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Abstract: Using reclaimed water as a resource for landscape water replenishment may alleviate the
major problems of water resource shortages and water environment pollution. However, the safety
of the reclaimed water and the risk of eutrophication caused by the reclaimed water replenishment
are unclear to the public and to the research community. This study aimed to reveal the differences
between natural water and reclaimed water and to discuss the rationality of reclaimed water
replenishment from the perspective of microorganisms. The microbial community structures in
natural water, reclaimed water and natural biofilms were analyzed, and the community succession
was clarified along the ecological niches, water resources, fluidity and time using 16S rRNA gene
amplicon sequencing. Primary biofilms without the original community were added to study the
formation of microbial community structures under reclaimed water acclimation. The results showed
that the difference caused by ecological niches was more than those caused by the fluidity of water
and different water resources. No significant difference caused by the addition of reclaimed water was
found in the microbial diversity and community structure. Based on the results of microbial analysis,
reclaimed water replenishment is a feasible solution that can be used for supplying river water.
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1. Introduction

In recent years, water resource shortages and water environmental pollution have become major
problems all over the world, and China is no exception [1,2]. The pressure on fresh water supplies, not
only for drinking but also for urban landscapes, is increasing especially for large and medium-sized
cities [3]. It is urgent to take measures to ensure that the supply of water resources can meet the
demands of urban development and growing populations [4,5]. Reclaimed water has become the
first choice for replenishing urban landscape rivers. Successfully reclaimed water acquired after
physical, chemical and biological treatments of domestic wastewater or municipal sewage must satisfy
the national discharge standards [6]. However, successfully reclaimed water still contains nutrients,
potentially hazardous compounds such as emerging contaminants, heavy metals and pathogens [7,8].
Therefore, the safety of water and the risk of eutrophication must be considered when utilizing
reclaimed water.

As more reclaimed water is released into rivers, eutrophication caused by blue-green algae has
become one of the largest concerns for city managers. Feng et al. believe that high concentrations of
nitrogen and phosphorus contribute to the eutrophication of enclosed landscape water supplemented
by reclaimed water [9]. Ao et al. studied three ponds replenished with reclaimed water and found
a strong impact of reclaimed water to eutrophication [10]. The occurrence of eutrophication has the
potential to cause the death of a large number of aquatic organisms, destroy aquatic functions and

Int. J. Environ. Res. Public Health 2020, 17, 1174; doi:10.3390/ijerph17041174 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-8123-8779
http://dx.doi.org/10.3390/ijerph17041174
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/4/1174?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 1174 2 of 15

eventually affect the urban river landscape [11]. As an important part of aquatic ecosystems, aquatic
microorganisms can directly reflect water quality and play an important role in the monitoring and
early warning of water eutrophication [12]. More specifically, microbial community structure and
succession are tightly associated with environmental factors [13,14] and may be used to characterize
the physical and chemical features of water [12].

In addition to the microorganisms in water, biofilms also play a significant role in
microbial-mediated biogeochemical processes in aquatic ecosystems [15]. Biofilms adsorb contaminants
from the water impacted by organic and inorganic contaminants [16] and collect the inorganic particles,
microbes and algae, which contribute to the base of the food web in rivers [17,18]. There is a high
diversity and abundance of microbes living in biofilms [19]. Adequate nutrients from reclaimed water
can guarantee the growth of biofilms and offer the microbial community functional potential [20].
Stable biofilms may effectively reflect the evolution of microbial community structures and functions
associated with the aquatic environment [21].

In this study, it was explored whether reclaimed water supply for urban landscape rivers was
feasible or would affect the ecological environment and increase the risk of eutrophication. In situ
experiments have some limitations, including the release of pollutants and human disturbances.
Therefore, an experiment without human interference was designed in the laboratory to observe the
ecological change under reclaimed water replenishment conditions and to compare it with that of
natural river water. The regeneration of microbes grown in different types of water was observed to
further understand the microecological succession affected by the reclaimed water. This study provides
theoretical support for the monitoring and management of reclaimed river water supply and water
quality in the future.

2. Materials and Methods

2.1. Water Resources for the Experiment

Beijing, the capital of China, which has obvious regional characteristics and representativeness,
was chosen as the experimental site and natural water sampling point for the reason that the reclaimed
water supply channel was mainly located in large and medium-sized cities. Natural water (NW) was
collected from an urban river named the Yongding River (116◦4′27.52′′ E 40◦0′9.39′′ N) with slight
eutrophication, and reclaimed water (RW) was taken from the final effluent of a reclaimed water
treatment plant in Beijing with an improved inverted A2/O treatment process. The experiment was
carried out in the Experimental Base of Beijing Normal University (116◦3′15.57′′ E 39◦41′27.79′′ N).
The experiment was carried out in summer. The temperature in this season met the requirements for
the growth of most microbes, which was more conducive for the observation of microbial diversity [22].
A reasonable ≤ 80% reclaimed water replenishment ratio was proposed based on preliminary pilot
experiments. Therefore, in this experiment, considering the introduction of algal species under
natural conditions, and to make the experiment more consistent with the reality of urban river water
replenishment, the proportion of 80% reclaimed water and 20% natural water was employed rather
than 100% reclaimed water.

2.2. Experimental Design
The original objective of the experiment was to compare the differences between reclaimed water

and natural water. Considering that the fluidity of water (the water was flowing or still) will also
affect the result and that the flowing water may exert a different effect on the microbes, another
water tank (Figure 1A) was designed to make the experimental conditions close to the real river
conditions. Ultimately, there were three devices in the entire experimental process (Figure 1). Device A
(600 × 120 × 45 cm) was a flowing tank in which the water was a mix of 80% reclaimed water from the
reclaimed water plant and 20% natural water from the river (there was no reclaimed water discharged
into the river). The water in device A was recirculated, and no fresh water was pumped during the
experimental period. Device B (45 × 31 × 27 cm) was a motionless water tank filled with 100% natural
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water collected from the river. Device C (45 × 31 × 27 cm) was also a motionless tank, but with 80%
reclaimed water and 20% natural water.
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To observe not only the change in water but also the change in biofilms, stones were collected from
the river and placed into the bottom of each device for collecting biofilm, which was called natural
biofilm (NF). To observe the complete primary biofilm formation process, sterilized clean stones were
placed in device A with flowing water. The stones did not contain any microbial communities on the
first day, and the biofilms that grew were completely dependent on the substances in device A. Thus,
the biofilm of these stones was called primary biofilm (PF).

The experiment was carried out under normal sunlight, and the water level in the device decreased
by 0.49 cm on average every day. The entire experimental period continued for 28 days. On the first
day, the original communities of reclaimed water (RW), natural water (NW) and natural biofilm (NF)
were detected. Later, water samples and biofilm samples were collected three times on days 10, 19 and
28. Devices and sample names are explained in Figure 1 and Table S1.

2.3. Sample Collection and Preprocessing
Water samples were collected into one liter sterile bottles. Biofilm samples were collected from the

stone surface with the same unit area and collected into sterilized 2 mL centrifuge tubes. A sterilized
ring with a diameter of 3.4 cm was used to cover the surface of stones, and the biofilm in the ring
was collected using a sterilized knife to guarantee the same unit area biofilm samples. Manipulation
instruments, glassware and tubes were autoclaved prior to use, and the surface of instruments was
cleaned by wiping with 75% ethanol before each sampling. All samples were taken in triplicate and
quickly transported to the laboratory. Water samples that were used for the determination of chemical
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properties were kept in a 4 ◦C refrigerator and were detected within 24 h, and other water samples
were filtered through a 0.22 µm mixed cellulose ester water filter (Jinjing Brand, Shanghai, China)
within 24 h of collection [23]. The membranes and biofilms were stored in a freezer for preservation at
−20 ◦C until subsequent DNA extraction [24].

2.4. Water Quality and Analytical Methods
The pH was determined using a handheld pH meter (PHscan 10S, Shanghai, China). A YSI-556

multiparameter water quality tester (YSI, Ohio, OH, USA) was used to detect the water temperature (T),
electric conductivity and dissolved oxygen (DO). Chemical oxygen demand (COD) was determined
by rapid digestion spectrophotometry (HJ/T 399-2007, China), and ammonia nitrogen was detected
according to Nessler’s reagent spectrophotometry (HJ 535-2009, China). Water samples were filtered
through 0.45 µm mixed fiber Millipore filters (Jinjing Brand, Shanghai, China, diameter 50 mm) for
the detection of NO3

− (nitrate), PO4
3− (phosphate), Cl−, SO4

2−, Na+, K+, Mg2+ and Ca2+. Cationic
chromatography (Dionex Aquion, Thermo Scientific, Massachusetts, USA) and anion chromatography
(Dionex ICS-2100, Thermo Scientific, Massachusetts, MA, USA) were used separately for the detection
of the abovementioned parameters.

2.5. Genomic DNA Extraction and High-Throughput Sequencing
Before DNA extraction, the filtered membranes were cut and placed into a centrifuge tube and then

followed by the extraction method using cetyltrimethyl ammonium bromide (CTAB) [25]. The whole
process of DNA extraction was performed on a bacteria-free workbench with UV irradiation before
operation. DNA quality and concentration were measured by gel electrophoresis and a Nanodrop
spectrophotometer (Nanodrop 2000, Thermo Scientific, Wilmington, USA), respectively [26]. Extracted
DNA was stored at −20 ◦C and then sent to Shanghai Majorbio Bio-pharm Technology Company
(China) for sequencing. The V3–V4 regions of the 16S rRNA gene were amplified using the primer
pair 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′),
which target conserved sequences found in bacteria [27,28].

2.6. Statistical Analysis
Pair-end sequence data were acquired with the Illumina MiSeq platform (PE 300, Illumina,

San Diego, USA), and raw data were quality filtered using Trimmomatic [29,30]. Low-quality reads
with scores <20 were discarded with a sliding window of 50 bp [31]. Then, barcodes were matched,
and unmatched reads were removed. Samples were distinguished according to the barcodes and
primers at both ends of the sequence, and the sequence direction was adjusted to finally obtain the
optimized sequences. The taxonomy of sequences was analyzed by RDP Classifier (http://rdp.cme.
msu.edu/) [32,33] according to the SILVA (Release 128) rRNA database (http://www.arb-silva.de).

Alpha diversity including species richness (OTUs, operational taxonomic units) and Chao index,
which were used to calculate the community richness, and Shannon index and Simpson index, which
represented the community diversity [34], were analyzed through Mothur (V 1.30) [35]. Student’s
t-test was used to test the Shannon index of the microbial communities from different groups by R
software. The difference in microbial taxa in groups could be explained by the Venn diagram at the
OTU level at 97% identity, representing the unique OTU of one group and the intersection of two or
more OTUs [36]. Principal coordinates analysis (PCoA) was used to visualize the community structure
among groups [37]. The PCoA plot was generated from the Bray–Curtis similarity index. Analysis
of similarities (ANOSIM) was used to test differences in bacterial community composition among
groups [38]. These analyses were run in R software with the vegan and ggplot2 packages.

The correlations between the microbial community and environmental factors were observed
based on the redundancy analysis (RDA) with the help of Canoco software for Windows 4.5. There
were many environmental factors related to the composition of the sample species, but many of the
factors were correlated with one another. Thus, environmental factors were selected by the functions
of the VIF (variance inflation factor) [30] after judging the collinearity among different factors [39], and
DO and Mg2+ were removed in the following analysis for VIFs higher than 10.

http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
http://www.arb-silva.de
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3. Results and Discussion

3.1. Water Quality

The water quality parameters of the different devices are shown in Table 1. The temperature
fluctuated between 27.2 and 29.1 ◦C. No significant change was found when comparing the pH, COD
and DO. However, it was obvious that the concentrations of nutrients such as ammonia nitrogen, nitrate
and phosphate were lower in device B (100% natural water) than in device A and C (80% reclaimed
water). It confirmed that the nutrient content in reclaimed water was high, and this indicated that a
high nutrient concentration was an important indicator of reclaimed water replenishment different
from that of natural water replenishment. The concentration of nutrients in the reclaimed water device
was comparable to that in polluted urban rivers [40]. Nutrient pollution caused by excess loadings
of nitrogen and phosphorous has been widely observed [41] and may lead to the changes of water
physicochemical parameters and aquatic biodiversity [42]. Additionally, the concentrations of K+, Cl−

and Ca2+ were lower in device B than in devices A and C.

Table 1. Water quality parameters in different devices (A, B and C).

A B C

Temperature (◦C)
max 29.1 28.0 27.9

min 28.1 27.2 27.2

pH
max 9.4 9.9 9.8

min 9.1 9.6 9.6

Chemical oxygen demand
(COD; mg/L)

max 31 49 25

min 20 20 15

Dissolved oxygen
(DO; mg/L)

max 9.40 11.29 12.63

min 6.78 8.92 9.42

Nitrate (mg/L)
max 190.60 2.06 51.98

min 43.56 0.51 42.66

Phosphate (mg/L)
max 0.51 0 0.54

min 0 0 0.27

Ammonia nitrogen (mg/L)
max 0.24 0.18 0.24

min 0.13 0 0.02

Conductivity (S/m)
max 0.166 0.118 0.129

min 0.091 0.091 0.091

Na+ (mg/L)
max 168.19 173.99 183.51

min 98.67 116.90 128.98

K+ (mg/L)
max 19.53 10.96 21.62

min 12.83 7.19 15.36

Mg2+ (mg/L)
max 49.35 41.77 33.97

min 28.30 34.70 31.22

Ca2+ (mg/L)
max 118.11 27.90 46.22

min 65.35 24.34 32.55

Cl− (mg/L)
max 282.80 189.78 240.87

min 131.82 123.07 163.90

SO4
2− (mg/L)

max 292.04 231.11 201.39

min 119.46 160.95 144.67
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3.2. Sequencing Assessment and Taxonomic Diversity

In total, 1,673,754 optimized sequences were generated from 25 samples. The length distribution
of trimmed sequences ranged from 421 to 460 bp, with an average of 436 bp. According to the minimum
sequence number of a certain copy, the sequence number of all samples was randomly selected to the
same level, and the homogenization data were used for subsequent analysis [43]. After subsampling to
an equal sequencing depth (22,789 reads per sample) and clustering, 4785 OTUs (operational taxonomic
units) at 97% identity were obtained. A rarefaction curve was used to indicate the coverage of the
sequencing and enabled the assessment of differences in species richness among different samples
(Figure S1). All curves in the figure flattened after the sequences reached a relatively large number.

Shannon, Simpson and Chao indices representing the alpha diversity were calculated at the OTU
level (Table 2) [12,34]. The Shannon index of biofilm was higher than that of water, and the Simpson
index of biofilm was lower than that of water, indicating that the alpha diversity of biofilm was higher
than that of water. The community richness calculated by the Chao index was also higher in biofilm.
The lowest Shannon index value of biofilm was found on day 28 of device B (natural biofilm), and the
Shannon index was also found to be low in water at the same time.

Table 2. Diversity and richness estimated by Shannon, Simpson and Chao indices.

Sample Operational Taxonomic
Units (OTUs) Shannon Simpson Chao

Natural water (NW) 373 3.45 0.07 691.82
Reclaimed water (RW) 279 2.52 0.14 453.15

01A_RW 731 4.24 0.04 926.71
10A_RW 324 2.68 0.17 511.64
19A_RW 473 2.62 0.16 705.60
28A_RW 419 2.76 0.14 687.83
10B_NW 492 3.78 0.05 819.54
19B_NW 372 3.19 0.08 649.22
28B_NW 337 2.56 0.25 603.22
10C_RW 442 3.16 0.08 679.78
19C_RW 422 3.31 0.07 714.97
28C_RW 411 3.17 0.08 660.35

Natural biofilm (NF) 405 3.74 0.05 508.26
10A_NF 530 3.48 0.16 591.33
19A_NF 835 4.53 0.04 1100.04
28A_NF 1236 5.23 0.02 1739.22
10A_PF 804 4.30 0.04 1205.37
19A_PF 1126 5.16 0.02 1483.47
28A_PF 1272 5.25 0.02 1595.97
10B_NF 673 4.60 0.02 898.18
19B_NF 737 4.57 0.04 952.36
28B_NF 204 2.14 0.44 206.63
10C_NF 545 4.26 0.03 718.04
19C_NF 751 4.88 0.02 846.21
28C_NF 684 4.59 0.04 815.68

The alpha diversity was investigated in different groups divided according to the different devices
(A, B and C) and ecological niches (water and biofilm) (Figure 2a). Higher biodiversity is assumed to
have a stronger tolerance to external environmental pressures, while the decrease of diversity would
impair the function of ecosystems [44,45]. Unexpectedly, there was no significant variation in the
diversity between devices B and C with different water resources (p = 0.9246). This may indicate that the
addition of 80% reclaimed water did not significantly affect microbial diversity. However, by comparing
the devices A and C, both with reclaimed water, it was found that there was no significant difference
between biofilms (A_NF and C_NF) (p = 0.7779), but a significant difference was found between water
(A_RW and C_RW) (p = 0.0012), indicating that the fluidity of water changed the diversity in the
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water rather than the biofilm. This may demonstrate that the stable microbial community structure
of natural biofilms was hardly influenced by changes in the external environment, such as water
resources and fluidity conditions. It was obvious that the diversity in reclaimed water in the flowing
tank A(A_RW) was significantly lower than those in natural biofilms (A_NF) (p = 0.0280) and primary
biofilms (A_PF) (p = 0.0019). Similarly, the diversity in reclaimed water in still tank C (C_RW) was
also significantly lower than those in biofilms (C_NF) (p = 0.0018). Although the diversity in water in
device B (B_NW) was also lower than those in the biofilms (B_NF), the difference was not significant
(p = 0.5410). This may be attributed to the fact that the natural water and biofilm in B were collected
at the same site, and a stable microecological system was established depending on the interaction
between water and biofilm over a long time.

Int. J. Environ. Res. Public Health 2020, 17, 1174 7 of 15 

 

there was no significant difference between biofilms (A_NF and C_NF) (p = 0.7779), but a significant 
difference was found between water (A_RW and C_RW) (p = 0.0012), indicating that the fluidity of 
water changed the diversity in the water rather than the biofilm. This may demonstrate that the 
stable microbial community structure of natural biofilms was hardly influenced by changes in the 
external environment, such as water resources and fluidity conditions. It was obvious that the 
diversity in reclaimed water in the flowing tank A(A_RW) was significantly lower than those in 
natural biofilms (A_NF) (p = 0.0280) and primary biofilms (A_PF) (p = 0.0019). Similarly, the diversity 
in reclaimed water in still tank C (C_RW) was also significantly lower than those in biofilms (C_NF) 
(p = 0.0018). Although the diversity in water in device B (B_NW) was also lower than those in the 
biofilms (B_NF), the difference was not significant (p = 0.5410). This may be attributed to the fact that 
the natural water and biofilm in B were collected at the same site, and a stable microecological 
system was established depending on the interaction between water and biofilm over a long time. 

 
Figure 2. Alpha and beta diversity of the microbial communities from different groups. (a) Shannon 
index of alpha diversity and differences among groups (*: p < 0.05, **: p <0.01 and ***: p < 0.001); (b) 
principal coordinates analysis (PCoA) of the bacteria community in different group samplings based 
on ecological niches and devices. ANOSIM was used to test the significance of variations. 

The beta diversity was also calculated for the different groups (Figure 2b). The results of the 
PCoA (principal coordinates analysis) showed the community distribution of the samples [46,47]. 
The main coordinates explained 26.84% and 14.46% of the total variation in bacterial data. The 
ANOSIM was used to compare the mean of ranked dissimilarities between groups to the 
dissimilarities within groups. A high R value (R = 0.755) close to “1” indicated a strong 
compositional difference between groups (p = 0.001). It could be seen from the plot that there were 
obvious differences between different ecological niches, and all samples were divided into two clear 
groups: water groups and biofilm groups. Although there were still differences between flowing 
water and still water, the differences were smaller than those caused by different ecological niches. 
At the same time, it was observed that although device B contained completely natural water and 
device C contained mostly reclaimed water (80%), their microbial community structures were very 
similar. Therefore, it can be considered that microorganisms cultured in reclaimed water are not 
very different from those cultured in natural water. From the perspective of microorganisms studied 
in this experiment, replacing part of the natural water in landscape rivers with reclaimed water may 
be a feasible solution for water resource shortage and exhausted rivers. 

3.3. Common and Unique Microbial Taxa of Different Groups 

There were 1034 OTUs shared between the water and biofilm (Figure 3a), indicating that they 
might be insensitive to different ecological niches. The unique OTUs in biofilm were significantly 
more than those in water, which explained the higher diversity of the biofilm. For the water (Figure 3b) 
in different devices, flowing reclaimed water held the largest number of unique OTUs (375), and the 
number of total OTUs in the three different devices was similar. Devices B and C had more shared 
OTUs than other samples despite the different water sources, and this result demonstrated that the 

Figure 2. Alpha and beta diversity of the microbial communities from different groups. (a) Shannon
index of alpha diversity and differences among groups (*: p < 0.05, **: p <0.01 and ***: p < 0.001);
(b) principal coordinates analysis (PCoA) of the bacteria community in different group samplings based
on ecological niches and devices. ANOSIM was used to test the significance of variations.

The beta diversity was also calculated for the different groups (Figure 2b). The results of the PCoA
(principal coordinates analysis) showed the community distribution of the samples [46,47]. The main
coordinates explained 26.84% and 14.46% of the total variation in bacterial data. The ANOSIM was
used to compare the mean of ranked dissimilarities between groups to the dissimilarities within
groups. A high R value (R = 0.755) close to “1” indicated a strong compositional difference between
groups (p = 0.001). It could be seen from the plot that there were obvious differences between different
ecological niches, and all samples were divided into two clear groups: water groups and biofilm
groups. Although there were still differences between flowing water and still water, the differences
were smaller than those caused by different ecological niches. At the same time, it was observed that
although device B contained completely natural water and device C contained mostly reclaimed water
(80%), their microbial community structures were very similar. Therefore, it can be considered that
microorganisms cultured in reclaimed water are not very different from those cultured in natural water.
From the perspective of microorganisms studied in this experiment, replacing part of the natural water
in landscape rivers with reclaimed water may be a feasible solution for water resource shortage and
exhausted rivers.

3.3. Common and Unique Microbial Taxa of Different Groups

There were 1034 OTUs shared between the water and biofilm (Figure 3a), indicating that they
might be insensitive to different ecological niches. The unique OTUs in biofilm were significantly more
than those in water, which explained the higher diversity of the biofilm. For the water (Figure 3b) in
different devices, flowing reclaimed water held the largest number of unique OTUs (375), and the
number of total OTUs in the three different devices was similar. Devices B and C had more shared
OTUs than other samples despite the different water sources, and this result demonstrated that the
community was similar in still natural and reclaimed water. Therefore, it was concluded that the
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microbial community difference caused by fluidity was more than that caused by different water
resources. For biofilms (Figure 3c) in different devices, primary biofilm had the highest numbers of
total OTUs (1735) and unique OTUs (534). The number of unique OTUs in A_NF (195) was also more
than those in B_NF (97) and C_NF (108), indicating that the fluidity also had a noticeable influence in
not only water but also biofilms.
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3.4. Bacterial Community Succession in Different Ecological Niches

3.4.1. Water

For the source of water used in this study, the phyla with the highest relative abundance in
reclaimed water (RW) were Proteobacteria (69.71%), Firmicutes (14.99%) and Bacteroidetes (13.01%)
(Figure 4a). The main characteristic of reclaimed water was that it contained the highest abundance
of Proteobacteria. Proteobacteria have been reported as the most widespread bacteria in the active
sludge community of sewage treatment plants [48], and many species of this phylum pose a potential
risk to human health [26]. The predominant phyla (generally, in this study, predominant phyla had
a relative abundance >10.00%) of natural water (NW) were Cyanobacteria (29.01%), Bacteroidetes
(27.84%), Proteobacteria (27.36%) and Actinobacteria (12.63%) (Figure 4b). Cyanobacteria have a
long-recognized ecological importance in freshwater [49]. In a study on the change in the bacterial
community in the eutrophication area of Dong Lake in different seasons, Cyanobacteria became the
most dominant phylum in August [50], which is similar to this result.

In device A, the predominant phyla were Proteobacteria, Actinobacteria and Bacteroidetes. On day
10 (10A_RW), the relative abundance of Proteobacteria increased suddenly, but Actinobacteria and
Cyanobacteria decreased to the lowest abundance. Proteobacteria have been confirmed to be typical and
dominant freshwater microbes in aquatic habitats, including rivers and lakes [51]. Proteobacteria may
adapt well to changes in the environment when fluidity increases compared to the habitat they lived
in before [52]. Interestingly, on this day, Verrucomicrobia also increased, and the abundance (9.49%)
ranked only second to Proteobacteria with the highest abundance. Verrucomicrobia are widespread in
lakes and rivers, but their roles are not well understood [53].
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The predominant phyla of device B were Proteobacteria, Actinobacteria, Cyanobacteria and
Bacteroidetes. Cyanobacteria had almost no change between day 1 and day 10 (NW and 10B_NW).
The water was still in the state of eutrophication. However, the abundance of Cyanobacteria
rapidly decreased on day 19 (19B_NW), and Cyanobacteria were no longer the dominant microbes.
When Cyanobacteria decreased to the lowest value, Actinobacteria became the predominant phylum
in water and even had a high proportion of 58.76% on 28B_NW. In the whole changing process of
device B with 100% natural water, the relative abundance of Proteobacteria remained stable. Although
the original water was eutrophic, the abundance of Cyanobacteria decreased and no longer dominated
the eutrophic water environment because of the increase in Actinobacteria, without the import of
exogenous sources [54].

The abundance of Actinobacteria from water in device C (Figure 4c) increased from day 10 to day
28, while that of Proteobacteria gradually decreased. In addition to the two dominant phyla, the number
of Bacteroidetes, another dominant phylum, basically maintained a constant state. This variation trend
was similar to device A (flowing reclaimed water), although the difference in diversity was significant
(Figure 2a). In contrast to the highly abundant Cyanobacteria obtained from the first two samples in
device B, the number of Cyanobacteria in device C was stable and low in abundance, indicating a
lower risk of eutrophication [55].
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3.4.2. Natural Biofilm and Primary Biofilm

The dominant microbes of natural biofilms collected in the river channel on the first day (NF)
were Firmicutes (38.61%), Actinobacteria (20.69%), Proteobacteria (18.27%), Bacteroidetes (14.74%) and
Cyanobacteria (4.95%) (Figure 4a). There are few reports about Firmicutes as the most dominant phylum
in biofilms, and a high relative abundance of Firmicutes is usually detected in wastewater [56]. This may
indicate that the water or biofilm may be contaminated. However, after a period of incubation in device
A, Firmicutes was no longer the predominant phylum in biofilms and was replaced by Actinobacteria
(43.81%) (10A_NF), which was then replaced by Cyanobacteria (19A_NF and 28A_NF). For devices B
and C, the changes in the biofilm community structure were similar, despite the water being different.
On day 10, Cyanobacteria became the most abundant phylum in the natural biofilm, changing the
dominant positions of Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes. Planctomycetes
and Chloroflexi were also present and occupied a certain proportion. Inexplicably, the Actinobacteria
in device B increased dramatically on day 28 (28B_NF). At the same time, Actinobacteria also presented
a high abundance in water (28B_NW). However, unlike the rapid increase in biofilm, the change in
Actinobacteria in natural water was gradual. The mechanism of interaction between Actinobacteria
and Cyanobacteria remains unclear. Studies have shown that Actinobacteria can lyse Cyanobacteria
by releasing extracellular substances such as l-lysine, and others have found that Actinobacteria are
more abundant in water with lower eutrophication [57–59]. It may be inferred that the rapid increase
in biofilm was influenced by water; filamentous Actinobacteria [60] proliferate in the water first, and
when they reach a certain abundance, they deposit on the surface of the biofilm at the bottom, causing
a sharp decrease in the number of Cyanobacteria because of limited photosynthesis or the pressure of
competition. This can also be used to explain why the lowest Shannon index value of biofilm was
found on day 28 (Table 2).

The alpha diversity of the primary biofilm was higher than that of the natural biofilm in
device A for each day. On day 10, Proteobacteria (60.74%) and TM6__Dependentiae (11.29%) were the
predominant phyla, while the numbers of these two phyla decreased gradually over time. Subsequently,
Cyanobacteria, Actinobacteria, Firmicutes and Chloroflexi increased and became more abundant
phyla. At the same time, the diversity measured by the Shannon index was also increased (Table 2).
Proteobacteria were widespread in the water and soil environment. It was inferred that the generation
of microorganisms on the primary biofilm was influenced by the community in water. Easy-growing
microorganisms such as Proteobacteria settled first, creating proper conditions for others, and built
stable community structures with the change in the environment. For natural biofilms, microbes
already established stable systems to resist changes in the external environment [19]. Thus, compared
with natural biofilms, the microbial community structure of the primary biofilms changed more
regularly over time.

In summary, the relative abundance of Cyanobacteria in water was lower than that in biofilms,
either still or flowing, natural or reclaimed water (Figure 4). While the number of Cyanobacteria in the
water decreased, the number of Cyanobacteria in the biofilm did not decrease significantly. Even in
the primary biofilms without the original community, the relative abundance of Cyanobacteria was
increasing. This may be due to the large amount of Cyanobacteria deposited at the bottom in the early
stage of bloom, and only when the proper external conditions are available will they rise to the surface
and erupt in large numbers, eventually leading to eutrophication [61]. Therefore, the monitoring and
early warning of water eutrophication should not be limited to the monitoring of water, and the
monitoring of biofilms and sediments closely related to water will play a vital role in the early warning
of water blooms.

3.5. Correlation Between Microbial Community and Environmental Factors

The relationship between the microbial community and different environmental factors was always
positively correlated (Figure 5). Nutrients including ammonia nitrogen, nitrate and phosphate had a
great influence in different samples. In addition, nitrate had a closely positive correlation with flowing
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reclaimed water in device A, and ammonia nitrogen had a closely positive correlation with still water
in devices B and C. For inorganic ions, Na+ and SO4

2− were closely correlated with flowing reclaimed
water; however, Cl- was correlated with the still water in devices B and C. Nitrogen nutrients have been
suggested to be the dominant factors affecting the community structure in the Dongjiang River [51]
and the tributary of the Three Gorges reservoir [62]. Nitrogen fixation, ammoniation, nitrification
and denitrification in nature are all inseparable from the participation of microorganisms [63]. Other
studies found that phosphate was the main environmental factor influencing the structure of the
bacterial community in surface water, such as reservoirs [56] and rivers [64], because bacteria can
assimilate phosphate through the cell membranes to meet their need for phosphorus [65]. No specific
relationship caused by the environmental factors was found between natural water and reclaimed
water in this study.
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4. Conclusions

In this study, the microbial community structures in natural water, reclaimed water and natural
biofilm were revealed, and the community succession was clarified along the ecological niches, water
resources, fluidity and time. It was found that the diversity in biofilm was higher than that in water
and that the diversity in primary biofilm was higher than that in natural biofilm. The results showed
that the difference caused by ecological niches was more than that caused by fluidity of water and
different water resources. No significant difference caused by the addition of reclaimed water was
found in the microbial diversity and community structure. It can be hypothesized that the combination
of 80% reclaimed water and 20% natural water was a feasible solution that could be used for supplying
river water. In this research, we innovatively introduced the study of biofilm and proposed that the
monitoring and early warning of eutrophication should not be limited to the monitoring of water, and
the monitoring of biofilms and sediments closely related to water will play a vital role in the early
warning of water blooms. This research was only conducted in summer, and this was a limitation
because the conditions may be different in winter, which may affect the overall conclusion. Long-term
and large-scale experiments need to be completed to better understand the succession of microbial
community structures in different ecological niche conditions and the influence of reclaimed water
on eutrophication.
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