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Credit assignment between body 
and object probed by an object 
transportation task
Gaiqing Kong1,2,3,4, Zhihao Zhou   1,2,3, Qining Wang1,2,3, Konrad Kording4 & Kunlin Wei1,2,3,5

It has been proposed that learning from movement errors involves a credit assignment problem: did I 
misestimate properties of the object or those of my body? For example, an overestimate of arm strength and 
an underestimate of the weight of a coffee cup can both lead to coffee spills. Though previous studies have 
found signs of simultaneous learning of the object and of the body during object manipulation, there is little 
behavioral evidence about their quantitative relation. Here we employed a novel weight-transportation task, 
in which participants lift the first cup filled with liquid while assessing their learning from errors. Specifically, 
we examined their transfer of learning when switching to a contralateral hand, the second identical cup, or 
switching both hands and cups. By comparing these transfer behaviors, we found that 25% of the learning 
was attributed to the object (simply because of the use of the same cup) and 58% of the learning was 
attributed to the body (simply because of the use of the same hand). The nervous system thus seems to 
partition the learning of object manipulation between the object and the body.

Humans excel at using tools and manipulating objects. Our dexterous manipulation of objects owes to efficient 
construction of an internal representation of object property through trial-by-trial learning1–3. For example, if 
movement error occurs during interacting with an object, such as spilling coffee from a cup due to insufficient 
lifting force, we can rapidly update our estimate of the object weight and change our actions to overcome the error 
accordingly. It has been proposed that learning from movement errors involves a credit assignment problem: did 
I misestimate properties of the object or those of my body4–8? When interacting with the coffee cup, a misestimate 
of the properties of our body, e.g. strength of our arm, just as well as a misestimate of the properties of the object, 
e.g. the weight of a coffee cup, can lead to motor errors. How the nervous system simultaneously updates its esti-
mates of the body and the object during object manipulation is still poorly understood.

Based on the idea of partitioned learning between the body and the object, our recent work has proposed a 
statistical model to study the credit assignment problem in motor learning4,5. The model suggests that only the 
errors attributed to internal causes (body) but not those attributed to external causes (object) will be used to 
update the motor system5,6,9. Model simulations have provided qualitative explanations for diverse phenomena 
in motor learning, including generalization, interference, savings and spontaneous rebound4,9. Although there is 
modeling evidence for partitioned motor learning between the body and the object, so far we lack direct evidence 
about the way the brain solves these kinds of problems.

Previous experimental work has discovered various phenomena suggesting the separation of motor learning 
when the learner interacts with an object. For example, in a typical motor adaptation paradigm, people learn to 
reach in an altered force environment with a hand-held robotic handle. The learning can be transferred to free 
reaching with the handle dismounted; it can also be transferred to reaching with the mounted handle but without 
applied force. However, the transfer is significantly larger in the latter case even though these two conditions 
are mechanically equivalent, suggesting that the object itself (aka, the robot handle) “carries” some learning5,10. 
However, all these evidence is indirect.

This lack of direct evidence is largely caused by incompatibility of experimental paradigms. On the one hand, 
object manipulation paradigms examine the whether learned manipulation (e.g., hand grasp or finger manipula-
tion) can be transferred to different scenarios, especially to different objects11–15. However, these studies seldom 
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examine how much learning is transferred and how it relates to object learning. On the other hand, studies 
with reaching perturbation paradigms (albeit with a hand-held object) examine how motor learning transfers 
between limbs16,17 or how learning aftereffect is affected when people disengage the object5,10. In these studies, 
between-limb transfer and the reduction in aftereffect by disengaging the object have been hypothesized to be 
caused by the learning attributed to the object. Again, however, this part of learning has not been quantified or 
examined in comparison to body learning. Hence, though both object manipulation paradigm and reaching 
paradigm have found that learning is related to the specific object the learner interacts with, none of the studies 
quantifies the partitioning of learning between the body and the object within a single experimental framework.

Here we used a novel weight-transportation task to study the transfer of learning between hands as well as 
between objects. We were able to simultaneously estimate the amount of learning specifically associated with 
the object (i.e., object learning) and learning specifically associated with the effector (i.e., body learning) with 
a unified experimental paradigm. In all conditions participants first learned to transport a cup with their right 
hand. We have three working hypotheses. (1) If the transfer is measured with a second identical cup and with the 
contralateral hand, the amount of transfer is minimal. This is because that both object learning, associated with 
the original object, and body learning, associated with the original hand, are absent during the transfer test. The 
small transfer of learning observed in this condition might merely reflect the learning of the task itself. (2) If the 
transfer is measured with the second cup but by using the same hand, the amount of transfer should be increased 
as compared to (1). The increase is a quantification of body learning since this condition only differs from (1) by 
the use of the same effector. (3) If the transfer is measured by using the contralateral hand but with the same cup, 
the amount of transfer should also be increased over (1). The increase is a quantification of object learning since 
the only difference between this condition and (1) is whether the same cup is transported. We found supporting 
evidence for all these hypotheses. Interestingly, the sum of these three learning components amounts to approx-
imately 100%. Our findings thus provide direct evidence that motor learning, when involving an object, can be 
roughly partitioned into two independent components that are respectively related to the body and the object, on 
top of learning of the task itself.

Materials and Methods
Participants.  We recruited thirty college students (14 females, 16 males, age range: 18–26 years), consisting 
of 11 participants for Experiment 1 and 19 participants for Experiment 2. All participants signed an informed 
consent form and were paid for their participation. Each participant received 100 Renminbi (about 15 dollars) 
for their participation. They were naïve to the purpose of the experiments. All participants were right-handed, 
had normal or corrected-to-normal vision without a known history of psychiatric or neurological disorders. 
The study was approved by the ethics committee of Peking University, and was carried out in accordance with 
the approved guidelines. We obtained written consent forms from all participants before formal data collection.

Apparatus and Basic Movement.  The experimental setup was similar to the one that was used in our 
previous investigations18. The seated participant used one hand to transport a cylinder-shaped cup (2.5 cm in 
diameter and 14.0 cm in height) towards a LED target 15.5 cm straight ahead (Fig. 1A). The LED target and the 
cup were aligned with the center line of a desk. The cup weighed 220 g when contained a full load of 120 g water. 
Before each movement, the cup was placed on a platform that was 55.5 cm long, 5.0 cm wide and 4.0 cm high. The 
platform had a glass top, and its width was equal to the diameter of the cup. Thus, the cup was unsupported once 
moving. A plastic pin (1.0 cm long) was attached to the cup lid at the same height of the LED target (17.7 cm above 
the desktop). Participants were required to transport the cup and to make the pin to “touch” the LED target as 
accurately as possible. A trial started when the target was illuminated, and a beep sound was played by a computer 
speaker. The participants moved and paused at the target briefly until the LED light was turned off. Then they 
returned the cup to the starting position and waited for the next trial. Based on their performance, a monetary 
reward was displayed on a projection wall 1.5 m in the front of the desk.

The typical movement was a straight reach towards the LED target and lasted 900–1100 ms. To prevent slow 
movements, we played a sharp beep sound if the movement lasted more than 1100ms and canceled the monetary 
reward. The motion of the cup was measured by an infra-red marker installed at its center top which was tracked 
by an overhead motion capture system (Codamotion, Charnwood Dynamics, UK). Before each trial, the cup 
weight could be changed by pumping in and out of the water via a plastic tube running from the cup bottom to 
a syringe. Participants used a transparent cup. Thus, they could observe the process of water changing and know 
the weight changes before each movement. The tube was light-weight and flexible as such it did not limit the 
transportation movement. The action of the syringe was enabled by a linear motor. Both the motor and the LED 
light were controlled via a programmable circuit board (Arduino Duemilanove) that was connected to a data 
acquisition PC which ran a customized Matlab program (Matlab 2009b, Natica, MA).

Protocols.  The protocols for Experiment 1 and 2 were similar. Each participant performed the weight trans-
portation task in a sequence of trials which were arranged in blocks (Fig. 1B and C).

Experiment 1.  If the learning obtained during object manipulation mainly consists of body learning and 
object learning as assumed, we shall find minimum transfer of learning when both hand and cup are changed. 
To test this hypothesis, we conducted Experiment 1 where participants learned to transport the first cup by using 
their right hand and then switched to a second identical cup by using their left hand (ΔHandΔCup). To quantify 
people’s learning of transporting weights, we designed four types of trial blocks (Fig. 1B). Each block contained 
4, 5, or 6 trials. In a transfer block, participants learned the cup weight by transporting the full first cup with the 
right hand for a random number of consecutive trials (varying between 3 to 5). Then, at the last trial in the block, 
participants switched to their left hand and transported the second identical-appearance cup. This second cup 
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was initially placed side-by-side with the first training cup on the platform (Fig. 1A). It was moved to the same 
initial position as the first cup by the experimenter at the beginning of the transfer trial. Our critical manipula-
tion was that the water in the cup might be emptied in the last trial in a trial block, resulting in an elevated hand 
trajectory. This kinematic change reflected the (mis)estimation of the object weight which had been learned in 
previous trials (Fig. 2).

Since the last trial in a transfer block always invoked a weight change thus its effect could be anticipated by 
the participant. To overcome this problem, we also designed the second type of trial block called pseudo-transfer 
block. It was nearly identical to a transfer block except that its last trial was with the full second cup instead of 
the emptied second cup. When both pseudo-transfer and transfer blocks were interleaved, participants could not 
anticipate a weight change with a transfer action.

The third type of trial bock, compliance block, was to measure how compliant the arm was for the 
object-transportation movement investigated here. During a compliance block, the participant transported the 
full second cup with the left or for a few trials (the number varied between 3 and 5), and then in the last trial, the 
water was removed from the second cup. Even though participants were aware of water removal, they neverthe-
less overestimated the weight and moved the cup higher than in previous trials. Thus, using compliance blocks, we 
measured how much elevation would occur if people misestimated the object weight by 120 g. As estimated from 
our pilot data as well as data from our previous study18, the size of height change is a linear function of weight 
misestimation. We thus were able to obtain the slope of this function as a quantification of the arm compliance.

The last type of trial block was so-called baseline block during which we measured the baseline performance 
without any weight changes, hands changes or cups changes. During a baseline block, we asked participants to 
use the left hand to move the emptied second cup for a block of trials (again with three different block sizes). 
Typically, the hand trajectories were relatively straight. We only used the last two trials in the baseline block to 
establish the baseline performance.

Figure 1.  Experimental setup and experimental design. (A) Experimental setup. The participant transported a 
cup, containing varying amount of water, to a LED target after the LED light was lit. The cup was initially placed 
on a platform and became unsupported once moved. A remote-controlled syringe system changed the amount 
of water before the trial when needed. (B) Schematic illustration of trial blocks used in Experiment 1. The four 
types of trial blocks (transfer, pseudo-transfer, baseline and compliance) were randomized in order. The transfer 
of learning was assessed when both hands and cups were switched (ΔHandΔCup condition, only condition 
in Experiment 1). (C) Schematic illustration of trial blocks used in Experiment 2. Experiment 2 utilized similar 
trial blocks as Experiment 1 with critical modifications: the transfer of learning was assessed when only hands 
were switched (ΔHand condition), or when only cups were switched (ΔCup condition). Squares denote trials 
within a trial block; color denotes the identity of cups; filled or unfilled squares denote full or emptied cups, 
respectively. Detailed explanations were listed in Protocols.
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With the measures of compliance and baseline height, we can map the height changes in the transfer tri-
als into the amount of learning that was transferred after changing hands and objects. It should be noted 
that a transfer trial was biomechanically identical to its associated baseline and compliance trials. Taking the 
ΔHandΔCup condition as an example, the transfer trial was performed by the left hand with the emptied second 
cup. Correspondingly, the last trials in a baseline block and the compliance block also involved the left hand trans-
porting the emptied second cup. Thus, our experimental design enabled us to transform the change in trajectory 
height in transfer trials into weight estimate errors that were solely due to the transfer of learning.

The experiment included 30 baseline blocks, 30 compliance blocks, 36 transfer blocks, and 18 pseudo-transfer 
blocks. Before formal data collection, participants practiced for 20 trials where cup weight, either full or empty, 
was randomly assigned. All blocks were randomly interleaved during the experiment and this, together with 
varying block size, helped the randomization of trials. The inter-trial interval was set at 4 s by the data collection 
program and the total experiment time (572 trials) was approximately 2 hours. Participants had two mandatory, 
5-min breaks upon finishing 286 trials; they could also request rest breaks during the experiment as needed to 
avoid fatigue.

Experiment 2.  Experiment 1 established the baseline of the transfer when both object learning and body 
learning was minimized. Experiment 2 went a step further to investigate how much learning can be attributed 
to the body and the object, respectively. To achieve this, we used similar experimental design as in Experiment 1 
with a critical change in the transfer blocks: each participant changed either hand or cup during transfer, instead 
of changing both hands and cups. After learning with the right hand and the first cup, participants switched to 
the left hand to move the same first cup in the ΔHand condition; they kept using the right hand but moved the 
second identical cup in the ΔCup condition. These two conditions were performed in two separate sessions which 
were collected 24 hours apart.

As either hand or cup was switched, performance baseline and arm compliance were measured differently 
than in Experiment 1 (Fig. 1C). For the ΔCup condition, the baseline block and the compliance block only meas-
ured the right hand and the second cup since the left hand was not used for the transfer. Instead, only the left hand 
was measured with the only one cup for the ΔHand condition.

In each condition, there were 30 practice trials, 30 baseline blocks, 30 compliance blocks, 36 transfer blocks, 
and 18 pseudo-transfer blocks. Similar to Experiment 1, all blocks were randomly interleaved, and block size var-
ied. With a total of 582 trials, each condition lasted for approximately two hours.

Data Analysis.  The participants learned to move a water-filled cup to a target location straight ahead. As they 
learned about the weight of the cup, their trajectory became straight. An over-estimation of weight will lead to 
vertical deviations of the trajectory (Fig. 2). We selected the initial part of the trajectory to calculate average height 
for each trial. This part started from the beginning of the movement, when movement speed exceeded 2.5 cm/s, 
to the time of peak speed. For analyzing ballistic movements such as reaching, the initial part of the movement 
up to the time of peak velocity is typically associated with forward control19. Taking reaching adaptation in the 
force field as an example, lateral deviation of the trajectory at the time of peak velocity is regarded as an indicator 
of learning that is free of the influence of feedback correction. Thus, our choice of using this initial trajectory 
segment to capture learning is consistent with conventions in motor control studies on reaching. The second half 
of the trajectory clearly involved feedback correction that did not relate to feedforward estimation of weight and 

Figure 2.  Data from a typical participant of Experiment 1. The average trajectory height is plotted as a function 
of movement distance. (A) In a baseline block, the left hand moves relatively straight after transporting the 
emptied second cup for five successive trials. (B) In the compliance block the left hand is elevated substantially 
when the cup is unexpectedly emptied after four full-cup trials. The trajectory appears lower in the first trial due 
to the aftereffect of transporting the mostly likely emptied second cup before the compliance block. (C) In the 
transfer block, the right hand moves relatively flat in early trials with the full first cup. The left hand transports 
the emptied second cup in the last trial, resulting in elevated trajectories. It indicates a partial transfer as the 
elevated trajectory height is still lower than the last trial in the compliance block. The gray shade denotes the 
range covering the duration between the trial-beginning time and the peak-velocity time, and this part of data is 
used to calculate the trajectory height.
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was thus excluded from further analysis. About 1.2% of trials were excluded from analysis due to measurement 
failure caused by a depleted battery of the motion-capture marker.

We computed the compliance of each arm by taking the difference in trajectory height (ΔHeight) between 
the second last trial and the last trial of compliance blocks. These two trials involved an abrupt weight changes of 
120 g. For our weight-transportation task, the height changes caused by abrupt weight changes are approximately 
linear for the weight range tested18. We estimated the compliance by dividing ΔHeight by the weight change 
(120 g). Thus, compliance indicates how much height difference is caused by a unit of weight change.

For quantifying the transfer of learning, we could estimate participants’ feedforward estimation of the cup 
weight. Take the ΔHand condition as an example. After practicing with the right hand to transport the first full 
cup, the participant predicted the cup to be a full one before she picked up the same emptied cup with the left 
hand. If this is the case, the height change at the transfer trial would be as high as shown in compliance blocks 
which involved the same 120 g weight reduction with the left hand (e.g., 2 cm). Thus, this 2 cm indicates a com-
plete across-hand transfer of previous right-hand learning associated with a full cup. If the participant estimates 
it to be 40% of a full cup, the resulting height elevation would be 0.8 cm, indicating a 40% of transfer. Thus, 
trajectory height change at the transfer trial is a direct indication of transfer of learning. By factoring in the indi-
vidual differences in terms of baseline performance and arm compliance, we can quantify the weight estimate by  
(Htransfer − Hbaseline)/Compliance, where Htransfer is the height of the transfer trial, Hbaseline is the height of the last trial 
of the baseline block, and Compliance is the arm compliance measured by compliance blocks. This weight estimate 
was then divided by the actual weight that was learned (120 g) to produce a learning percentage. The resulting 
percentage indicated how much learning was transferred from the right hand to the left hand (ΔHand condi-
tion), from the first cup to the second cup (ΔCup condition), or from a hand-and-cup combination to a second 
hand-and-cup combination (ΔHandΔCup condition).

Independent t-tests were conducted to compare the learning between experiments. Within-subject compari-
sons between two conditions were conducted by paired t-tests. The significance level α was set at 0.05.

Data availability statement.  All available data has been presented in the manuscript.

Results
Participants effectively learned the weight of a hand-held cup by repetitively transporting it. Take a typical partic-
ipant’s performance in Experiment 1 as an example (Fig. 2). In the baseline blocks, the movement trajectory was 
almost flat with four consecutive trials with the empty second cup. In the compliance block, the trajectory was 
lowered in the first trial since the preceding trial most likely involved transporting the second emptied cup with 
the left hand (rare exceptions were those compliance blocks that followed pseudo-transfer blocks which involved 
transporting the full second cup with the left hand). Nevertheless, the trajectory became similarly flat when the 
full cup was transported repetitively for the next three trials. In the last trial of the compliance block, the trajectory 
was elevated substantially when the cup was emptied (the 5th trial in this case). In a transfer block, the right-hand 
trajectory was similarly straight after four trial repetitions; however, the trajectory was elevated slightly in the 
last trial when participants switched to the left hand to transport the emptied second cup. Note that this height 
increase was larger when compared with that of the last trial in the baseline block though it was much smaller 
than that of the last trial in the compliance block. These last trials in three types of blocks were mechanically 
equivalent since they all required to use left hand to transport the empty second cup. Their varying heights were 
listed in Table 1.

The systematic height changes across trials remained consistent across varying block sizes (Fig. 3). Take 
Experiment 1 as an example again. The last trials in the transfer and compliance blocks produced increased trajec-
tory heights. The remaining trials in the blocks had similar trajectory heights except that the first trials showed 
slightly lower heights. This transient effect reflected the aftereffect of occasionally transporting an emptied cup in 
the immediately preceding trial, which was the last trial in a trial block. Nevertheless, people learned the weight 
of a hand-held object and quickly converged to a relatively stable height with 1 or 2 trials after a weight change. 
Thus, our block size was adequately large for learning. These were consistent with previous reports that people 
can quickly learn inertial properties of the object by hand manipulations18,20. In fact, all dependent measures did 
not show a statistical difference between block sizes; we thus reported average results by collapsing data from 
different block sizes.

We found that the transfer to the left hand after swapping the cups was a mere 16.3 ± 4.1%. It was significantly 
above zero (one-sided t-test, t10 = 3.66, P = 0.004, Cohen’s d = 1.1) but the effect size was small, considering that 
participants were fully aware that the second cup was identical to the first during transfer. The baseline height was 
0.4 ± 0.3 mm and the compliance of the left arm was estimated to be 39.3 ± 5.4 mm/kg. The average height for the 
transfer trial was only 1.2 ± 0.3 mm. The minimal transfer thus suggests that most of the learning obtained during 
this weight-transportation task was not transferable if both the effector and the object are changed.

Exp 1 ΔHandΔCup 
Condition

Exp 2 ΔHand 
Condition

Exp 2 ΔCup 
Condition

Baseline Block Heights (mm) 0.4 ± 0.3 3.3 ± 1.1 3.4 ± 0.9

Compliance Block Heights (mm) 5.1 ± 0.7 9.8 ± 1.7 9.0 ± 1.4

Transfer Block Heights (mm) 1.2 ± 0.3 6.3 ± 1.6 8.1 ± 1.3

Compliance (mm/kg) 39.3 ± 5.4 58.2 ± 7.0 54.5 ± 5.6

Table 1.  The trajectory heights for the last trials in different trial blocks and estimated Compliance.
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In Experiment 2, the transfer increased substantially when only one factor, hand or cup, was changed during 
the transfer tests (Fig. 4). As in Experiment 1, we measured the baseline height and the arm compliance to estab-
lish participants’ behavioral baseline. The baseline height was 3.3 ± 1.1 mm and 3.4 ± 0.9 mm for the left and the 
right hand, respectively (Table 1). The compliance was 58.2 ± 7.0 mm/kg and 54.5 ± 5.6 mm/kg, respectively. 
For ΔHand condition, the transfer trial yielded a height of 6.3 ± 1.6 mm, equivalent to a transfer of 40.6 ± 4.5%. 
This transfer was significantly larger than the transfer observed in Experiment 1 (independent t-test, t28 = −3.56, 
P = 0.0013). Note the major difference between these two cases was that the left hand started to pick up the same 
cup. Subtracting the baseline transfer in Experiment 1, the remaining transfer was 24.25 ± 4.5% and significantly 
above zero (t18 = 5.42, P = 0.00003, confidence interval [14.85 33.65]). This part of learning is attributed to the 
object itself since the only difference between ΔHand and ΔHandΔCup was that a second identical cup was used 
in the latter condition.

Besides quantifying the learning attributed to the object, the data in ΔHand condition also demonstrated 
that there was indeed learning specifically associated with an effector. We compared the elevation of height in the 
last trials between compliance and transfer blocks in the ΔHand condition. In these blocks, the last trial was the 
same since both types of blocks required participants to transport an empty cup with the left hand. They differed 
regarding the history of learning trials: the compliance blocks involved learning with the left hand while the trans-
fer blocks with the right hand. After transporting a full cup, the last trial showed elevated trajectory height for 
both types of trial blocks. However, we found that the height elevation was larger in compliance blocks (7.0 ± 0.8 
mm) than in transfer blocks (3.7 ± 1.0 mm), indicating that there was extra learning associated with the effector 
used for initial learning (t18 = 4.59, P = 0.0002).

Figure 3.  Data from all participants of Experiment 1. The trajectory heights are plotted as a function of trial 
within a block; data from three block types are shown in separate panels (A–C). Lines of different colors indicate 
trial blocks of different sizes. A relatively stable height is established with 1 or 2 trials after a weight change. The 
height increases in the last trial when the second cup weight is emptied, but the increase differs between the 
compliance block and the transfer block.

Figure 4.  The percentage of transfer of learning in Experiment 1 and Experiment 2. Transferring to a different 
hand and with a second cup (ΔHandΔCup), to a different hand but with the same cup (ΔHand), and to 
a second cup but with the same hand (ΔCup) are dramatically different. By removing the baseline level of 
learning estimated from ΔHandΔCup, we can estimate the learning specifically attributed to the cup (ΔHand) 
and the hand (ΔCup), as respectively shown in red and blue color bars. ** for P < 0.005, * for P < 0.05.
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For ΔCup condition, we performed similar analyses to estimate the transfer of learning that was associ-
ated with the effector (Table 1). Compared to ΔHandΔCup condition in Experiment 1, the transfer of learning 
increased to 73.7 ± 4.1% for when the same right hand picked up the other cup. Subtracting the baseline trans-
fer, the remaining transfer was 57.38 ± 4.1% (independent t-test against 0, t18 = 14.008, P < 0.00001, confidence 
interval [48.78 65.99]). This part of learning is attributed to the body since the only difference between ΔCup and 
ΔHandΔCup was that a different hand was used in ΔHandΔCup. In fact, the learning of the body was larger than 
the learning of object (t18 = −4.85, P = 0.0001, Cohen’s d = 1.1). We also directly compared the elevation of height 
in the last trials between compliance and transfer blocks within the ΔCup condition. Note, for these two types of 
trial blocks, participants used the right hand to repetitively transport a full cup before transporting an emptied 
cup in the last trial. The only difference between them is whether a second cup (same appearance, same weight) 
was used in the last trial (Fig. 1C, ΔCup). We found that the elevation of hand was indeed larger in compliance 
blocks (6.5 ± 0.7 mm) than in transfer blocks (5.8 ± 0.7 mm), indicating that switching to a new cup demon-
strated less learning and the identity of an object was associated with learning (t18 = 2.83, P = 0.01).

It is interesting to note that the sum of three learning components, i.e., the meta-learning related to the task 
itself in Experiment 1, the body learning and the object learning, was approximately 97.97 ± 5.19% and it was 
statistically indistinguishable from 100% (t18 = −0.39, P = 0.70).

Discussion
In our study, participants quickly learned to move the “cup” with a straight movement trajectory. Given that the 
learning was about transporting a weight, the initial trajectory height of this ballistic movement is a direct indi-
cator of participants’ feedforward prediction of object weight. By analyzing the height changes and factoring 
in appropriate baseline behavior and arm compliance, we could estimate how much of this learning was trans-
ferred between hands and between objects. We found that when participants switched hands to transport a sec-
ond, identical object, their learning was only minimally transferred (16%, Experiment 1). Thus, if the transfer 
action does not share the same effector and the same object as the original action, the motor system exhibits 
little transfer of learning obtained during object manipulation even when the participant explicitly knows two 
objects are identical. Interestingly, the transfer was significantly improved if participants only swapped hands 
or only swapped objects (Experiment 2). By subtracting the baseline transfer estimated from Experiment 1, we 
found that learning attributed specifically to the object was about 24% and the learning attributed specifically 
to the body was about 57%. Importantly, the sum of three learning components was approximately 100%, sug-
gesting that learning of object manipulation can be indeed partitioned into different functional components. 
These findings suggest that when learning to transport the cup people assign credits to both the object and 
their body, and attribute errors differentially to these two sources of variability. Misattribution to the body 
appears counter-intuitive since the task is about estimating the property of an external object. Our experiments 
thus put strong behavioral evidence to the claim that the brain attributes errors to the body and the environ-
ment during motor learning.

Humans excel at learning inertial properties of the hand-held object during manipulative actions. For 
instance, simply wielding an object without looking can lead to the accurate estimation of its inertial distribu-
tion21. In our experiments, the participants indeed exhibited fast learning of weight changes as indicated by quick 
convergence to the stereotypical movement trajectory. This is why it is intriguing that simple learning of object 
weight is not completely transferred to the contralateral hand or a second identical object. After all, our task is 
arguably one of the most common object manipulation tasks during daily life. Our previous investigations have 
also demonstrated that the familiarity of the task itself facilitates transfer18,22. In one study, we found specifically 
that the weight-transportation task exhibited substantially larger generalization across movement directions 
when compared to other motor learning tasks involving reaching perturbations18. Furthermore, the partial trans-
fer is surprising if we consider that our participants were fully aware that the two objects were identical in weight; 
but they still failed to transfer their learning between objects and between hands. These findings thus suggest that 
part of learning acquired during object manipulation is effector-dependent and part of it is object-specific.

This limited transfer, though, is consistent with previous investigations that people are not adept to apply 
explicit knowledge of inertial property in manual manipulation of the object (e.g., ref.12). The limited transfer 
between hands is also consistent with diverse findings that bimanual transfer is incomplete in motor learning 
(e.g., ref.23–26). The unique contribution of the present study is to quantify the learning components that are spe-
cifically associated with the object and with the effector within the same experimental paradigm.

The third learning component, identified as the baseline transfer in Experiment 1, might have multiple inter-
pretations. It might be the learning of how to skillfully perform the task which requires coordinating multiple 
joints to rapidly and accurately transport a small weight to a target. It might be the learning of average weight 
experienced over the course of the experiment. The latter explanation is less likely since learning appears to be 
complete within a couple of trials for our task. Furthermore, numerous weight-lifting studies have found that 
weight estimation, as indicated by finger loading force, is mostly correlated with the immediately preceding trial 
with no signs of meta-learning2,3,27. Hence, even though our current data cannot provide a conclusive explanation, 
we tend to believe that the small baseline transfer, apart from object learning and body learning, results from 
learning of performing the task.

The partition of learning between the body and the object is consistent with recent advance in 
object-manipulation studies investigating sensorimotor memory, which was originally referred to as the mem-
ory of an object’s physical properties27. Researchers have found that memory of previous actions affects object 
manipulation13,28,29. For instance, after forcefully squeezing an unrelated object people was biased to use a large 
grip force to lift a familiar object13. Thus, even though the squeezing action, performed by the same hand, was not 
functionally related to the lifting task, it still affected subsequent object manipulation. Thus, researchers extended 
the concept of sensorimotor memory by including an action-based memory to complement an object-based 
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memory30. These two separate memory components are conceptually similar to our definitions of body learning 
and object learning. While previous studies probed how action-based memory interacts with object-based mem-
ory, our study estimates their relative contributions with a novel weight-transportation task.

It is important to acknowledge, though, that the relative contributions of three learning components are likely 
to vary for different object-manipulation tasks. For instance, reaching studies with force field found substantial 
object learning since aftereffects were small after letting go the robot5,8,10. Dismounting the robot handle is sim-
ilar to swapping cups in our ΔCup condition as both cases involve a change of manipulated object. The small 
aftereffect in the force-field learning task thus suggests that the CNS only attributes a small likelihood of causality 
to the body4,31. In contrast, our experiment found that 57% of total learning was associated with the body. The 
force-field learning experiments all involve a robot and virtual reality setting which are rarely experienced in daily 
life, and thus the CNS might attribute the bulk of the perturbations to the robot, which acts as an object. Instead, 
weight transportation is a daily practice and in our experiment, a cup is a familiar object with little uncertainty 
about its inertial property. Thus, we observed much more object learning in our experiment as compared to that 
in force-field studies.

We postulate that awareness of weight changes, by visual cues and repetitive verbal instructions in our exper-
iment, also affects the credit assignment and the partitioning of learning. Previous studies have found that cog-
nitive contribution influences motor generalization in object lifting16,32. Visual information of the object aids 
the transfer of hand manipulation33. Given that the central nervous system (CNS) flexibly learns to act based on 
the relevance of information34,35, we believe that credit assignment and its resulting partitioning of learning will 
change if people are not aware the weight changes of the object (e.g., with opaque cups).

The exact sequence of trials, or the sequence of weight changes, might also quantitatively affects credit assign-
ment36. For instance, if we employed a long sequence of trials without weight changes, as opposed to the cur-
rent random block design, the body learning and the object learning might have different relative magnitudes. 
Recently, Fercho and Baugh found that the learning of lifting an object with gradually increased weight can be 
transferred to lifting a novel weight whereas this transfer is absent if the original learning dealt with an object with 
abrupt weight change7. The authors postulated that the gradually-changed object prompted people to attribute 
the change to the body, and this body learning then manifested itself during the transfer tests with the second 
object. Thus, the sequence of weight changes indeed impacts the credit assignment and its associated learning. 
We postulate that object learning lasts longer as it is akin to the concept of object permanence37–39, while body 
learning changes more rapidly. Early studies on object grasping have found that people retain the knowledge of 
weight distribution for more than 24 hours2,40, while the influence of recent actions only lasts for a brief dura-
tion28. With accumulating evidence that motor learning consists of components of different time scales41–43, our 
findings suggest that during object manipulation body learning and object learning might be associated with a 
fast and a slow time scale, respectively. The temporal characteristics of different learning components warrant 
further investigations within the framework of credit assignment.

Our findings provide a new perspective to study transfer of learning object manipulation. Previous studies on 
bimanual transfer of weight-lifting actions have found that learning transfers across hands20,44,45. However, these 
studies did not quantify how much learning is related to the object and thus can be transferred. Furthermore, a 
puzzling finding is that within-hand transfer is impaired if an asymmetric object is rotated after learning12,46,47. 
These findings led to propositions that learning to manipulate an object is based on a hand frame of reference12,48 
or multiple grasp-specific representations46. Our credit assignment account gives an alternative but a simpler 
explanation: only body learning is transferred between objects; if rotated, the asymmetric object has an opposite 
weight distribution and demands an opposite hand manipulation as previously learned. Thus, the transfer should 
be negative, i.e., previous body learning should interfere with subsequent manipulation of the object. This is 
exactly what has been found12,47,49.

Our findings have important implications for studies on motor learning and motor rehabilitation. People have 
proposed that when interacting with the external world, the nervous system has separate modules for the body 
and different objects50,51. Multiple models of different objects offer the brain both flexibility and robustness in 
performing motor tasks and this account has been supported by recent behavioral and neurophysiological find-
ings52–54. Our findings, along with accumulating evidence, extend this theory by suggesting that learning should 
be decomposed into separate representations/modules for the body and the object. This insight is particularly 
relevant for motor studies with interactive objects, e.g., hand-manipulated object and robotic manipulandum. 
Furthermore, the object can also be viewed as a property of the environment whose representation is continu-
ously updated by the CNS9. Thus, tasks that involve an altered environment (e.g., visuomotor transformation by 
virtual reality or prism goggles) should also be considered as governed by separate representations. In the realm 
of motor rehabilitation, virtual reality and robots are gaining increasing popularity with the premise that learn-
ing can be transferred to daily life. It is thus important to elucidate the factors underlying the partition of motor 
learning since only the body learning can be transferred to other contexts when the patients disengage virtual 
reality and robots.
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