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Segmentation of the left ventricle (LV) from three-dimensional echocardiography (3DE) plays a key role in the clinical diagnosis of
the LV function. In this work, we proposed a new automatic method for the segmentation of LV, based on the fully convolutional
networks (FCN) and deformable model.This method implemented a coarse-to-fine framework. Firstly, a new deep fusion network
based on feature fusion and transfer learning, combining the residual modules, was proposed to achieve coarse segmentation of LV
on 3DE. Secondly, we proposed a method of geometrical model initialization for a deformable model based on the results of coarse
segmentation. Thirdly, the deformable model was implemented to further optimize the segmentation results with a regularization
item to avoid the leakage between left atria and left ventricle to achieve the goal of fine segmentation of LV. Numerical experiments
have demonstrated that the proposed method outperforms the state-of-the-art methods on the challenging CETUS benchmark in
the segmentation accuracy and has a potential for practical applications.

1. Introduction

The assessment of left ventricle (LV) function on the echocar-
diography plays a key role in the diagnosis of heart disease.
The LV segmentation based on echocardiographic images
is an essential step for LV function assessment in terms
of characterizing the ventricular volume, ejection fraction,
wall motion abnormalities, and myocardial contractility [1,
2]. Compared to the traditional 2D echocardiography, 3D
echocardiography (3DE) allows a real-time 3D visualization
of the heart [3]. However, due to some intrinsic limits such as
low signal-noise ratio, low spatial and temporal resolutions,
and presence of motion artifacts, the fully automatic segmen-
tation of the LV in 3DE is still an open and challenging task
[4]. Moreover, manual segmentation is time-consuming and
prone to subjective variability [5]. Therefore, an automatic

and accurate LV segmentationmethod is desirable for access-
ing the LV function. Current methods for LV segmentation
on echocardiography can be classified as deformable models,
statistical models, and machine learning methods [6].

Deformable models are widely used for the LV segmenta-
tion in echocardiography [7–13].With thismethod, an energy
function is defined and minimized for accurate detection of
the LV boundary. The widely used deformable models can
be divided into snake model and level-set model, which are
based on the boundary and region information, respectively
[14, 15]. Usually, some new constraints are integrated into
the common energy function to achieve a more accurate
segmentation [10, 12, 16]. Although they are useful in LV
segmentation on multimodality medical image data [10, 17,
18], these models have intrinsic limitations as they depend
much on the initialization and image quality. In general, good
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Figure 1: The overview of the proposed framework from coarse segmentation to fine segmentation.

initialization is necessary, especially for ultrasound images,
which are vague and noisy. Currently the common initializa-
tionmethod of LV segmentation ismanual or semiautomatic.
Therefore, an accurate and automatic initialization method is
the key for fully automatic LV segmentation.

Statistical models, such as active shape model (ASM)
[19, 20] and active appearance model (AAM) [21], are based
on the statistical information from large labeled data from
experts [22]. The statistical information from the labeled
data is modeled using some parameters, which are mainly
based on contour borders and image textures information
in image. Recently, the AAM and ASM have been widely
applied to the LV segmentation problem of echocardiography
[23–28]. However, due to the dependence on the large
number of annotated images, initialization, and assump-
tion of shape and appearance [29–32], statistical models
exhibit clear limitations on the automatic segmentation of
LV.

Different from statisticalmodels,machine learningmeth-
ods do not depend on the assumption of shape and appear-
ance. Machine learning methods have demonstrated excel-
lent performance in natural image segmentation. Compared
to the traditional machine learning methods, which are
based on the hand-crafted features, deep convolutional net-
works achieved milestone segmentation results in natural
images [33–36]. Inspired by the remarkable success in natural
image segmentation, recently some studies have successfully
implemented the deep convolutional networks for LV seg-
mentation [14, 17, 29, 37, 38]. However, compared to the
natural image segmentation, the LV segmentation of 3DE is
limited by a lack of large training datasets and low signal-to-
noise ratio. So far, few researchers try to formulate the LV
segmentation task on 3DE into a deep learning task. Some
research combined deep learning method and deformable
model to segment LV on cardiac MR images [17, 38], in
which deep learning methods were employed to produce a
rectangle to detect the region of interest (ROI) of LV, and
then other postprocessing method was used to make a final
segmentation of LV.

Different from these researches, we proposed a new
fully automatic method which employed fully convolutional
networks and deformable model for LV segmentation on the
3DE. In this work, we advance our preliminary attempt on

LV segmentation of 3DE [39]. The main contributions are
following points:

(1) We formulated the fully automatic LV segmentation
task into a coarse-to-fine framework, which includes the
coarse segmentation based on deep learning technology and
fine segmentation based on the 3D snake respectively.

(2) We employed data augmentation method and the
transfer ability of deep convolutional networks between the
natural image and 3DE and proposed a new fusion network
structure to further improve the coarse segmentation results.

(3) Based on the coarse segmentation results, we pro-
posed a new initialization method utilizing the relation
between the spatial position and region sizes of LV in the
coarse results and further improved the traditional 3D snake
model based on the spatial regularization to generate the fine
segmentation results. Besides, compared to the purely end-
to-end deep learning method, the proposed method has high
interpretability.

(4) Numerical experiments have been carried out to
demonstrate that the proposed method outperforms the
state-of-the-art methods on the challenging CETUS bench-
mark in the segmentation accuracy and has potential to be
applied into clinical application.

The manuscript is structured as follows. In Section 2, our
method is described in detail. In Section 3, some experi-
mental results are presented, including a comparison with
state-of-the-art methods. In Section 4, we discuss the results
and characteristics of the proposed framework. Finally, we
conclude this work and discuss its future applications in
Section 5.

2. Method

As shown in Figure 1, we formulate the LV segmentation
problem into a coarse-to-fine framework. First, to get enough
training data for deep learning, we employed an appropriate
data augmentation method based on the conversion from
3D volume to 2D slices. Second, an improved deep fully
convolutional network (FCN) based on feature fusion and
transfer learning was applied to make initial segmentation
of all original 2D slices from 3DE. And then, based on the
initial segmentation results, the initialization models for the
deformablemodel were constructed. Finally, an improved 3D
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Figure 2: The feature maps of the last layer of FCN model with pretrained weights on VOC datasets, adopting the 2D echocardiography as
input. (a) The original input 2D slice. (b) 21 feature mappings on the last layer. (c) The final output result of FCN.

snake model was used to segment 3DE. The details of the
proposed method are as follows.

2.1. Coarse Segmentation. We used the deep FCN in [33],
which does not contain fully connected layer and uses skip
structure for the first time, to achieve the initial segmentation.
FCN can provide an accurate localization and initial shape
of LV for the further fine segmentation. However, due to
limited training datasets, few researchers try to adopt the
deep learning technology to address the LV segmentation
problem on 3DE. To overcome the problem of insufficient
training datasets, we adopted the transfer learning method to
initialize the deep FCN model. Additionally, to improve the
segmentation accuracy of deep FCN,we proposed a newFCN
structure based on the feature fusion across different layers
and residual module. Subsequently, we introduce the coarse
segmentationmethod in the aspect of data augmentation and
transfer learning and improved the structure of the FCN,
respectively.

2.1.1. Date Augmentation. The CETUS benchmark [3] is
believed to have the largest open accessible 3DE datasets.
Hence, we adopted the CETUS benchmark datasets to train
and validate the FCN model. The CETUS dataset includes
45 3DE subjects, which were acquired from three ultrasound
machines of three different vendors. The subjects were
divided into 15 training subjects and 30 test subjects, and each
subject included two labeled volumes in the end-systole (ES)
and end-diastole (ED) frames.

However, due to a small training dataset, the data aug-
mentation is necessary for training deep learning model.
To solve this problem, we employed an appropriate data
augmentation method based on the conversion from 3D
volume to 2D slices. As shown in Figure 1, the 3D volumes
were sliced along the Z axis into 2D images, and the 3D
mesh of ground truth was simultaneously sliced to match
the corresponding 2D images. In this way, all the 2D images
were used as the input, so that the number of input samples
is increased by N times of the number of 3DE samples (N
is the height of Z axis). In this way, we not only get more
training samples, but also save the number of parameters on
deep learning model (because we convert the input format
from 3D to 2D).

Based on the generated 2D images datasets, some tra-
ditional data augmentation methods (such as rotation and
resizing) can be adopted to achieve further data augmenta-
tion to get lots of training images for the following deep FCN
training. Note that we copy the channel of an original 2D
image three times to generate a 2D image with three channels
to fit the input of the FCN for the following transfer learning
technology. Because the weights, which are used for transfer
learning, are from VOC dataset. The images of this VOC
dataset are RGB images, and every image has three channels.
Hence, the only way is to copy the channel of an original 2D
image three times to make sure the same number of channels
tomake the transfer learningworkwell. If wemodify the FCN
to deal with a single channel, we are unable to transfer the
weights properly from the pretrained FCN model on VOC
datasets.

2.1.2. Transfer Learning Based on VOC Datasets. Though the
number of training samples was increased by the proposed
augmentation method, training the deep FCN model from
scratch is difficult. Inspired by some related researches, which
adopt the transfer learning technology to overcome the
limitation of datasets and avoid the overfitting problems [42–
44], we transfer the weights from pretrained FCN model
[33] on VOC datasets (which were collected from photo-
sharing web site and include 1464 RGB images for pixel-level
segmentation) [45] to initialize FCN model and then fine-
tune it on augmented echocardiography datasets. To prove
the transferability of the pretrained FCN model between the
RGB and echocardiography datasets, we used the pretrained
FCN model on VOC datasets to predict the pixel classes
of the 2D images from 3DE directly. Figure 2 shows the
21 feature maps (output of the last layer in FCN) and the
final output result of FCN model with pretrained weights
on VOC datasets. We can see that the regions of LV in 2D
images have higher response values and can be extracted as a
single class. This result proves that the pretrained model has
transferability.

2.1.3. Fully Convolutional Networks Using Features Fusion.
We adopted the FCN in [33] as our basic networks structure
and modified the number of channels according to the



4 BioMed Research International

Figure 3: Comparing ground truth (red circles) with the segmentation results of original FCN (first row) and improved FCN (second row)
of Patient 15 (which was used as validation subject) from the CETUS benchmark [3]. The slices from left to right correspond to the LV parts
from apex to base.

number of classes (from 21 to 2) in all deconvolution layers.
The 21 classes are aeroplane, bird, bicycle, boat, bottle, bus,
car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, TV/monitor, and
background [45]. The 2 classes are LV and background. We
used the pretrained models on VOC datasets to initialize all
the convolutional layers of the FCN and fine-tuned the whole
networks on the adopted echocardiography datasets. The
details about networks training are shown in Section 2.1.5.
The first row of Figure 3 shows the LV segmentation results
using the FCN model trained through transfer learning
(using pretrained models), which shows the potential of
FCN based on transfer learning. However, to achieve more
accurate segmentation, we proposed the new structure to
improve the coarse segmentation accuracy.

Inspired by the feature fusion strategy (it is also called
skip structure) [33, 46–48] and residual networks [35], we
proposed a new feature fusion method with residual connec-
tions. The new proposed method is based on an assumption
that the feature fusion strategy can combine the feature maps
in different levels (the low level in the bottom layers and the
high level in the top layers), which are complementary to each
other to boost the segmentation accuracy. Additionally, we
employed the residual module with identity mapping [49] to
encode the mid-layers features, based on the characteristic
that the residual networks enable effective backward propaga-
tion of the gradient through the identitymapping and achieve
fast convergence as well as good feature representation [50].
This characteristic is very important for training relatively
complex convolutional neural networks (CNN). As shown in
Figure 4, the parts with dotted lines denote the added streams
and modules on the original FCN in [33]. In brief, we added
two streams from the first two pooling layers (pooling 1 and
pooling 2) to the final deconvolution layers, and the residual
modules are added to every skip stream to improve the
ability of feature representation.The adopted residualmodule
includes 4 convolutional layers, and each layer includes 2

kernels with 3∗3 kernel size following by the BN layer [51] and
Relu activation layer (rectified linear units f(x)=max(0, x)).
Additionally, because only the LV regions and background
were classified in our study, hence, in all deconvolution layers
we employed two deconvolution kernels to generate the final
two probability feature maps instead of 21 feature maps in the
original FCN.

2.1.4. Loss Function. For 2D echocardiography images, the
size of LV foreground is usually much smaller than the size
of background. Hence, the number of pixels in LV region and
the number of pixels in background are heavily imbalanced.
Here, given an image 𝐼 and its ground truth y, a weighted
cross-entropy loss function is used to balance LV region and
background classification as follows:

𝐿𝑜𝑠𝑠 = −𝑎𝑌+∑
𝑖=1

log𝑃 (𝑦𝑖 = 1 | 𝐼; 𝑤) − (1 − 𝑎)

⋅ 𝑌−∑
𝑖=1

log𝑃 (𝑦𝑖 = 0 | 𝐼; 𝑤)
(1)

where 𝑌+ and 𝑌− denote the numbers of pixels belonging
to the foreground (LV region) and background, respectively,
in the ground truth, a=𝑌−/(𝑌++𝑌−),𝑃denotes the probability
of predicted classification, and𝑤means theweights of trained
networks.

2.1.5. Network Training. To utilize the pretrained FCNmodel
and the advantage of added residual modules well, we
adopted the two-stage manner to train the proposed net-
works. Firstly, we transferred the pretrained FCN model to
initialize the parameters in the whole networks except for the
deconvolution layers and the added residual modules. And
then, we fixed the parameters of the layers with pretrained
initialization and trained the deconvolution layers and the
added residual modules; in this way, the deconvolution layers
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Figure 4:The structure of the improved FCN. Based on original FCN in [33], we added two streams from the first two pooling layers (pooling
1 and pooling 2) to the final deconvolution layers, and the residual modules are added to every skip stream to improve the ability of feature
representation.

and the added residual modules can be relatively better
pretrained for initialization. Finally, we fine-tuned the whole
networks to get the model for LV coarse segmentation. The
second row of Figure 3 shows the segmentation results of 2D
slices from the apex to the base of LV using improved FCN
based on features fusion and weighted cross-entropy loss
function. Compared to the traditional FCN, the improved
FCN can generate more accurate segmentation results. In
some cases, the proposed method can discard the parts
which are not belonging to the LV, and this is critical for
the following fine segmentation step. And more experiments
results will be shown in Section 3 to prove the superiority of
the proposed network.

2.2. Fine Segmentation. Figure 3 displays the segmentation
results in the coarse segmentation stage. Based on the
coarse segmentation results, we proposed a fine segmentation
method based on 3D initialization and the 3D snake model
[52]. Then, we introduce the fine segmentation method in
the aspects of the 3D initialization and improved 3D snake
model.

2.2.1. Initialization. A good initialization is critical for LV
segmentation on 3DE, which is low signal-noise ratio. Some
similar works in [17, 38] have proved the feasibility of the
2D initialization based on deep learning for the segmentation
task on MR images. Here we proposed an automatic initial-
ization method on 3D space for LV segmentation on 3DE.
In general, the initialization task consists of two subtasks:
the center localization and the scale estimation of LV region.
As shown in Figure 5, the improved FCN has advantages.
It is able to get the relatively good segmentation results on
2D slices. To achieve the good center localization in 3D
space, firstly, LV centers were estimated through averaging
the coordinate values of all foreground pixels on coarse

segmentation results in every slice directly. However, as we
can see in Figure 5 (the red curve), the computed centers
were noncollinear in 3D space. This problem leads to the
misalignment between the adjacent slices and reduce the
quality of constructed 3D initialization model. Hence, to
achieve more accurate center point localization, as shown in
Figure 5, the widely used quadrature curve fitting method
[17] was used to correct the estimated centers to avoid the
misalignment.

The scale estimation of LV region is on the basis of the
assumption that the shape of LV in a 2D slice approximates a
circle.This assumption is beneficial to LV initialization,which
has been proved in [4]. Hence the radiuses of the LV region
were computed using the formula𝑅 = (𝑅1+. . .+𝑅8)/8, where
the 𝑅 denotes the average of radiuses in equal angles’ samples
as shown in Figure 5.

After the center localization and the scale estimation
of LV region, we finally obtained some LV contours on
slices along the Z axis. To achieve highly efficient model
representation, the 3D mesh was reconstructed based on
the resampling method. We equally resampled the contours
according to the formula 𝑆𝑖 = 𝐵1+𝑖∗𝑘, where 𝑆 denotes the
resampled contours set, 𝑆𝑖 denotes the 𝑖th sampled contours
along the 𝑍 axis, and 𝑘 denotes the sampling interval, B
denotes original contours set along the 𝑍 axis. Finally we
reconstructed the initial 3Dmeshmodel through themethod
in [53].

2.2.2. ActiveDeformableModel. Based on the initial 3Dmesh,
an improved 3D snake model was proposed to segment LV
from 3DE. Analogous to two-dimensional snake [52], our
improved 3D snake was also based on the minimization
of energy function and was optimized by gradient descent.
Although similar in someways, an improved energy function
is designed in our method. In the proposed 3D snake model,
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Figure 5:The pipeline of automatic 3Dmodel initialization for active deformable model. Based on the segmentation result of improved FCN,
we corrected the center and the scale of LV region and then reconstructed the 3D mesh based on the resampling method.

the initialization 3D model obtained from the previous step
was used as a 3D spatial regularization constraint for the
proposed energy function. Compared to the regularization
technology in [17, 38], the proposed 3D spatial regulariza-
tion technology can appropriately limit the free degree of
deformation, to avoid boundary leak between the LV and
left atrium (LA) which is a common difficulty in the 3D LV
segmentation tasks [14], because the LV and LA are adjacent
and have similar pixels intensity. Additionally, the boundary
leak due to the presence of papillary muscles can also be
avoided.

The final 3D mesh of LV was got when the minimum of
energy function was reached.The three-dimensional contour
and energy function are defined as the following formulas,
respectively:

X (u) = [𝑥 (𝑢) , 𝑦 (𝑢) , 𝑧 (𝑢)] ,
𝑢 = (𝑢1, 𝑢2) ∈ [0, 1] [0, 1] (2)

E = ∫ 12 (𝛼
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑋𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 + 𝛽 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝑋𝜕𝑢2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2) + 𝛿𝐸𝑒𝑥𝑡 (𝑋)

+ 𝜂𝐸𝑖𝑛𝑖𝑡 (𝑋) 𝑑𝑢
(3)

where the first termand second term in (3) are internal energy
and external energy, respectively. Same as the traditional
snake model, X’ and X” are the first-order term and second-
order term of 𝑋, respectively, and they are controlled by
parameter 𝛼 and 𝛽. The first-order term makes the mesh
smooth and the second term makes the mesh continuous.
The third term 𝐸𝑖𝑛𝑖𝑡(𝑋) = |𝑋 − 𝑋𝑖𝑛𝑖𝑡|2 was the spatial
regularization term, in which𝑋 is the current mesh and𝑋𝑖𝑛𝑖𝑡
is the initial mesh. In this way, we not only can get a relatively
finer mesh but also can avoid the absurd deformation due to
boundary leak.

3. Evaluation and Results

3.1. Dataset. The proposed method has been tested by using
the challenging CETUS benchmark datasets [3]. The ground
truth is accessibly open for training set, but not for test set.

Hence the final evaluation results of test set are from the
official online evaluation system.

However, to train and evaluate deep FCN model for
coarse segmentation, we divided the original 15 training
subjects into 12 training subjects (24 volumes) and 3 vali-
dation subjects (6 volumes). As described in Section 2.1, we
converted the 30 volumes into 5362 2D images; furthermore
we used the traditional data augmentation method to rotate
and resize the initial 2D images for 10 times randomly to get
final 53620 images, in which approaching 45160 and 8460
images were used for training and evaluating deep FCN,
respectively.

3.2. Setting. In the coarse segmentation stage, the proposed
FCN adopted the training setting similar to that in [33].
We set learning rate 10−4 in the type of linear decreasing
after every 1000 iterations, the momentum 0.99, the batch
size 256, and the max iteration number 10000, respectively.
The networks did not use any regularization such as L1, L2
regularization and dropout. Additionally, the initialization of
network weights is crucial because of that it directly affects
the convergence speed and effectiveness. In order to solve
this problem, the pretrained weights coming from FCNs
(was trained by in VOC datasets) were used to initialize
our network. As described in Section 2.1, we first pretrained
the deconvolution layers and residual modules fixing the
other layers for first 1000 iterations and then trained the
whole networks during the other 9000 iterations. In the
fine segmentation stage, to guarantee the repeatability of the
shown experiment results, we set the parameters of improved
3D snake 𝑘 = 10, 𝛼 = 0.1, 𝛽 = 0.2, 𝛿 = 0.1, and 𝜂 = 0.1,
respectively, though parameters are robust in the most of
cases.

In our study, the proposed FCN was implemented based
on the widely used Caffe framework [54]. The whole experi-
ment was performed on NVIDIA Titan X GPU.

3.3. Metrics. We adopted official metrics to evaluate the
proposed method [3], such as the mean surface distance
(dm), Hausdorff surface distance (dh), and modified dice
similarity index (D∗), usingwhichwe compared the accuracy
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Table 1: Segmentation accuracy (pixel accuracy (acc), mean accuracy (mean acc), and mean IOU) of different types of FCN in the stage of
coarse segmentation in validation set.

The type of networks Acc Mean acc Mean IOU
FCN 0.874 0.853 0.57
U-net 0.854 0.79 0.59
U-net+T 0.91 0.83 0.75
FCN+T 0.9810 0.9678 0.8485
FCN+T+P(3&4) 0.984 0.969 0.867
FCN+T+P(2&3&4) 0.989 0.973 0.889
FCN+T+P(1&2&3&4) 0.991 0.981 0.918

of our method with the ground truth from official CETUS
benchmark [3]. S and 𝑆𝑡 denote the surface from the proposed
method and surface from ground truth, respectively. Mean
surface distance measures the mean distance between 𝑆 and𝑆𝑡 and it can be computed by

𝑑𝑚 = [𝑑 (𝑆, 𝑆𝑡) + 𝑑 (𝑆𝑡, 𝑆)] (4)

𝑑ℎ = [max (min (𝑆, 𝑆𝑡) ,min (𝑆𝑡, 𝑆))] (5)

Here, 𝑑(𝑆, 𝑆𝑡) denotes the mean distance between every
voxel from 𝑆 and the closest voxel from 𝑆𝑡; 𝑑(𝑆𝑡, 𝑆) is
computed in analogous way. As shown in (5), the Haus-
dorff surface distance measures the local maximum distance
between 𝑆 and 𝑆𝑡.Modified dice similarity indexmeasures the
overlap of surface and is computed by𝐷∗ = 1−2(𝑉∩𝑉𝑡)/(𝑉+𝑉𝑡). V and 𝑉𝑡 denote the volume from proposed method and
ground truth, respectively.

Besides, the performance of our method was also mea-
sured by official metrics, the modified correlation (corr∗),
and standard deviation (std) in terms of end-diastolic vol-
umes (EDV), end-systolic volumes (ESV), and ejection frac-
tions (EF). EF is calculated by

𝐸𝐹 = (𝐸𝐷𝑉 − 𝐸𝑆𝑉)𝐸𝐷𝑉 (6)

Additionally, to evaluate the accuracy of coarse segmen-
tation, we adopted the traditional metrics for 2D images
segmentation [33], the pixel accuracy (acc), mean accuracy
(mean acc), and mean IOU. The IOU measures the region
intersection over union for every class, and the mean IOU
is the mean value of different classes of IOU [33]. The three
metrics are calculated by

𝑎𝑐𝑐 = ∑𝑖 𝑛𝑖𝑖∑𝑖 𝑡𝑖 (7)

𝑚𝑒𝑎𝑛𝑎𝑐𝑐 = (∑𝑖 𝑛𝑖𝑖/𝑡𝑖)2 (8)

𝑚𝑒𝑎𝑛𝐼𝑂𝑈 = (1/2)∑𝑖 𝑛𝑖𝑖(𝑡𝑖 + ∑𝑗 𝑛𝑗𝑖 − 𝑛𝑖𝑖) (9)

where 𝑛𝑖𝑗 is the number of the pixels of class 𝑖 predicted to
class j; 𝑡𝑖 denotes the pixels number of class i.
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Figure 6: Different types of FCN’s mean IOU curve along with
increasing iterations in validation set.

3.4. Results. To prove the potential and superiority of the
proposed coarse-to-fine framework, we present and discuss
the experiment results in two aspects: the segmentation
accuracy and clinical validation.

3.4.1. Segmentation Accuracy

(1) Performance of FCN in Coarse Segmentation. In order
to better understand the importance of the improved FCN
in our study, we compared the segmentation accuracy in
terms of pixel accuracy, mean accuracy, and mean IOU. By
using improved FCN, we obtained the initial segmentation
results (coarse segmentation). To achieve clear expression
and comparison, we define abbreviation T as the transfer
learning based pretrained weights on VOC datasets; PN
denotes the added skip stream with residual modules from
Nst pooling layers to the deconvolution layers. As shown
in Table 1 and Figure 6, compared to FCN trained without
pretrained model, the FCN trained with pretrained model
from VOC datasets through transfer learning technology
achieves significant improvement. These results prove the
importance of the proposed transfer learning strategy. Addi-
tionally, as shown in Figure 6, with the increase of the training
number, network using transfer learning and residual mod-
ules achieves higher accuracy and more rapid convergence
than the FCN trained from scratch. Besides, we also can
find that the proposed method achieves higher accuracy
and faster convergence when it has more skip streams. The
best results (pixel accuracy: 0.991; mean accuracy: 0.981;
mean IOU: 0.918) were achieved by FCN+T+P (1&2&3&4)
using the transfer learning and fused four skip streams. This
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observation shows that the fusion of low-level features in
the bottom layers and high-level features in the top layers
can achieve satisfactory performance in the 3DE semantic
segmentation application.

Besides, to evaluate the advantage of the proposed FCN,
we conducted the same evaluation using the state-of-the-
art medical image segmentation model (U-net [43]). For
transfer learning on the U-net, we used the pretrained model
provided by [43] to initialize the U-net and then fine-tuned it
on the adopted training dataset for 9000 iterations. Besides,
to fit the data input format of U-net, we adopted the original
one-channel images as the input. As shown in Table 1, the
adopted FCN model outperforms the U-net on the two
cases (the model trained from scratch and the model trained
based transfer learning). These results prove the superiority
of the adopted FCN model. Additionally, the Refine-net [45]
achieves the best performance on the natural segmentation
task. However, the Refine-net is very deep and complex,
which cannot fit the current data scale on 3DE. Hence, we
do not try to evaluate the performance of Refine-net on LV
segmentation task on 3DE.

(2) Performance of Fine Segmentation. In this section, the
final fine segmentation performance is evaluated through
the official online evaluation system [3], and we compared
the segmentation results with state-of-the-art methods (the
results of the five state-of-the-art methods come from the
official reports in [3]) in terms of dm, dh, and D∗. To
show the superiority of the proposed initialization method
based on the coarse segmentation using FCN, we conducted
the experiments with varying initializations while keeping
the traditional deformable model. As shown in Table 2,
compared with the traditional initialization method [27],
the proposed 3D model initialization method based on the
FCN improves the final LV segmentation results. Besides,
we also evaluated the proposed method. The evaluation and
comparison results are shown in Table 3. We can see that the
proposed method distinctly achieved the best segmentation
results in mean surface distance and modified dice metric.

Figure 7 shows some segmented LV model from the
improved FCN, the improved FCN with traditional snake,
and the proposed coarse-to-finemethod, respectively.We can
see that the proposed method achieved the best segmenta-
tion results with the lowest surface distance range. For the
improved FCN, due to some obvious leakages in the apex
and shrinks in middle part, the segmentation results are
relatively worse. The improved FCN with traditional snake
can overcome the problem of leakages and shrinks in some
extent. Our proposed method, which integrates improved
FCNand 3D snakewith regularization of constraint term, can
further improve the segmentation results on the situations of
leakages and shrinks.

3.4.2. Validation. Table 4 and Figure 8 show the correlation
between the state-of-the-art segmentation methods (other
fully automatic methods and our proposed method) and the
ground truth, in terms of EDV, ESV, and EF. The modified
correlation values of our proposed method on EDV, ESV,
and EF are 0.018, 0.021, and 0.218, respectively, and the

corresponding standard deviations are 12ml, 11.3ml, and 0.07.
Table 3 suggests that our proposed method achieves the best
performance in EDV and ESV comparing with the state-
of-the-art methods in the aspect of EF correlation. The gap
of EF correlation is because of the tendency of EDV’s bias
and ESV’s bias are different, though EDV and ESV are more
accurate. For example, we assume the ground truth of EDV
and ESV are 100ml and 60ml. We also assume the first
evaluated values of EDV and ESV are 105ml and 65ml, and
the second evaluated values of EDV and ESV are 103ml and
57ml. Based on these values, we can obtain the EF of the
ground truth: the first and second evaluated values are 0.4,
0.381, and 0.4466, respectively. Hence, though the accuracy of
volume estimation is improved, the EF estimation accuracy is
not improved. Furthermore, Figure 8 also displays the results
of Bland-Altman analysis of the proposed method for EDV,
ESV, and EF and the mean bias values are 1.41, 3.3, and -0.03,
respectively. And the corresponding confidence intervals of
EDV, ESV, and EF are [21.7, -24.5], [25.1, -18.6], and [0.13,
-0.2]. These results indicate the high agreement between our
method and ground truth and the big potential of clinical
application.

4. Discussion

In this paper, we proposed a fully automatic LV segmentation
method, which is a coarse-to-fine framework based on the
deep FCN and deformable model. In the case of insufficient
training datasets, we successfully applied the transfer learning
technology combined with the improved FCN for the coarse
segmentation of 3DE.The experimental results suggested that
the FCN model on the domain of nature image can be suc-
cessfully transferred to the field of echocardiography images
segmentation. This is due to the fact that the low-frequency
features, such as edge information and texture information,
of VOC images and CETUS images, are the same. Hence,
the knowledge of low-frequency feature representations was
successfully transferred fromVOC images to CETUS images.
Otherwise, the added skip streams with residual modules
using identity mapping, which fuses different level features
from different layers, can make contribution to rapid con-
vergence and high accuracy. This is because the features
are different from different layers. Adding the skip streams
means that the network has more paths. Hence, adding the
skip streams is able to add more different level features
to improve the speed of convergence and the accuracy
of segmentation. Furthermore, we used the modified loss
function, which can solve the problem of data imbalance
to improve the segmentation accuracy. As we can see in
Figure 7 and Table 3, though the improved FCN improves
the coarse segmentation performance and outperform the
traditional LV segmentation method, the fine segmentation
achieves even better LV segmentation performance.Hence, in
Section 2.2, we proposed a 3D LV initializationmethod based
on the coarse segmentation results. As we all know, a good
initialization is critical for deformable segmentation model;
the results in Table 2 also prove that the proposed 3D LV
initialization outperforms the standard initialization method
for LV segmentation on 3DE on the case of using the same
deformable model.
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Figure 7: The segmentation results of three different subjects (which all are test subjects) of improved FCN (the first column), improved
FCN with traditional snake (the second column), and our proposed method (the third column). The first row is ED model of subject 45, the
second row is ED model of subject 40, and the third row is ES model of subject 30. The color map denotes the mean distance between result
mesh and the corresponding reference mesh [3].

Additionally, due to the fact that left atrium and left
ventricle have the similar intensity value and the presence
of papillary muscles, the leakages and shrinks often happen
if using the traditional deformable model without the spa-
tial regularization. In this aspect, the proposed 3D snake
model with the spatial regularization can improve the final
segmentation performance through limiting the free degree
of deformation of 3D snake. The results in Section 3 also
prove that the proposed method outperforms the state-of-
the-art methods for this task on most of the measure index-
es.

Though the coarse segmentation results cannot be
directly used for clinical application, this attempt shows the
potential of end-to-end FCN for LV segmentation task on
3DE. The main limitation of coarse segmentation using FCN
is the insufficient training data, which results in that the LV
segmentation task on 3DE by end-to-end FCN would not be
possible in any time soon. In the future, if more 3DE datasets
are accessibly open, the purely end-to-end FCNwith superior
performance for LV segmentation tasks may be possible and
will generate surprising results.

Additionally, 3D snake was used and considered as a
postprocessing for the fine segmentation, like conditional
random fields (CRF) which is widely used as postprocessing
of the natural image segmentation [55–57]. Compared to the
purely end-to-end deep learning method, the coarse-to-fine
framework has high interpretability [58, 59]. In this paper, the
interpretability means that the final segmentation step can
be represented by obvious formula, not just the end-to-end
deep learning technology. The segmentation performance
and model’s interpretability are both important for practical
clinical application. In the future, we will also study how to
formulate the coarse-to-fine frameworks into an end-to-end
optimizationmodel to further improve the segmentation per-
formance, at the same timemaintaining the interpretability of
the coarse-to-fine framework.

5. Conclusion

This paper proposed a new fully automatic method for
LV segmentation of 3DE based on a coarse-to-fine frame-
work. The proposed FCN, based on transfer learning and
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Figure 8: The correlation plots (the left column) and Bland-Altman analysis plots (the right column) for EDV, ESV, and EF on test subjects.

residual modules, was used for initial segmentation. From
the initial segmentation, an initial model was automati-
cally constructed. The initial model was then used as a
constraint item in the energy function of the 3D snake
for fine segmentation. The segmentation accuracy and clin-
ical performance (it means the clinical measure results
by the proposed method in a true clinical setting) have
demonstrated that the proposed method is accurate and has
outperformed the state-of-the-art methods on most of the
clinical measure indexes. To our best knowledge, we were
the first to use a FCN to address the 3DE segmentation
problem. This attempt shows the potential of an end-to-end

FCN for LV segmentation of 3DE. Besides, the proposed
fine segmentation method based on a deformable model
not only further improves the segmentation performance,
but also provides interpretability for the final segmentation
results.

The clinical evaluation suggests that the proposedmethod
has potential for clinical application and may lead to a wide
use of FCN in ultrasound image segmentation tasks. In addi-
tion, the proposed framework is flexible and can be extended
into other applications. In the future, more work about the
only pure end-to-end deep learning technology or end-to-
end learning framework which combines the deep learning
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and postprocessing method (which has high interpretability)
for segmentation tasks on 3DE will be studied.
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