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Abstract
The lateral membrane plays an important role in the mechanical stability of
epithelial cell sheet in steady state. In addition, the lateral membrane is
continuously remodeled during dynamic processes such as cell extrusion,
cytokinesis, and intercellular cell movement. In wound healing, the lateral
membrane must be built from flat and spread cells that had crawled into the
area of the wound. Thus, forming the lateral membrane is a phenomenon that
occurs not only in development but also during homeostatic maintenance and
regeneration of differentiated epithelial tissues.
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Introduction
An epithelial cell consists of three plasma membrane regions: the 
apical, the lateral, and the basal membranes1. These three plasma 
membrane domains have distinct lipids and proteins and thus per-
form different functions. The apical plasma membrane is a free 
surface that is exposed to the luminal fluid. The basal plasma 
membrane is attached to an extracellular matrix that supports the 
epithelial tissue. The lateral membrane of the epithelial cell orients 
perpendicularly to the apical and basal membranes and frequently 
is referred to as cell-cell contacts, the cell boundary, or intercellular 
junction. Depending on whether the native epithelium is squamous, 
cuboidal, or columnar, the area of the lateral membrane can range 
from about 10% to 60% of the total cell surface area.

The lateral membrane contains proteins for cell-cell adhesion, 
intercellular signaling, and cell-cell communication and is the only 
region of the plasma membrane where an epithelial cell interacts 
with other epithelial cells. The relationship between the lateral 
membrane and intercellular interaction is especially important for 
non-cell-autonomous processes such as mechano-regulation of 
cell-cell adhesion. By providing an interface for homophilic inter-
actions between adhesion molecules such as E-cadherin, the lateral 
membrane allows neighboring cells to push and pull on adhesion 
complexes from the outside of the cell. Interactive mechanical regu-
lation of cell-cell adhesion by the direct actions of the neighboring 

cells can be achieved only when cell-cell adhesion molecules 
are positioned on the intercellular interface. Hence, the lateral 
membrane plays a permissive role in the strengthening of cell-cell 
adhesion and the maturation of adhesion complexes.

The lateral membrane of an epithelial cell can take on a different 
identity when interacting with different neighboring cells, result-
ing in the emergence of separate and independent lateral membrane 
domains (Figure 1). The lateral plasma membrane of vertebrate 
epithelial cells can be functionally and structurally divided into the 
upper, middle, and lower regions on the basis of differential dis-
tribution of membrane proteins. The upper lateral membrane lies 
immediately adjacent to the apical membrane. The upper lateral 
membrane contains the tight junction, the adherens junction, and 
the gap junctions, collectively known as the apical junction2. The 
middle part of the lateral plasma membrane contains the desmo-
somes and the lateral adherens junctions3. The lower lateral plasma 
membrane lies immediately adjacent to the basal membrane and 
contains the basal adherens junction4 and protrusive structures 
known as cryptic lamellipodia5. Cell adhesion proteins are fre-
quently concentrated at the apical junction but also distributed 
along the entire surface of the lateral membrane. Adhesion proteins 
found on the middle and basal regions of the lateral membrane 
are not co-localized to the same extent as when they are on the 
apical junction6–11. Indeed, the strength of cell-cell adhesion and 

Figure 1. Epithelial lateral membrane is a three-dimensional structure. (a) The lateral membrane of an epithelial cell forms distinct 
interfaces, 1–5, with different neighboring cells. The cell-cell boundaries form the cell junctions, X1–X5, representing the X-axis of the lateral 
membrane. A gradient of proteins can be found along the Z-axis of the lateral membrane, from apical to basal membrane. (b) The Y-axis of 
the lateral membrane and cell junction is perpendicular to the X-axis. The X- and Y-axis of the lateral membrane and cell junction are different 
from the microscope X-and Y-axis. The X- and Y-axis of the cell junction remain the same along the Z-axis only if the epithelial cell is a perfect 
prism.
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acto-myosin activities forms a gradient along the vertical axis of 
the lateral membrane12,13. Hence, the lateral membrane consists 
of functionally distinct vertical slices with different neighbors 
distinguishing their identities and horizontal slices with differ-
ent adhesion complexes distinguishing their properties. The lat-
eral membrane forms a hollow cylinder that houses the cytoplasm 
and thus contains both two-dimensional information on the X-Z 
plane (Figure 1a) and three-dimensional geometric and force 
information along the Y-axis (Figure 1b).

The purposes of this commentary are to briefly summarize recently 
published phenotypes associated with abnormal formation of the 
lateral membrane (Figure 2a–f) and to discuss possible mecha-
nisms that help create this intercellular interface in epithelial cells 
(Figure 3–Figure 6).

Lateral membrane phenotypes
Recent studies have shown that the generation of the epithelial 
cell-cell interface is dependent on many factors, including 

Figure 2. Phenotypes of abnormal formation of the lateral membrane. (a) The height of wild-type epithelial cell (grey line with arrowheads) 
is the same as the height of its lateral membrane (red line with arrowheads). (b) Decrease in the height of the lateral membrane (red line with 
arrowheads) without a change in the height of the epithelial cell (grey line with arrowheads). (c) Decrease in both the height of the lateral 
membrane (red line with arrowheads) and the height of the epithelial cell (grey line with arrowheads) with the same cell diameter (yellow line) 
as wild-type cells. (d) Increase in both the height of the lateral membrane (red line with arrowheads) and the height of the epithelial cell (grey 
line with arrowheads) with the same cell diameter (yellow line) as wild-type cells. (e) Decrease in the height of the lateral membrane (red 
line with arrowheads) and the height of the epithelial cell (grey line with arrowheads) with increase in cell diameter (yellow lines mark twofold 
change). The lateral membrane remains vertically positioned. (f) Decrease in Z-height of the cell-cell interface (red line with arrowheads) 
can result from formation of orthogonal lateral membrane, leading to decrease in cell height (grey line with arrowheads) with increase in cell 
diameter (yellow lines mark twofold change).

Figure 3. One-dimensional treatment of lateral membrane formation. (a) Pushing from the bottom of the lateral membrane. (b) Pulling 
from the top of the lateral membrane. (c) Expansion toward both top and bottom from the middle of the lateral membrane. (d) Crawling along 
the lateral membrane of neighboring cell.
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Figure 4. Two-dimensional treatment of lateral membrane formation. (a) Shrinking of the lateral membrane on X-axis results in an increase 
in lateral membrane height on the Z-axis and a decrease in the length of the X-axis. Orange arrows represent direction of shrinkage.  
(b) Decrease in the length of X-axis (outer blue pentagon) results in a smaller diameter of the cell (inner grey pentagon). Orange arrows 
represent direction of shrinkage. (c) The lateral membrane is represented as a collage of individual membrane domains (small squares). In 
flat cells, there are more squares forming the X-axis than the Y-axis (left collage). Increase in the height of the lateral membrane represented 
by a re-shuffling of the individual membrane domains, resulting in increase in the Z-length and decrease in the X-length (right collage).

Figure 5. Three-dimensional treatment of lateral membrane formation requires coupling the plasma membrane to the cytoplasm. 
(a) Protrusion of the cytoplasm forces re-shaping of the cell surface to create the lateral membrane. (b) Contraction of the cytoplasm forces 
re-shaping of cell surface to create the lateral membrane. (c) Cytoplasmic flow generates thrusting force in the cytoplasm to produce cell 
shape changes.
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junctional and non-junctional proteins14–28. Disrupting the functions 
of these junctional and non-junctional determinants results in not 
only abnormal formation of the lateral membrane but also alteration 
of the overall cellular geometry (Figure 2a–f). Often, the ratio of 
apical, lateral, and basal cell surface areas is dramatically changed, 
especially in cells where the lateral cell surface normally represents 
a significant portion of the plasma membrane. In most cases, the 
vertical distance between the apical and basal membrane is reduced, 
resulting in an overall reduction in cell height (that is, shorter cells)  
(Figure 2c, e, f). One group of shorter cells has a cell diameter 
similar to that of wild-type cells14,15. These cells have an overall 
reduction in cell volume and surface area (that is, smaller cells)  
(Figure 2c, yellow line marks cell diameter). The second group of 
shorter cells is associated with increased spread area16–23, but the 
overall cell volume is roughly conserved (that is, flat and large 
cells) (Figure 2e–f). A variant of the shorter lateral membrane 
phenotype is associated with a change in the position of the apical  
junctional complex on the vertical axis24,25,29. In this variant, the dis-
tance between the apical and basal cell-cell junction is shortened 
but the height of the cell remains the same (Figure 2b). Another 
exception to the common flat and large cell phenotype is an expan-
sion of the lateral membrane26,27, resulting in an overall increase in 
the height of the epithelial cells (Figure 2d). Yet the majority of the 
lateral membrane defects described in the literature are associated 
with large and flat cells (Figure 2e–f, yellow lines show where the 
diameter is twice that of wild-type cells). For this reason, this com-
mentary will consider the problem of building the lateral membrane 
to be a problem of converting a flat and large cell to a taller and 
thinner cell—in essence, a geometry problem.

Four categories of proteins appear to play important roles in con-
verting a spread cell to a taller cell: (1) structural components that 
support integrity of the lateral membrane19–21, (2) cytoskeletal 
dynamics on the lateral membrane14,15,18,22, (3) cell-cell adhesion 
molecules16,17,23,30, and (4) acto-myosin contractile activities14,21,24–26. 
In addition, some earlier studies indicate that mechanical properties 
of the extracellular matrix also affect generation of epithelial cell 
height25,28, indicating that the basal cell surface can contribute to the 
regulation of the lateral cell-cell interface. Disrupting the function 
of any one of these components leads to defective formation and 
shortening of the lateral membrane on the vertical Z-axis. There-
fore, generating the lateral membrane is dominated not by a single 
set of criteria but by multiple components on the plasma membrane, 
the sub-membrane cortex, and acto-myosin activities inside the cell. 
These factors must work together, most likely in a spatially and 
temporally coordinated fashion, to generate the lateral membrane. 
However, knowing the diversity of these factors not only reveals the 
complexity of epithelial cell-cell interface but compels us to evalu-
ate our understanding of the formation of the lateral membrane.

Rise of the lateral membrane
Conceptually, the rise of the lateral membrane would require factors 
acting on the X, Y, and Z axes of the cell junction (Figure 1). Three 
distinct aspects of the lateral membrane can be derived from the 
axes: (a) the height of the cell (that is, the vertical distance between 
apical and basal surfaces that is represented by the one-dimensional 
Z axis), (b) the area of the lateral plasma membrane (that is, the 
cell-cell interface that is represented by the two-dimensional 
X-Z axis), and (c) the volume surrounded by the lateral membrane 

Figure 6. Generation of the vertical lateral membrane from 
orthogonal lateral membrane. (a) Steady-state monolayer of 
epithelial cells with vertically positioned “upright” lateral membrane. 
(b) Wounding an epithelial monolayer leaves an open area. 
(c) Epithelial cells migrates to cover the open area. Orthogonally 
positioned “slouching” lateral membrane is formed between 
spread cells that had just migrated into the wound. (d) Force 
exerted along the lateral membrane and on the Y-axis of cell-cell 
interface realigns the slouching lateral membrane. (e) Balancing 
the forces from apposing cells along the Z-axis can ‘verticularize” 
the lateral membrane to form an upright cell-cell interface. (f) 
Restitution of epithelial layer by re-population with new cells via 
cell division and elongation of vertical intercellular interface (red 
arrow). (g) Completion of restitution result in steady-state monolayer 
with vertical Z-axis once again. (h) Conversion of orthogonal 
lateral membrane to vertical lateral membrane in (d) and (e) can 
be achieved by contraction forces along the X-axis of cell-cell 
junction between neighboring cells. (i) Independent contraction 
forces can be delivered separately along the Y-axes (Y1-5) to 
each cell-cell interfaces (X1-5) between distinct neighboring cell-
pairs. Optimal force balance at cell-cell interface depends on the 
epithelial ensemble and force distribution among individual cells in 
the epithelial monolayer.
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as a problem of cell elongation. Upward protrusion of the 
cytoplasm in the apical-basal axis can lead to vertical extension, 
resulting in an increase in cell height and consequently an increase 
in the height of the lateral plasma membrane (Figure 5a). Alterna-
tively, centripetal contraction on the horizontal axis can squeeze 
the cytoplasm and force the cytoplasm to elongate upward, result-
ing in a decrease in cell diameter, an increase in cell height, and 
expansion of the lateral plasma membrane (Figure 5b). Moreover, 
a more dynamic and labile mechanism involving cytoplasmic 
flow43–46 would support force production and bulk cell shape 
changes (Figure 5c). These three-dimensional processes are likely 
to require dynamic attachment of the cells to the extracellular 
matrix to provide traction during force production as well as 
coupling of the cytoplasm to the plasma membrane to allow force 
transmission to cell-cell adhesions.

However, in real life, spread cells that have migrated into a free 
surface, such as an open wound, often overlap with their neigh-
bors by crawling over the top or extending protrusions underneath 
each other, forming an orthogonal lateral membrane that contains 
cell-cell adhesion proteins (Figure 6a–c). Thus, the generation of 
the lateral membrane from these overlapping cells would require 
simply to straighten them up, by converting an orthogonal “slouch-
ing” lateral membrane to a vertical “upright” lateral membrane  
(Figure 6d–e). After this “verticularization” process, the lateral 
membrane can proceed to the elongation phase to acquire proper 
height on the Z-axis (Figure 6f–g). Conversion of an orthogonal 
lateral membrane to a vertical lateral membrane can conceivably 
be induced by forces (along the Y-axis) acting on the X-axis of  
cell-cell interface (Figure 6h and i).

Future perspectives
Understanding how an epithelial cell forms the intercellular  
interface and modulates cell-cell adhesion, in two and three  
dimensions, would require new ways to describe the lateral mem-
brane. Analysis tools and methodology to measure cell behaviors in 
two and three dimensions on the vertical axis, and with time as the 
fourth dimension, will be necessary to elucidate not only the bio-
chemical and biophysical nature of the lateral membrane but also 
the biology that is performed by cell-cell interactions.
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(that is, the cytoplasm that is represented by the three-dimensional 
X-Y-Z axis). Thus, the rise of the lateral membrane is an amalga-
mation of factors that determine the Z height, the X-Z area, and 
the X-Y-Z volume. We will treat the one-dimensional, two- 
dimensional, and three-dimensional problems separately (Figure 3– 
Figure 6). This reductionist approach, though unrealistically 
simplified, outlines the potential parameters that an epithelial cell 
might employ to create the eventual cell-cell interface. However, 
this commentary will not discuss the molecular players that might 
be involved in the generation of the lateral membrane, which has 
been summarized in recent reviews31–35, nor will this commentary 
discuss any phenotypes characterized by gross disruption in the 
organization of the epithelial cell layer26,36.

A one-dimensional analysis for lateral membrane expansion can be 
considered a zipper problem on the Z-axis (Figure 3). It requires 
upward expansion of the intercellular interface between neigh-
boring flat cells to generate taller cells. The lateral membrane can 
rise up by a pushing force that has an anchor at the basal plane  
(Figure 3a). Alternatively, the lateral membrane can be dragged 
up by a pulling force that has an anchor at the apical plane  
(Figure 3b). The lateral membrane can expand bi-directionally, 
nucleating from cell-cell attachment sites (Figure 3c). Lastly, the 
lateral plasma membrane could be generated when neighboring 
cells send protrusions to crawl up each other (Figure 3d). Such one-
dimensional expansion of the lateral membrane can conceivably 
be contributed by one-dimensional biochemical processes such as 
actin elongation or directional movement of molecular motors37–39.

A two-dimensional analysis for lateral membrane expansion can 
be considered a reshaping problem on the X-Z axis (Figure 4). 
The process must involve re-arrangement of lateral plasma 
membrane subdomains, which requires elongation of the lateral 
membrane on the vertical apical-basal axis and shrinking of the 
lateral membrane on the horizontal axis. One possibility is to 
squeeze the lateral membrane horizontally from the base of the 
cell such that excess lateral membrane would move up vertically 
on the apical-basal axis. This could possibly be achieved by con-
traction on the plane of the lateral membrane surrounding the base 
of the cell (Figure 4a). Alternatively, the entire plasma membrane 
can be re-shuffled (Figure 4b). This process requires the lateral 
membrane to consist of many individual subdomains that behave 
independently of each other40. Re-arrangement of membrane 
subdomains could conceivably be driven by a boundary-based 
mechanism or a network-based mechanism, analogous to cell 
intercalation during morphogenetic events41,42.

A three-dimensional analysis for lateral membrane expansion 
can be considered a volume problem (Figure 5). If the cytoplasm 
of the three-dimensional cell is changed from being a flat cell to 
being a tall cell, the plasma membrane may not have to play an 
active role in this process but simply to behave as a passive com-
ponent like a cloth that drapes over the surface of the cytoplasm.  
Therefore, the generation of the lateral membrane can be discussed 
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