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Abstract

Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these
programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue
morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral
wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which
serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and
the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion.
Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other
cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are
assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows
that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms
of these human pathologies.
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Introduction

Drosophila wing is a perfect model for diverse genetic analyses

and is useful in different developmental studies, mostly due to

existence of a wide range of mutations affecting wing development

and relative simplicity of the wings tissues. Drosophila wing is

composed of two epithelial layers which develop from a specific

area of the wing imaginal disc, called the wing pouch, during

metamorphosis. Upon its development, the wing tissue undergoes

a series of well-described and strictly defined morphogenetic

events [1]. After the wing pouch evaginates and folds along the

midline, it passes through four key steps: apposition – when two

basal surfaces of wing epithelia come together; adhesion – when

junctions form between the apposed basal surfaces; expansion –

when the wing blade expands as cells flatten; and separation –

when basal surfaces separate from each other and a specific

transalar apparatus differentiates. Each of these morphogenetic

rearrangements happen twice: at prepupal and at pupal stages of

Drosophila development [1].

Numerous studies have revealed the critical role played by

integrins as the key mediators of the formation and maintenance of

the developing Drosophila wing bilayer [2–4]. Integrins are

transmembrane heterodimers formed by noncovalently associated

a and b glycoprotein subunits with a large extracellular domain

recognizing extracellular matrix (ECM) ligands and a short

cytoplasmic tail binding to adaptor proteins. According to the

Uniprot and FlyBase databases, five a- and two b-integrin subunits

are encoded in the Drosophila genome. Among them only one bPS
subunit (PS standing for ‘‘position specific’’), encoded by myo-

spheroid (mys) locus, and two a subunits: aPS1 – multiple edematous

wings (mew) and aPS2 – inflated (if) have been shown to be required

for the apposition of the dorsal and ventral epithelial sheets during

wing morphogenesis. While the b-subunit is evenly distributed

over most of the basal cell surface of wing discs, aPS1 and aPS2
subunits are exclusively expressed on the future dorsal and ventral

wing epithelium, respectively [5]. Such position-specific allocation

of integrin heterodimers of different composition is important for

the subsequent accurate apposition and adhesion among the

future intervein cells of evaginated wing pouch [6], where they

form adhesion-like clusters called basal contact zones [1]. A defect

in either integrin gene product can produce wing blisters – regions

within the adult wing where the two surfaces are not apposed

[4,7]. Intriguingly, imbalanced amounts of aPS integrin subunits

(e.g. by overexpression of any of them) leads to a similar dominant

phenotype called Blistermaker phenotype [6,8].

During wing development in Drosophila, integrins appear to

provide a linchpin in the transalar apparatus that stretches from

one wing surface to the other. The transalar apparatus is a

mechanically continuous structure consisting of parallel arrays of

microtubules and microfilaments anchored apically to the cuticle

via hemi-desmosomes and basally to the opposite epithelial layer

via the basal junctions [1]. Thus it is presumed that integrins

mediate two distinct spatial and temporal functions during

Drosophila wing morphogenesis: the mediation of cell-cell interac-
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tions by forming basal junctions and the cell-matrix interactions

[1,6,8].

Despite wing tissue simplicity, its morphogenesis is a fairly

complex developmental program and integrins are not the sole

molecules involved in wing sheet apposition and adhesion. Many

other proteins implicated in different signaling pathways (e.g.

Wingless, Decapentaplegic, Notch, Hedgehog) also play important

functions in wing morphogenesis and may contribute to wing

blistering when functioning improperly. Processes regulating cell

cycle, apoptosis, and epithelial-mesenchymal transition are also

involved in wing morphogenesis and can regulate the dorso-

ventral sheet apposition [9]. Vein/intervein formation is another

example of a process which is far-standing from the integrin-

dependent adhesion mechanics (as the vein cells do not express

integrins and do not form transalar arrays [1]) but nevertheless

may contribute to the wing blister phenotype when the cell fate

determination shifts in favor of the vein cells which do not form

connections with the opposite surface [10,11].

This complexity should be considered when performing

attempts to identify novel blisterome components – genes which

upon mutation result in blister formation – and to ascribe such

genes to the integrin-mediated adhesion. Several of such attempts

have been previously performed using the FRT-FLP system

inducing formation of somatic loss-of-function clones in the

developing Drosophila wing [12,13], disclosing several mutations

causing the wing blister phenotype. However, these approaches, as

well as sporadic descriptions of other blister-causing mutations,

were far from exhaustive characterization of the Drosophila wing

blisterome.

Here we use the UAS/GAL4 system to express the library of

Drosophila RNAi lines [14] in the Drosophila wing. We randomly

chose 1709 transgenic RNAi lines which target 1573 protein-

coding genes or ,11.3% of the total gene number in the release

5.51 of the Drosophila genome. The list contained genes defined by

the gene ontology (GO) terms as involved in a wide range of

biological processes, molecular functions, and cellular components

and also included genes without any assigned GO terms (see Table

S1). This analysis revealed a large number of genes previously

never implicated in cell adhesion or blister formation, allowing

identification of (a subset of) Drosophila blisterome. As we further

show, human orthologues of many of these genes are implicated in

a number of diseases, shedding light on the possible underlying

mechanisms of these pathologies.

Results

Blister-causing genes uncovered by means of RNAi
screening
The RNAi lines were crossed with the MS1096-Gal4 driver line

– an effective driver-construct for wing blister production together

with appropriate UAS-constructs [9,15]. This transgene directs

strong GAL4 expression in the dorsal part and weaker in the

ventral part of the developing larval and pupal wing [16]. The

resulting MS1096-Gal4; UAS-RNAi flies were analyzed and the

parental RNAi transgenes grouped depending on the observed

wing phenotype. Almost two thirds (62.4%) of the analyzed RNAi

lines gave no phenotype, 1.1% were lethal, and visible phenotypes

(excluding lethality, but including semi-lethality) were scored for

36.5% of the analyzed RNAi lines (Fig. 1A).

Among the phenotypes observed, the ‘‘blister’’ and the ‘‘burned

wings’’ phenotypes were the most frequent (Fig. 1A). A wing blister

is a bubble in a wing often filled with hemolymph (Fig. 1). Its

appearance correlates with disruption of integrin-mediated cell

adhesion between the dorsal and ventral epithelial sheets of a wing

[17]. This general phenotype can be split into smaller sets

depending on whether the blister occupies the whole wing or only

parts of it, and also on the accompanying other defects of wing

formation (Fig. 1B–G). The ‘‘blister’’ group is represented by

RNAi lines targeting 91 genes (5.7% of the screened lines, see

Table S2). Among the affected genes are Delta, blistery, and inflated,

previously identified as blister-causing in somatic clone analysis

[8,12]. Delta is a ligand activating the developmentally important

Notch signaling cascade [18], the blistery protein product (human

orthologue – tensin) has an actin binding function and acts as an

adaptor stabilizing integrin adhesive contacts in Drosophila [19],

while inflated encodes the aPS2 integrin subunit [3,8]. Another

overlap with previously published data is parvin, implicated in the

integrin adhesion in Drosophila [20] and mammals [21]. However,

the majority of the genes (see Table S2) have never been

previously implicated in wing blistering.

The ‘‘burned wings’’ phenotype with warped and dusky wings

also comes in different manifestations (Fig. 1H–J) and was

represented by 120 genes (7.3% of the screened lines, see Table

S3). Importantly, 39 lines developed ‘‘burned wings’’ upon ageing

of blistered wings of newly eclosed individuals (Fig. 1H, I). We

assumed that even with the RNAi lines which produce ‘‘burned

wings’’ at birth, wings of the earlier pupal stages contained blisters.

In agreement with this, we found that the RNAi targeting

myospheroid which encodes the bPS integrin previously found to

produce blisters in somatic clone analysis [8] gave rise to the

‘‘burned wings’’ phenotype (Fig. 1J). Some other examples of

overlaps of genes within the ‘‘burned wings’’ category with

previously described blister-causing mutations were found (see

Table S3). Further evidence in favor of inherent similarity of the

‘‘blister’’ and ‘‘burned wings’’ phenotypes comes from the

observation regarding three genes of our analysis list (CG8440,

CG9193, and CG9998) which were covered with two RNAi lines

each, of which one was producing the ‘‘blister’’, and the other –

the ‘‘burned wings’’ phenotype.

Construction of the Drosophila blisterome. Identification
of the mainstream functional modules and pathways
We united the ‘‘blister’’ and ‘‘burned wings’’ phenotypic

categories into a single one resulting in 208 genes supposedly

regulating, one way or another, adhesion of the two wing epithelial

layers. This group of genes was supported by 221 RNAi lines (13

and 2 genes were targeted by 2 and 3 RNAi lines respectively). In

silico GO classification analysis by the DAVID bioinformatics tool

revealed that this set of genes is enriched with 86, 20, and 8 terms

from ‘‘biological process’’, ‘‘cellular component’’ and ‘‘molecular

function’’ categories respectively (see Table S4). We applied the

semantic similarity measure to cluster the over-represented GO

terms. This analysis identified the major groups of GO terms of

genes involved in wing blister formation (Fig. 2). Surprisingly, in

addition to the expected groups (such as apposition of the wing

surfaces), the major over-represented groups of GO terms were

related to protein transport, cell cycle, mRNA splicing, catabolism,

vesicular trafficking, and others (Fig. 2).

To saturate our output list, we further screened through the

available published data for genes which upon improper

functioning led to wing blistering. We found overall 168 genes

disclosed in 109 publications (see Table S5) among which 123

caused this phenotype due to their loss-of-function, and 45–

because of their gain-of function. Out of them, 63 genes were

screened in our analysis, and 18 (or 29%) were detected as the

blister-causing (see Tables S2 and S3). This ratio of overlap is low

as compared to the expected false-negative rate of our screen,

which we assumed to be similar to that previously obtained in the

Drosophila Blisterome Sheds Light on Human Diseases
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genome-wide RNAi screen of Notch signaling components (29%)

[14] as we used the same library of RNAi lines (the false-positive

rate in the Notch screening was estimated as 7%). We note that the

168 genes we assembled from the published literature originate

from different experimental approaches which may have varying

false-positive values. In an attempt to overcome this complication,

we combined the two datasets, resulting in the list of 358 blister-

causing genes, and performed network analysis with it. We used

the NetworkAnalyzer tool and the BioGRID interaction database

and found that of the 358 genes, 151 cluster together resulting in a

network with the average number of neighbors = 2.147, a two-fold

improvement over the network properties of the list of genes

originating from our screening only (see Fig. S1A, B).

The list of protein-protein interactions available for Drosophila is

far from saturation and is less complete than e.g. in the case of

human proteins. Drosophila has been widely used to model human

pathologies, as some 75% of human disease-related genes have

orthologues in the fly; the overall sequence identity between the

orthologues is about 40% but can reach 80–90% within the

conserved functional domains [22–24]. For the 358 candidate

Drosophila blisterome genes we found 877 human orthologues; 41

Drosophila genes of this list did not reveal human counterparts (see

Table S6). We next re-analyzed the network properties of the 358

Drosophila genes, adding the BioGRID-listed interactions of their

identified human orthologues. The resulting network includes

overall 292 connected components out of which 288 form a single

Figure 1. Results of wing-specific RNAi expression and the most typical manifestations of resulting blistered and ‘‘burned’’ wings.
(A) General statistics of the RNAi screening. Blistered and ‘‘burned’’ wings were the most frequent phenotypes. (B–G) Examples of blistered wings
with the blister occupying the whole wing (B, RNAi-Fas1) or the central position in the wing (C, RNAi-rok), or blisters accompanied with other wing
defects such as narrow wings (D, RNAi-CG10754), ‘‘horned’’ wings (E, RNAi-RnrL), ‘‘swarovski’’ wings (F, RNAi-Hsp83), or ‘‘stump’’ wings (G, RNAi-
U2af50). (H–J) Examples of ‘‘burned’’ wings. This phenotype may start as blistered wings in freshly eclosed flies (H) and with age develop into
necrotic wings (I, RNAi-Wg), or reveal ‘‘burned’’ wings throughout the adult life (J, RNAi-mys).
doi:10.1371/journal.pone.0101133.g001
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large subgraph, with the average number of neighbors = 6.37 (see

Fig. S1C).

Genes related to a given phenotype or physiologic/pathologic

process appear tightly connected within an interaction network in

contrast to unrelated ones, as has been shown e.g. for toxicity

modulation in S. cerevisiae [25] or cancer progression in humans

[26,27]. We argued that, reciprocally, genes which are densely

connected within a network have a high probability to produce the

same phenotype and hence to be involved in the same biological

process and/or developmental program. This notion is supported

Figure 2. Semantic clustering of the GO terms enriched in the blister-causing group, compared to the annotations of all screened
genes. Enriched GO terms are shown as nodes (‘‘biological processes’’ as octagons and ‘‘cellular components’’ as circles), and the top 3% of the
strongest GO term pairwise similarities are designated as edges in the graph. The node radius relates to the generality of the terms, where smaller
nodes imply more specific terms; the supplied p-values/enrichments are shown using color shading, where more saturated color of the node implies
more over-represented GO terms. The semantic similarity between two GO terms is shown by the thickness of the edges, where thicker edge implies
more semantically similar GO terms connected by this edge.
doi:10.1371/journal.pone.0101133.g002
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by comparison of our result to Monte Carlo simulations of 100

networks built by the same algorithm for 358 randomly selected

Drosophila genes. For each network we evaluated 3 criteria

characterizing its connectivity: the clustering coefficient, the

number of connected components, and the average number of

neighbors per node. The respective values for the Drosophila

blisterome (see Fig. S1C) were ca. 2.5, 11 and 3.7 times higher

than medians calculated for the Monte Carlo simulations set (Fig.

S2, p,0.0001) thus proving a greater degree of cooperation

among the components of our network. We thus argue that our

screening for the Drosophila blisterome components, supplemented

with an exhaustive literature screening and bioinformatics analysis,

resulted in identification of a significant portion of the Drosophila

blisterome network.

Application of the DAVID gene functional classification tool has

revealed 19 functional modules within the Drosophila blisterome as

shown in Fig. 3. Genes involved in cell adhesion, cytoskeleton

organization, cell cycle, regulation of transcription, mRNA

splicing and processing, protein transport, vesicular trafficking,

and imaginal disc morphogenesis appeared to be the prevailing

components of the Drosophila blisterome. We next analyzed which

pathways the identified proteins belonged to using the KEGG

database. This assigned 112 proteins (31% of the total list) to

different pathways, of which the Spliceosome, TGFb, and

Proteasome pathways were statistically enriched over the initial

list of screened genes; other pathways present were e.g. the

Progesteron, Wnt, or Endocytosis pathways (see Table S7).

Components of the Drosophila blisterome are
orthologous to many human disease-related genes
which are tightly interconnected
Based on the orthology prediction approach we next ‘‘translat-

ed’’ the here-identified Drosophila blisterome into the human

orthologous network. Among the total 877 found orthologues, 468

produced a large subgraph containing highly interconnected nodes

with 31 functional clusters similar to those of the Drosophila

blisterome (Fig. 4 and see Table S6). The rest 409 human

counterparts appeared to be represented as isolated nodes with no

reported interactions either with the major subgraph or among

themselves and were discarded from subsequent analyses as the

likely false-positives.

Disruption of the cell-cell contacts (e.g. desmosomes) in humans

can lead to diverse skin and other connective tissues pathologies,

including epidermolysis bullosa [28,29]. Mutations of the genes for

integrins or other structural components required for cell adhesion

may lead to blistering in the skin and oral cavity [30–32], similar

to the blister phenotype we observe in the Drosophila wing. Thereby

we questioned whether the novel blisterome components we

identified here have disease-related orthologues in humans.

Among the total 877 found human orthologues, 190 genes are

disease-related or contribute to susceptibility to multifactorial

disorders – at least 260 diseases or disorders in total (see Table S8).

Interestingly, 120 (two thirds) of those disease-related genes belong

to the highly interconnected subgraph shown on Fig. 4. However,

we grouped the whole number of disease-related genes according

to the systems of organs where pathologies are manifested (Fig. 5

and see Table S9). After this grouping 11 categories emerge with

the three most over-represented being: the musculoskeletal

apparatus and skin –31%, cardiovascular –23.7%, and cancers –

17.9% (Fig. 5 and see Table S9). Importantly, this list includes not

only diseases of the connective tissue such as epidermolysis bullosa,

xeroderma pigmentosum or skeletal dysplasia, but also other

maladies such as retinitis pigmentosa, cardio- and myo-pathies,

blood coagulation defects, primary immunodeficiency, diabetes,

different cancers, etc. (see Table S8). Our results suggest that many

diseases may be linked to various aberrant processes (e.g. mRNA

splicing, protein folding, vesicle trafficking, etc.) which may be

parts of general developmental programs alteration of which

eventually may lead to cell adhesion impairment as one of the

potential mechanisms of these human pathologies.

Discussion

Drosophila wing morphogenesis is a highly complex develop-

mental program, with many biological processes standing behind

it. Successful formation of a mature adult fly wing depends on their

harmonious interplay and cooperation. Wing blistering is a clearly

visible phenotype revealing an impairment of specific wing tissue

morphogenetic events, consequently resulting in aberrant adhesion

of the two opposite wing epithelial sheets. Since the time when

integrins had drawn attention of scientists to their role in wing

morphogenesis and their functions had been implicated in the

apposition of the dorsal and ventral wing epithelial layers

[4,6,8,33], to our knowledge, only two studies were done in order

to find other participants involved in this process [12,13].

Although genes resulting from these analyses have been attributed

to integrin-mediated adhesion, it is clear that cellular processes

may affect, sometimes indirectly, cell adhesion between the basal

surfaces of the developing epithelial layers.

General architectural organization of the integrin-mediated cell

adhesion machinery in Drosophila wings may be represented as a

structure, which occupies three main ‘‘floors’’. At the ‘‘basement’’

there lies the extracellular matrix, where adhesion-associated

components like metalloproteinases, their inhibitors [34] and

various integrin ligands [35–41] are localized. The ‘‘first floor’’ is

at the the plasma membrane and is occupied by integrins

themselves and by other adhesion receptors and their supporting

molecules [42,43], like the heparane sulfate proteoglycan syndecan

[35]. The ‘‘second floor’’ is filled by a variety of inter-connecting

adaptor proteins, like Pinch (encoded by steamer duck) [44], parvin

[20], integrin-linked kinase [45], talin (rhea) [46], tensin (blistery)

[19,47], short stop [48], Wech [49], etc., which link integrins to

the ‘‘third floor’’ – actin cytoskeleton and/or microtubules, which

are necessary for the formation of transalar apparatus in the

developing Drosophila wing.

Independently from the cell adhesion function of the integrin-

mediated machinery, all the ‘‘floors’’ are governed by multiple

functional molecular switches: serine/threonine, tyrosine kinases

and phosphatases [42,43], Rho family of GTPases [50], glycosyl-

transferases [51], etc., which proceed or terminate cell adhesion

processes. There is also a ‘‘service staff’’, like Rab11 which is

involved in trafficking of the bPS integrin [15], or the ecdysone

regulatory pathway and the bHLH protein Delilah (encoded by

taxi), which control integrin expression [52,53]. It has been also

shown that alternative splicing of integrins alters interaction with

their ligands [54,55]. Loss of the receptor-ligand specificity,

resulting from improper mRNA splicing, may produce improper

formation of the basal contact zones between the opposite surfaces

and as a consequence – wing blisters. This may be a possible

explanation why one of the over-represented GO terms of

Drosophila blisterome components is mRNA splicing (Fig. 2 and

see Table S4).

At the pupal period of Drosophila metamorphosis enormous

proliferation of rough endoplasmic reticulum is observed in wing

epithelial cells during the basal adhesion stage. Numerous basally

located Golgi bodies in addition to the usual apical Golgi are

present. These ultrastructural features are characteristic of systems

displaying rapid constitutive exocytosis [1]. As we have shown

Drosophila Blisterome Sheds Light on Human Diseases
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(Fig. 3), one of the functional modules of Drosophila blisterome is a

vesicle-mediated trafficking and protein transport. According to

the phenotypes we observed, downregulation of the genes from

this module also results in wing blister appearance.

Following the final ‘‘larval’’ mitosis that occurs shortly after

pupariation, most cells are in the G2 arrest for the remainder of

the prepupal period. Then the final mitosis of wing development

occurs between 15 and 24 hours with the mitotic peak at 17–18

hours [56]. Our results suggest that impairment of the cell cycle

(Fig. 3) during these stages may also affect apposition and adhesion

of epithelial layers and result in wing blister formation.

Finally, alignment of the two epithelial layers of developing wing

is a very subtle process. Any manipulation that causes regional

disparities in size of dorsal and ventral wing surfaces - e.g. altered

growth, apoptosis, and disruptions in patterning - can lead to a

misalignment where cells in one surface are unable to partner with

cells in the other surface, which can lead to blistering. Because the

MS1096-Gal4 driver drives stronger RNAi transgene expression in

the dorsal part and weaker in the ventral part of the developing

larval and pupal wing [16], it may produce such dorsal-ventral

mismatches.

In summary, we find 190 novel genes involved in apposition and

adhesion of the two Drosophila wing epithelial layers; the precise

function of these genes can now be studied with the full range of

Drosophila genetics methods. Second, we have compiled the

scattered data on blister-causing Drosophila mutations and

combined these data with our findings to produce the first

estimation (likely incomplete) of the Drosophila blisterome. Its

analysis surprisingly reveals that not only established cell adhesion

components, but also components ascribed to such cellular

processes as cell cycle or mRNA processing constitute important

clusters within the blisterome. Third, we have ‘‘translated’’ this

Drosophila blisterome into the human network, revealing many

components which may cooperate together in general develop-

mental programs. And fourth, we predict that several human

diseases may have aberrant adhesion as a potential underlying

molecular feature inducing pathogenesis. If true, new treatment

strategies for such diseases may be envisioned in future.

Figure 3. The Drosophila blisterome. Each gene is an independent node, with edges between them being interactions of the genetic (cyan) or
physical (red) nature, or being inferred from the physical interactions among their human orthologues (lilac). Nodes are color-coded and grouped
into functional clusters according to their annotation terms; interactions within each functional cluster are shown by bold edges. Grey nodes
represent genes which failed to be clustered. Genes not interconnected into the large blisterome network are grouped below it; however, some of
them are color-coded, because they still belong to functional clusters of the major network. Nodes are given as circles if coming from our RNAi
screening only, rectangles or triangles if coming solely from previous loss- or gain-of-function analysis, or other symbols if coming from both our and
previous analysis; complete description of the node shape coding is given in the lower left corner of the Figure.
doi:10.1371/journal.pone.0101133.g003
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Materials and Methods

Fly crosses and microscopy
The following Drosophila lines were used: MS1096-Gal4 (Bloo-

mington Drosophila Stock Center, USA) and the RNAi lines

targeting chosen genes (see Table S1), obtained from the Vienna

Drosophila RNAi Center library, Austria [14]. All crosses were

performed on standard media at 25uC. Whole flies were

photographed through a Carl Zeiss Stemi 2000 binocular using

the Olympus CAMEDIA C-5060 Wide Zoom.

Analysis of gene lists using DAVID bioinformatics
resources
We applied the DAVID gene functional classification tool [57]

to, first, uncover the functions of the blisterome components and,

second, to cluster them into functional modules accordingly. This

tool uses a set of techniques which enable to classify input genes

into functionally related groups on the basis of their annotation

term co-occurrence. Such a way of clusterization of the Drosophila

blisterome members appears more justified than grouping them

e.g. by the Markov Clustering algorithm (MCL) which creates

transition matrices by a random walk through the graph in order

to discover where the flow tends to gather, and therefore, where

clusters are [58]. For more precise clustering MCL-like algorithms

frequently use edge weights, but BioGRID does not dispose a

universal reliability score system of interactions since they are

obtained from various sources each using its specific scoring system

or none at all. Further, the Drosophila blisterome we characterize

here is incomplete with many nodes and edges missing, thus

utilization of the MCL-like algorithms would likely lead to artifact

clustering, unlike the DAVID functional clustering tool.

To use the DAVID tool, the gene lists (see Tables S2, S3) were

checked for enrichment of associated Gene Ontology (GO) terms,

separately for each of the three GO categories (biological process,

molecular function, and cellular compartment); GO annotations of

the whole screened 1573 genes (see Table S1) were used as the

background. To examine the significance of gene-term enrichment

with a modified Fisher’s exact test, the p-value cutoff was set at ,

Figure 4. The network composed of human orthologues of the Drosophila blisterome components. Physical interactions are shown in
grey, phenotypic – in blue. Disease-related genes are marked by red crosses. Nodes are color-coded and grouped into separate functional clusters
according to their annotation terms; interactions within each functional cluster are shown by bold edges. Grey nodes represent genes which are not
enriched by any term. However, some of these nodes were placed close to existing clusters if most of their connections were with its members; the
remaining nodes with promiscuous interactions were grouped in the center of the network. To reduce Figure complexity isolated nodes were
removed leaving only the highly interconnected ones.
doi:10.1371/journal.pone.0101133.g004
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0.05. To globally correct enrichment p-values to control family-

wide false discovery rate, Benjamini testing correction technique

was applied in Tables S4 and S7.

To bypass the GO terms redundancy (e.g., when the terms

being analyzed are in a parent-child or siblings relationship) and to

cluster them with subsequent emission of only significantly

enriched cluster representative terms (the choice was guided by

the input p-values, previously corrected by the Benjamini

correction technique), we applied the Resnik’s semantic similarity

measure based on the node-based and MICA (most informative

common ancestor) approaches. For description of this measure,

which is believed to be the most appropriate and reliable for most

biological studies, as well as for a review of other semantic

similarity measure techniques see [59]. Here we used the

REVIGO (Reduce + Visualize Gene Ontology) web-tool

(http://revigo.irb.hr/) with a set cutoff value C=0.5 (one of the

semantic similarity values pre-defined by this tool), which

corresponds to the ‘‘small’’ list of GO terms in the outcome.

The REVIGO’s algorithm and its resulting values are described

[60]. To obtain high resolution images the ‘‘interactive graphs’’

Figure 5. Human blisterome orthologues linked to diseases and disorders. (A) Distribution of the disease-related genes among major
systems of organs affected by specific maladies associated with these genes. (B) Distribution of the disease-related genes by the number of systems
they affect (left bar) (see Table S9) and diseases they cause (right bar) (see Table S8). The quantity of assigned genes is indicated by numbers on the
graphs on both panels (A) and (B).
doi:10.1371/journal.pone.0101133.g005
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built after the REVIGO analysis were imported into the

Cytoscape software [61].

Orthology prediction, search for disease-related
orthologues and ‘‘translation’’ of the human orthologues’
interactions from the Drosophila network
Human orthologues for Drosophila genes were found using

several databases: OrthoDB (http://cegg.unige.ch/orthodb6)

[62], InParanoid (http://inparanoid.sbc.su.se/cgi-bin/index.cgi)

[63], FlyBase (http://flybase.org/) [64], and KEGG (Kyoto

Encyclopedia of Genes and Genomes, http://www.kegg.jp/)

[65]. The data were downloaded and unified by an in-house-

made PERL scripts using Flybase (http://www.flybase.org) and

the BioMart interface of the Ensembl project (http://www.

ensembl.org/index.html) for ID conversion. Subsequently the

data were manually verified and extended by information from the

GeneCards (http://www.genecards.org) [66] database (see Table

S6).

The human orthologues of blister-causing genes were analyzed

for related diseases using the OMIM (Online Mendelian

Inheritance in Man catalog, http://www.omim.org/) [67] and

KEGG databases and information was automatically extracted

and compiled by in-house PERL scripts. ICD-10 (International

Classification of Diseases) classifications (http://apps.who.int/

classifications/icd10/browse/2010/en) were added manually (see

Table S8).

To ‘‘translate’’ the interactions of human orthologues of the

Drosophila proteins we developed the corresponding algorithm

using PERL scripting language. The algorithm used the conver-

sion table ‘‘Drosophila gene ,-. human gene’’ produced as

described above in this section (see Table S6) and the same online

ID conversion tools. All records of physical interactions for the

corresponding human proteins were extracted from BioGRID

v.3.2.102 for Homo sapiens and the IDs were transformed to allow

subsequent merging with the initial Drosophila-only network (see

Fig. S1C) in the Cytoscape 2.8.3. To avoid resulting image

overload (Fig. 3), multiple edges between the same proteins were

merged into one. ‘‘Homodimerization’’ records obtained during

‘‘translation’’ process were excluded from the final result as they

often were product of heterodimerization records between

different human orthologues of the same Drosophila protein. The

parameters of the random networks obtained during Monte Carlo

simulation were calculated using GraphCrunch v.1.0 tool [68].

The programs created in-house will be available at the

laboratory’s web-page (http://www.unil.ch/dpt/page85827.html).

Supporting Information

Figure S1 The complexity and connectivity of the
Drosophila blisterome. Blisterome constructed from the

results of our RNAi screening only (A) increased upon addition

of new components obtained from the published data (B) and

further upon superimposition of physical interactions of their

human orthologues (C). Each gene is an independent node, with

edges between them being interactions of the genetic (cyan) or

physical (red) nature, or being inferred from the physical

interactions among their human orthologues (lilac). Nodes are

color-coded, where genes disclosed in our RNAi-screening,

extracted from published data, and their overlaps are shown as

brown, yellow and orange nodes, respectively. Representative

network parameters are placed below each corresponding graph.

Note that the number of nodes in (A, 188) and (B, 327) is lower

than the total number of genes in the gene lists used to construct

these networks (208 and 358, respectively) as not all Drosophila

genes have interaction reported in the BioGRID.

(PDF)

Figure S2 Parameters characterizing the connectivity of
a network are significantly higher (p,0.0001) for the
Drosophila blisterome than for the set of 100 random
networks (Monte Carlo simulations). The ‘‘box & whiskers’’

graphs represent the median number of average neighbors per

node (A), number of connected nodes (B) and clustering coefficient

(C) for these networks, whiskers showing the 5–95 percentile and

the black circles being outliers of this range. The values calculated

for the Drosophila blisterome network are shown by dashed lines.

Each simulated network was built for 358 randomly chosen

Drosophila protein-coding genes. The statistical significance was

evaluated by the one-sample Wilcoxon signed-rank test; the data

were distributed non-normally according to the Kolmogorov-

Smirnov test.

(PDF)

Table S1 List of the Drosophila RNAi-lines used in the
screening, 1709 RNAi-lines corresponding to 1573 genes
in total, with the information on the transformant ID
(TFID), construct ID (ConstrID), gene name, symbol,
and synonyms, and described GO terms ‘‘biological
process’’, ‘‘molecular function’’, and ‘‘cellular compo-
nent’’. More information on the RNAi lines can be found at

http://stockcenter.vdrc.at/control/main using the TFID; addi-

tional information on the targeted genes can be found at http://

flybase.org/using the CG gene number. Information about

relative GO terms can be found in appropriate columns.

(XLSX)

Table S2 List of the RNAi lines producing wing blister
phenotypes, 98 RNAi-lines corresponding to 91 genes in
total, with the information on the transformant ID
(TFID), construct ID (ConstrID), gene name, symbol,
and synonyms, and described GO terms ‘‘biological
process’’, ‘‘molecular function’’, and ‘‘cellular compo-
nent’’. Different variations of the wing blister phenotype are

indicated in column ‘‘Blister Phenotype’’. Information whether

genes from this list have previously been described as wing blister-

causing can be found in the last column of the table (for citations

refer to Table S5).

(XLSX)

Table S3 List of the RNAi lines producing ‘‘burned
wings’’ phenotypes, 123 RNAi-lines corresponding to
120 genes in total, with the information on the
transformant ID (TFID), construct ID (ConstrID), gene
name, symbol, and synonyms, and described GO terms
‘‘biological process’’, ‘‘molecular function’’, and ‘‘cel-
lular component’’. Different variations of the ‘‘burned wings’’

phenotype are indicated in column ‘‘Burned wings Phenotype’’.

Information whether genes from this list have previously been

described as wing blister-causing can be found in the last column

of the table (for citations refer to Table S5).

(XLSX)

Table S4 Over-represented ‘‘biological process’’, ‘‘mo-
lecular function’’ and ‘‘cellular component’’ GO terms
associated with genes from the merged list obtained
from Tables S2 and S3. GO enrichment analysis was

performed using the DAVID bioinformatics web-tool with a set

p-value cutoff #0.05. The complete list the screened genes (Table

S1) was used as the background for analysis. Obtained p-values

were corrected by the Benjamini correction technique provided by
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the DAVID program. The list of genes (their NCBI-Entrez

numbers) associated with a particular GO term are provided in the

last column.

(XLSX)

Table S5 Genes extracted from published data de-
scribed as wing blister-causing. Information about genes’

CG number, name, symbol and function are indicated in the

corresponding columns. For more information refer to the

appropriate references listed below the table.

(DOCX)

Table S6 Human orthologues found for the Drosophila
blisterome components (Tables S2, S3, S5), with the
information on the Drosophila gene CG number, gene
name and symbol, as well as information on the
resulting human orthologues. Relation to diseases/disorders

(see Fig. 5 in the main article) and human network of orthologues

(see Fig. 4 in the main article) is indicated in the second last and

last columns, respectively. For description and explanation of the

orthology extraction algorithm see section Materials and Methods

in the main article.

(XLSX)

Table S7 Pathways implicated in governing of the
Drosophila blisterome. Among the total 358 proteins only

112 were assigned to different pathways according to a KEGG

database, of which the Spliceosome, TGFb and Proteasome

pathways are among the most over-represented. The list of genes

(their NCBI-Entrez numbers) associated with particular KEGG

pathway term are placed in a last column of the table. Obtained p-

values were corrected by the Benjamini correction technique

provided by the DAVID tool and indicate that the three top terms

are significantly enriched in the blisterome network as compared

to the initial set of screened genes; the remaining terms are still

shown to depict which main pathways the blisterome components

belong to, even though they are not statistically over-represented.

(XLSX)

Table S8 Human orthologues of the Drosophila blister-
ome components related to diseases and disorders. 295
and 172 unique records were extracted from the OMIM catalog

(columns 2–5) and KEGG database (columns 6–8) respectively,

which were compiled then with overlapping records standing

opposite each other. Classification of the diseases were taken from

KEGG and ICD-10, maladies without available classification were

classified manually.

(XLSX)

Table S9 Distribution of human orthologues of the
Drosophila blisterome components related to diseases
and disorders among major systems of organs affected
by specific maladies and associated with these genes.
One gene can be related to more than one disease, consequently

affecting more than one system of organs (see Fig. 5 in the main

article).

(XLSX)
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