E-value of 8.6e-735,
and a central canonical ETS GGAA motif that was found
in 98.87% of all peaks. The top motif for the 3360 Spi-B
binding sites was also the Spi1 motif with an E-value of
4.1e-398. This motif was centrally enriched contained a
central GGAA sequence was found in 97.45% of the peaks
(Figure 1E). Top motifs demonstrated central distribution
within the sequences.

Annotation and comparison of peak-associated genes
Potential target genes of PU.1 and Spi-B were identified
using BETA-minus, which annotates binding data to
predict target genes based on proximity to the transcrip-
tion start site [26]. To identify and visualize the function
of genes potentially regulated by these transcription fac-
tors, the predicted target genes from BETA-minus were
functionally annotated using Database for Annotation,
Visualization and Integrated Discovery (DAVID). Gene
ontology analysis of predicted Spi-B targets revealed signifi-
cant (FDR ≤ 0.05) enrichment of antigen processing func-
tions (GO:0002478, GO:0048002, GO:0019884, GO:0019886,
GO:0002495) immune response (GO:0006955), intracellular
signaling cascade (GO:0035556) and regulation of lympho-
cyte activation (GO:0051249). Histocompatibility 2 class II
loci, several Fc receptors (Fcgr2b, Fcgr3, Fcamr), as well as
B cell markers CD40 and CD74 were included in multiple
ontologies.
These gene lists suggest that Spi-B has functions in

lymphoid development, antigen processing, and B cell
receptor-mediated signalling. Top processes for PU.1 were
highly similar to Spi-B, consistent with previous studies
that presumptive targets for PU.1 are involved with B cell
and myeloid lineages. The gene ontology of processes for
PU.1 target genes included cell activation (GO:0001775),
leukocyte activation (GO:0045321), and hematopoiesis
(GO:0030097). Top genes involved in all three pathways
included Bak1, Bcl6, Hdac7, Pou2f2, Spi1, and Vav1. The
region upstream of Spi1 demonstrated a single peak at
the -14 kb position (not shown). The region at -14 kb
of Spi1 has been demonstrated to be occupied by PU.1 in
both B lymphocytes and myeloid cells, as opposed to a site
at -12 kb that is occupied by PU.1 only in myeloid cells
[27]. These gene lists are consistent with the known role
for PU.1 in both development and function of these line-
ages [28]. Peak to gene associations for PU.1 and Spi-B
are available in Additional file 1: Table S1 and Additional
file 2: Table S2, respectively.
To predict genes regulated by either transcription fac-

tor, the 1900 regions with more than 100 bp of overlap
between PU.1 and Spi-B bound-regions were examined
using BETA-minus (Additional file 3: Table S3). Gene
targets included the Toll-like receptors Tlr4, Tlr6, Tlr9,
and Tlr13 in addition to well-documented targets such as
Btk and Blnk. Top processes were immune response
(GO:0006955), multiple terms for antigen processing and
presentation (GO:0002478, GO:0048002, GO:0019884,
GO:0019886) and regulation of lymphocyte activation
(GO:0051249). These pathways were considered most sig-
nificant due to high ranking of MHC class II genes in the
associated gene list, including H2-Aa, H2-Q4, H2-Q7,
H2-Q9 and H2-Q6 (Figure 1F).

Spi-B and PU.1 ChIP signal at genes highest at
transcriptional start sites
In order to visualize genome-wide distribution of ChIP
peaks, peaks were sorted according to their distribution
around mouse RefSeq genes. Cis-regulatory element anno-
tation revealed that regions bound by Spi-B and PU.1 were
over-represented for transcription start sites with respect to
the whole genome. While 6.6% of the mouse genome is lo-
cated within 10000 bp of gene promoters, 16.5% of Spi-B
bound regions were located within 10000 bp of gene pro-
moters. Similarly, 15.5% of PU.1 bound regions were lo-
cated within 10000 bp of gene promoters (Figure 2A).
Next, binding profiles of PU.1 and Spi-B relative to fea-

tures in the mouse genome were determined using Deep-
Tools [29]. Log2 normalized read coverage of ChIP-seq
data was clustered against regions of mouse RefSeq genes.
Regions with the highest PU.1 and Spi-B binding clustered
within 4 kb of the transcription start site of mouse genes,
with the peak summit directed at the transcription start
site and little binding within the gene body (Figure 2B).
Using K-means clustering, transcription factor binding

at the start of mouse RefSeq genes in the genome demon-
strated 5 distinct patterns (Figure 2C). Cluster 1 contained
the largest number of mouse genes, where little PU.1 or
Spi-B binding was observed. Cluster 2 demonstrated an
upstream binding modality, while cluster 3 demonstrated
binding downstream from the transcription start site
(TSS). Cluster 4 represented the peaks at the TSS and had
the highest signal. Cluster 5 represented broad binding
across the TSS, with lower signal intensity than in cluster
4. Importantly, reanalysis of PU.1 ChIP-seq performed
using primary splenic B-cells (GSE21512) [30], revealed a
very similar enrichment at distal elements and promoters.
These clusters suggest that while PU.1 and Spi-B bind
various locations within the genome, they have the highest



Figure 2 Distribution of ChIP-seq peaks within the genome. A. PU.1 and Spi-B have similar binding patterns in relation to features in the
genome. B. Profiles and associated heatmaps of ChIP-signal at the transcriptional start site of Mouse RefSeq genes. Profiles represent the regions
of strongest binding, which are clustered around the transcriptional start site. C. All clusters of PU.1 and Spi-B signal in relation to mouse RefSeq
genes. Five different patterns of binding were observed, where the largest cluster contained genes without transcription factor binding at the
promoter. Clusters 2 and 3 contained genes with binding upstream or downstream of the promoter, although Spi-B binding was often seen at
the transcription start site. Cluster 4 contained regions with the highest log2 signal. Cluster 5 was gene with a broad region of transcription factor
binding at the TSS. Top row shows results from anti-FLAG ChIP-seq of 3XFLAG-PU.1 in WEHI-279 cells, second row shows results from anti-FLAG
ChIP-seq of Spi-B in WEHI-279 cells, and third row shows results from anti-PU.1 ChIP-seq in mouse splenic B cells (GSE21512). D. Profile of DNase
genomic footprinting (DGF) at regions of significant ChIP enrichment for PU.1 and Spi-B. Regions of PU.1 or Spi-B binding demonstrated increased
DNase sensitivity compared to regions outside the peaks. E. Profile of RNA Polymerase II ChIP-signal in B cells at regions of ChIP enrichment for
PU.1 and Spi-B. PolII data confirmed that significant PU.1 and Spi-B peaks frequently occur at sites of transcription initiation. F. Profile of the chromatin
feature H3K36me3, a marker of heterochromatin and gene bodies, at peak regions for PU.1 and Spi-B.
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degree of binding at distal elements and promoters of tar-
get genes.
In order to further characterize the chromatin envir-

onment of regions bound by PU.1 or Spi-B, significant
peak regions were profiled against marks for transcription,
gene body, and DNase sensitivity. ChIP binding signal in B
cells in the form of wig/bigwig files were downloaded from
published GEO datasets. Digital genomic footprinting
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(DGF) of DNase I hypersensitivity in mouse B cells from
ENCODE/University of Washington (GSM1003813) was
used to predict regions of the genome containing cis-
regulatory elements profiled against significantly ChIP-
enriched regions in the genome (Figure 2D). Regions of
the genome bound by either Spi-B or PU.1 demonstrated
higher digital genomic footprinting scores relative to re-
gions 4 kb up or downstream. In addition to using DNase
footprints for predicted regions of transcription factor
binding, promoter regions were further predicted using
RNA polymerase binding. Signal for published RNA
polymerase II ChIP-seq on stimulated B lymphocytes
(GSM1038232) was profiled against ChIP-enriched re-
gions for PU.1 and Spi-B. Similar to DGF profiling, regions
of the genome bound by PU.1 or Spi-B demonstrated high
enrichment of Pol II binding compared to regions 4 kb up
or downstream (Figure 2E).
To further characterize binding locations of Spi-B and

PU.1 in relation to the gene body, peak intervals were
clustered against histone modifications by ChIP-seq from
Figure 3 Differential binding of PU.1 and Spi-B within the genome. A
Unique sites for these factors are frequently located beyond 10Kb of the transc
analysis by MEME-ChIP of unique regions determined by DiffBind. The most f
the most common motif found in all peaks for PU.1 and Spi-B. PU.1-unique p
half of these peaks also contained a POU2F2 motif. Spi-B unique peaks retaine
the IRF motif (dotted box). C. A unique PU.1 binding peak was observed at t
Nod2. E. Unique Spi-B binding in the 3′ end of Fgf23. F. Unique Spi-B bin
ENCODE/LICR (GEO series GSE31039). Whole genome
coverage of H3K36me3 (GSM1000148) was inversely as-
sociated with regions of the genome bound by either PU.1
or Spi-B (Figure 2F). This mark has been observed to be
strongest within the body of actively transcribed genes
[31]. PU.1 or Spi-B peak regions showed an inverse signal
of binding, indicating that regions of PU.1 and Spi-B bind-
ing are unlikely to be within regions of the genome also
bound by H3K36me3. Taken together, these profiles dem-
onstrate that peak regions of PU.1 and Spi-B are charac-
teristic of transcriptional activators.

Unique binding sites of Spi-B and PU.1
PU.1 and Spi-B demonstrated a consistent pattern of high
ChIP signal at transcriptional start sites. Interestingly,
binding sites unique to either PU.1 or Spi-B demonstrated
distinct profiles. Unlike common peaks, which tended to
be associated with TSSs, unique PU.1 or Spi-B sites were
frequently found in intergenic regions 10Kb beyond the
nearest gene promoter (Figure 3A). Analysis of distribution
. Distribution of PU.1 and Spi-B unique ChIP-seq peaks within the genome.
ription start site compared with the overall peak sets. B. De-novo motif
requently occurring motif for each sample is shown and compared with
eaks retained similar motifs to those seen in all PU.1 peaks, but just over
d the ETS-IRF motif seen in all Spi-B peaks, with higher conservation of
he site of mir155 D. Unique binding of PU.1 within the gene
ding in the promoter of Lat2.
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within the genome using CEAS demonstrated that
unique PU.1 peaks were not over-represented at the pro-
moter compared to the background distribution within
the genome.
Differentially bound regions were analyzed with

MEME-ChIP for unique conserved binding motifs to
identify potential differential associated binding partners.
Regions uniquely bound by PU.1 contained the ETS motif.
A POU2F2 (also known as Oct-2) motif was identified by
MEME chip, with an E-value of 2.5e-007. This motif was
observed within 100 bp of 19.7% of the ETS motifs seen
in PU.1-bound regions, but was overrepresented to 51.9%
of ETS motifs in unique PU.1 peaks. There were 267
POU2F2 motif occurrences in unique PU.1 peaks with a
p-value less than 0.0001. Combined POU2F2-PU.1 motifs
were observed upon re-analysis of PU.1 ChIP in pri-
mary splenic B-cells (GSE21512) [30], where a secondary
POU2F2 was located in 21.1% of all sequences also con-
taining a GAGGAA primary motif. In contrast, regions
bound by Spi-B did not demonstrate a marked difference
in POU2F2 motifs. POU2F2 motifs were observed in
12.7% of all Spi-B bound regions and 11.1% of regions
uniquely bound by Spi-B but not PU.1.
Remarkably, de-novo motif finding with Spi-B unique

regions revealed that 100% of unique Spi-B regions
contained an ETS–IRF composite element (EICE; 5′-
GGAAnnGAAA-3′) with an E-value of 1.7e-119 (Figure 3B).
This combined motif was similar to the binding sequence
for all significant Spi-B peaks, but the IRF element was
more conserved. The primary GGAAnnGAAA motif was
found in 62.38% of Spi-B bound sites. Sites uniquely
bound by PU.1 did not demonstrate the same increase in
EICEs; GGAAnnGAAA motifs were observed in 52.89%
of all PU.1 peaks and reduced to 40.20% in unique PU.1-
bound regions. This composite element was observed in
Spi-B unique peaks and provides evidence that IRF factors
might bind within a few base pairs of the Spi-B binding se-
quence. To determine whether the uniquely-bound Spi-B
sites containing IRF motifs might interact with IRF4, we
compared our sites with IRF4 ChIP-Seq regions from
mouse B cells (GSE39756) [32]. Of these sites, 30.2% were
located within 100 bp of an IRF4-bound site in unstimu-
lated B cells or B cells stimulated with IL-21. 17.5% of
ETS-IRF sites were located within 100 bp of an IRF4 peak
under both conditions. These findings suggest that unique
Spi-B binding is associated with local deposition of IRF4
in B cells.
In order to determine what genes were regulated at

differentially bound regions, gene function for differen-
tial gene targets was determined using gene ontology.
Peak to gene associations were determined using CEAS
and annotated using DAVID. Genes uniquely bound by
PU.1 were predominantly associated with leukocyte acti-
vation during immune response (GO:0002366) and cell
activation during immune response (GO:0002263)
(Additional file 4: Table S4). These pathways were both
highly ranked due to inclusion of interleukin 3 and 12b,
Cx3cr1, as well as a unique peak in an intron of Nfkb1
not observed in Spi-B. PU.1 unique peaks were found
to be associated with genes related to mRNA processing
(GO:0006397) and with a number of miRNAs; mir-155/
AY096003, mir-3108/zfhx3, mir-1938/Ifrd1, mir-3102/
Arhgef17, and mir-5130/Kctd12. Of these, mir-155 has
a known oncogenic role in lymphomas [33]. Furthermore,
mir-155 directly targets PU.1 and leads to a down-
regulation of PU.1 protein in B cells [34]. PU.1 unique
peaks were observed in the promoter region of Nod2, a
NOD-like receptor involved in B cell proliferation and
activation [35]. Typical examples of these regions are
represented in Figure 3C,D.
Gene targets of differentially bound Spi-B peaks were

associated with immune effector process (GO:0002252)
and B cell activation (GO:0042113) that included Bnip3l,
Lat2 and Pou2f2. Multiple GO terms associated with
both positive and negative regulation of transcription and
gene expression (GO:0045935, GO:0045499, GO:0032583,
GO:0008634) were also identified due to the inclusion
of Fgf23, Myc and Pou2f2 (Additional file 5: Table S5). A
large unique peak of Spi-B binding was observed at a
combined ETS-IRF motif within the 3′ end of Fgf23
(Figure 3E). FGF23 is involved in the regulation of phos-
phate concentration in plasma, and has been found to be
elevated in the serum of patients with B cell neoplasms
[36]. Spi-B unique binding was also observed at the pro-
moter of Sema4b. Sema4b abundantly expressed in lym-
phocytes and been demonstrated to be a novel regulator
of immunological memory responses and homeostatic T
helper 1/T helper 2 balance in mice [37]. Lat2 (also
known as Lab/NTAL) (Linker For Activation Of T Cells
2) demonstrated significant Spi-B binding directly at
the promoter, which was not observed in the PU.1 ChIP
(Figure 3F). Lat2 is expressed in the spleen, peripheral
blood lymphocytes, and various human B cell lines, and is
tyrosine-phosphorylated in response to B cell receptor sig-
nalling [38]. Lat2 expression has been observed in mono-
cytes (CD14+) and B cells (CD19+) [39]. These analyses
demonstrate that while PU.1 and Spi-B frequently occur
at the regulatory regions of genes predicted to have B cell
function, a small subset of regions and genes that are
uniquely bound by only of these transcription factors.
These factors have unique requirements for associated
binding partners, and are involved in different functions.

Discussion
To investigate genome-wide binding of Spi-B and PU.1,
we conducted next generation sequencing of chromatin
immunoprecipitated with anti-3XFLAG-tagged Spi-B or
PU.1. Previous studies have reported ChIP-seq analysis
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of PU.1 binding sites in erythroid, myeloid, and lymph-
oid cells but none have compared PU.1 to Spi-B sites in
mouse cells due to technical constraints [30,40,41]. De-
tailed analysis of transcription factor binding revealed that
these two ETS transcription factors had similar binding
regions within the genome of murine WEHI-279 lymph-
oma cells. We determined that both transcription factors
demonstrated the highest degree of binding near the TSS
and regions of open chromatin, although peaks were also
observed within introns and upstream of genes beyond
10 kb. Characterization of the sequences most strongly
bound by PU.1 and Spi-B has confirmed that the primary
target sequence of both factors contained the purine-
rich core motif 5′-GAGGAA-3′. This motif was iden-
tified within regions of significant ChIP enrichment, and
determined to be overrepresented by de-novo motif en-
richment analysis. Peak-to-gene associations confirmed
occupancy of both factors within 15,000 bp of the TSS for
genes involved in immune system regulation and pro-
cesses. Gene ontology analysis confirmed that PU.1 and
Spi-B are involved in the regulation of genes required for
B cell development and function. The top GO pathways
determined by DAVID for PU.1, Spi-B, and the common
peaks were cell activation, immune response and immune
response, respectively.
An important finding of this study is that of the gen-

omic regions occupied by PU.1, a majority were also oc-
cupied by Spi-B. This fraction was 1900/4528 regions
using MM-ChIP, and 5378/5974 regions (90%) using
DiffBind. This result supports our hypothesis that PU.1
and Spi-B can interact with the same regulatory regions in
the genome of B cells. This result is consistent with previ-
ous reports that PU.1 and Spi-B have similar DNA binding
specificities [12,24]. We suggest that similar DNA binding
preferences and similar biochemical activity are the ex-
planation for why PU.1 and Spi-B have complementary
biological activity in the B cell lineage [14,17,42].
Fewer regions of the genome were found to be differen-

tially occupied by PU.1 or Spi-B in the genome of WEHI-
279 B cells. One important aspect of next-generation
sequencing demonstrated in this study is the importance
of mathematical modeling and input sequencing in identi-
fying differential peaks. While direct subtraction of re-
gions called by peak callers revealed several peak regions
that did not overlap between samples, affinity (quantita-
tive) data analysis using DiffBind determined that only
several hundred regions demonstrated significant differ-
ences between factors. Using DiffBind to identify differen-
tial peaks in combined data most likely under-predicted
gene targets, but provided high-stringency lists. Therefore,
while there remains a possibility that other differential re-
gions exist within the genome, this method provides the
most accurate and specific regions. Therefore, subsequent
analysis of these high-stringency peaks highlights the most
significant differences between Spi-B and PU.1 binding
within the genome.
Regions identified that were occupied uniquely by PU.1

or Spi-B may reveal insights into biological functions
unique to each factor. Genes associated with unique PU.1
bound regions were related to immune development using
Gene Ontology analysis. Regions unique to PU.1 con-
tained a number of microRNA genes, while no microRNA
genes were observed at unique Spi-B peaks. The unique
binding of PU.1 to the sequence of MiR-155 may have a
role in regulation of PU.1 itself, as expression this micro-
RNA has been shown by others to down-regulate PU.1
[34]. Binding at this region suggests that PU.1 may be in-
volved in the regulation of MiR-155. The identification of
an Oct2 binding motif within unique PU.1 regions implies
a potential co-activator role, as PU.1 and Oct2 have previ-
ously been shown to bind concomitantly at the Vκ19 pro-
moter in B lymphocytes, and point mutations in the
binding sites for either factor can lead to diminished im-
munoglobulin production [43]. Oct2 binding has been
shown to be covariant with PU.1 binding activity [44] and
Oct2 preferentially binds to PU.1 regions in B cells com-
pared with macrophages, suggesting a functional role for
PU.1 to recruit Oct2 to regulatory regions of the genome
and induce cellular reprogramming in B cells [30].
Unique Spi-B associated genes were associated with

roles in B-cell activation and immune function. All unique
Spi-B peaks had an associated IRF sites in WEHI-279
lymphoma cells, while ETS-IRF sites were not overrepre-
sented in unique PU.1 peaks. This suggests that in cases
where genes are under the regulation of an ETS-IRF com-
posite element (EICE), Spi-B and not PU.1 is the preferen-
tial IRF partner. Our results are consistent with a recent
study showing that combined EICEs were dominantly oc-
cupied by Spi-B in B lymphoma cell lines, and that PU.1
could not fully compensate for Spi-B in recruiting IRF4
to target regions [10]. RNAi-mediated down-regulation
of either Spi-B or IRF4 leads to rapid death of cultured
lymphoma cells, irrespective of PU.1 co-occupancy [22].
Therefore, Spi-B may be involved in a unique regulatory
network where it is more frequently associated with IRF4
in B cell lymphomas, and may be directed to these sites
by IRF4 or function to alter IRF4 occupancy within
the genome.
Our model of PU.1 and Spi-B binding is based on lymph-

oma cells over-expressing the proteins, which bears simi-
larity to other B cell studies in terms of binding near
target genes and associated binding motifs. While the
changes in the expression level of PU.1 can enhance bind-
ing of other factors to influence local chromatin structure
and dictate eventual cell fate [27,30,45,46], our tagged-
expression model does not appear to have substantially al-
tered binding of PU.1 or Spi-B, since identified peaks were
very similar to those identified in a study of mouse splenic
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B cells [30]. Peak-associated gene lists support our hy-
pothesis that PU.1 and Spi-B are involved in the regulation
of lymphoid development and immune function, and we
report fewer than 10,000 peaks per factor, possibly due to
the restricted lineage of the lymphoma cell line.

Conclusions
In conclusion, we report genome-wide binding of the ETS
transcription factors Spi-B and PU.1 to similar regions
of the genome, with high affinity for transcriptional start
sites containing ETS motifs. These regions are frequently
located near the regulatory domains of genes involved in
B cell development and function. In addition to these
common regions, there exists a small set of unique regions
where PU.1 and Spi-B demonstrate differential preference
for associated factors based on sequence identity, target
gene function, and potential co-activators. Our findings
provide novel insight into differences between the two fac-
tors, and offers novel biochemical pathways involving Spi-
B as a molecular targeting therapy in B cell malignancies.

Methods
Quantitative PCR (RT-qPCR)
Relative frequencies of Spi-B and PU.1 mRNA transcripts
were measured by reverse transcription–quantitative PCR
(RT-qPCR) and normalized as a percent of Gapdh tran-
scripts using the comparative threshold cycle method [47].

Chromatin immunoprecipitation
Mouse WEHI-279 lymphoma cells were cultured in
complete DMEM medium (Multicell, 4.5 g/L glucose)
supplemented with 10% fetal bovine serum, 1x penicillin/
streptomycin/L-glutamine, 5 × 10-5 β-mercaptoethanol
and 5 mM HEPES buffer. Cells were stably transfected to
express 3x FLAG-tagged Spi-B or PU.1 as previously de-
scribed [9]. Chromatin was cross-linked in 1% formalde-
hyde for 10 minutes and quenched with 0.125 M glycine.
Cell pellets were washed 3 times in cold PBS and snap
frozen in liquid nitrogen. Chromatin fragmentation was
conducted using 30 cycles of sonication on a Bioruptor
(Diagenode). PU.1/Spi-B-DNA immunoprecipitation was
performed using anti-FLAG microbeads (M2, Sigma-
Aldrich) on 300 ug of chromatin per sample. Cross-
linking was reversed at 65°C overnight and DNA isolated
used a QIAquick PCR purification kit (Qiagen). Fragmen-
ted DNA was quantified using 2100 Bioanalyzer (Agilent
Technologies). Libraries were generated robotically with
10 ng of fragmented DNA (100-300 bp) using the Kapa
HTP Library Preparation Kit (Kapa Biosystems) as per the
manufacturer’s recommendations except that adapters
and PCR primers were diluted 100-fold, the size selection
step was done after the PCR step and the number of PCR
cycles increased by 6. Adapters and PCR primers were
purchased from Integrated DNA Technologies whereas
size selection has been performed on a Pippin Prep instru-
ment (SAGE Biosciences Inc). Libraries were quantified
using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life
Technologies) and the Kapa Illumina GA with Revised
Primers-SYBR Fast Universal kit (D-Mark). Average size
fragment was determined using a LaChip GX (PerkinElmer)
instrument. Libraries were sequenced on a SR100 run on
a HiSeq2000 (Illumina).

ChIP-seq analysis
ChIP-seq experiments were conducted in duplicate for
each transcription factor. Peak finding and data analysis
was performed using Galaxy Suite [48,49]. FASTQ files
were aligned to MM9 using Map with Bowtie for Illumina
v. 1.1.2 to the reference genome (NCBI37/mm9) [50].
Peaks were called using MACS version 1.0.1 [51] with a
mappable genome size of 1910000000 bp (MM9). Input
controls were used when available. Peaks were called with
a tag size was set to either 75 (rep1) or 100 (rep2), band
width of 300 and a P-value cutoff for peak detection of 1e-
05. Peak Model was generated using an MFOLD high-
confidence enrichment ratio against background of 15.
Wiggle files were created using a resolution of 10 bp. In-
dependent experiments were combined using MM-ChIP
v. 1.0.0 with a mappable genome size of 1910000000, band
width of 200, model fold = 10,30 and a p-value cut-off for
peak detection of 1e-05 [23]. Larger datasets were scaled
towards smaller datasets. Regional lambda was calculated
at a range of 1000 bps and 10000 bps. Input .bed files of
total reads for MM-ChIP were generated using Convert
from BAM to BED tool v0.1.0 in Galaxy. Functional ana-
lysis of cis-regulatory regions bound by PU.1 and Spi-B
were identified using CEAS [52]. Promoter regions were
defined as regions extending 10 kb upstream of transcrip-
tion start site. Peak coverage was compared by subtracting
intervals of Bed files and reporting intervals that did not
have at least 100 bp overlap between datasets using Inter-
sect (version 1.0.0) in Galaxy.

Peak to gene associations
Peak to gene associations were determined using BETA-
minus in Cistrome [52]. BED files for peaks were gener-
ated in MM-ChIP, or DiffBind for differential peaks. All
peaks were considered to contribute to genes. Parameters
set were: Genome =mm9, bl = false, Distance = 15000.
Gene ontology was determined using DAVID [53,54].
Gene lists were submitted for functional annotation as
OFFICIAL_GENE_SYMBOL and process results reported
from the GOTERM_BP_FAT chart.

Motif analysis
Enriched motifs within the ChIP-seq peaks were deter-
mined using MEME-ChIP [25]. Peak regions were con-
verted to FASTA sequences using Extract Genomic
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DNA (version 2.2.3) in galaxy (mm9). Peak regions were
submitted for motif discovery in MEME-ChIP using JASPAR
vertebrates and UniPROBE mouse. Site distribution was
expected to be any number of repetitions, with a mini-
mum width of 4 and a maximum width of 30.

Heat mapping and gene profiling
Binding profiles of Spi-B and PU.1 relative to features in
the mouse genome were depicted using DeepTools [29].
Normalized read coverage (log2ratio) of the ChIP-seq data
was clustered against the intervals of all Mouse RefSeq
genes (33,073 regions) using computeMatrix v. 1.5.8.
RefGenes were plotted using reference-point mode, with
the beginning of each gene region designated as the tran-
scription start site. Heatmapper images were generated,
with regions sorted in descending order. K means cluster-
ing was set to 5, and individual profiles generated from
each cluster. To profile GEO datasets against declared
peak regions, computeMatrix was run using signal from
published datasets and significant ChIP peaks from this
study as the regions of interest in scale-regions mode.
All peak regions were scaled to 1500 bp for signal profil-
ing. Signal was calculated across the region, plus 4 kb up-
stream from the peak start site and 4 kb downstream of
the peak end site. Scores were averaged over 50 base pair
bins. Indicate missing data as zero: False, Skip zeros: False.
Signal files of ChIP-seq in B cells were downloaded from
GEO: DNaseI Hypersensitivity by Digital DNaseI from
ENCODE/University of Washington (GEO Series GSE37074).
Whole genome coverage of DNaseSeq in CD43- B cells
(GSM1014170). ChIP-seq from ENCODE/LICR (GEO
series GSE31039). Whole genome coverage of H3K36me3
in CD43- B cells (GSM1000148). ChIP-seq for serine 5-
phosphorylated RNA Polymerase II in Wild-type B cells
(GSM1038232). For GEO datasets, all files were down-
loaded as pre-analyzed wig/bigwig files and used directly
for profiling. Profiles were generated using the Matrix file
from computeMatrix in profiler, combining both regions
plotted on the same plot.

Availability of supporting data
The data sets supporting the results of this article are
available in the GEO repository, http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE58128. Additional data files
supporting the results of this article are included as
Additional file 1: Table S1, Additional file 2: Table S2,
Additional file 3: Table S3, Additional file 4: Table S4
and Additional file 5: Table S5.
Additional files

Additional file 1: Table S1. A supplemental table containing peak-to-gene
association of PU.1 to mouse RefSeq genes. Significantly enriched ChIP
regions bound by PU.1 were associated with genes based on proximity
using BETA-minus.

Additional file 2: Table S2. A supplemental table containing peak-to-gene
association of Spi-B to mouse RefSeq genes. Significantly enriched ChIP
regions bound by Spi-B were associated with genes based on proximity
using BETA-minus.

Additional file 3: Table S3. A supplemental table containing
peak-to-gene association of regions with at least 100 bp of overlap between
PU.1 and Spi-B to mouse RefSeq genes. Significantly enriched ChIP regions
bound by both regions were associated with genes based on proximity
using BETA-minus.

Additional file 4: Table S4. A supplemental table containing peak-to-gene
association of regions uniquely bound by PU.1 to mouse RefSeq genes.
Significantly enriched ChIP regions with unique PU.1 binding were
associated with genes based on proximity using BETA-minus.

Additional file 5: Table S5. A supplemental table containing peak-to-gene
association of regions uniquely bound by Spi-B to mouse RefSeq
genes. Significantly enriched ChIP regions with unique Spi-B binding
were associated with genes based on proximity using BETA-minus.
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