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ABSTRACT

The revolution in our ability to recognize the alterations in fundamental biology brought about by disease has fostered a
renewed interest in precision or personalized medicine (‘the right treatment, or diagnostic test, for the right patient at
the right time’). This nascent field has been led by oncology, immunohematology and infectious disease, but nephrology
is catching up and quickly. Specific forms of glomerulonephritis (GN) thought to represent specific ‘diseases’ have been
‘downgraded’ to ‘patterns of injury’. New entities have emerged through the application of sophisticated molecular
technologies, often embraced by the term ‘multi-omics’. Kidney biopsies are now interpreted by next-generation
imaging and machine learning. Many opportunities are manifest that will translate these remarkable developments into
novel safe and effective treatment regimens for specific pathogenic pathways evoking GN and its progression to kidney
failure. A few successes embolden a positive look to the future. A sustained and highly collaborative engagement with
this new paradigm will be required for this field, full of hope and high expectations, to realize its goal of transforming
glomerular therapeutics from one size fits all (or many) to a true individualized management principle.
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INTRODUCTION

Precision or personalized medicine is designed to ensure that
the best treatment (or diagnostic test) is applied to the right
patient at the right time [1]. In a certain way, precision medicine
is the antithesis of clinical practice guidelines (CPGs). The latter
approaches deal largely with the average patient rather than
with the individual patient. The application of many current
CPGs to individual patients can be challenging due to the
phenotypic and biological variability among specific diseases,
including glomerulonephritis (GN). However, elements of a
precision medicine approach are slowly being incorporated into
CPGs for GN. In addition, we have learned that some diseases
are in reality ‘patterns of injury’ with a great deal of hidden

heterogeneity of underlying pathogenesis [2] only uncovered
when sophisticated methods of analysis are applied to dissect
this cloaked diversity. It is presumed that a treatment directed
to a specific target known to be involved in the pathogenesis
of a specific disease entity will have an intrinsic advantage
for altering the natural history of disease, perhaps in a safer
manner, than empiric therapy.

Thus the rationale underlying precision or personalized
medicine and its opportunities and potential benefits are well
understood. The nascent field of precision medicine received
a considerable boost when then-President Barack Obama in-
cluded it as one of his forward-looking initiatives in his State
of the Union address to the US Congress on 20 January 2015 [3].
Of course, precision medicine is not new, having been practiced
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since the early 20th century in the form of erythrocyte typing for
blood transfusion [4], treating breast cancer on the basis of re-
ceptors found in excised tissue and managing infections based
on in vitro testing of sensitivity to antimicrobial agents. Indeed,
medical oncology, immunohematology and infectious disease
specialists were early adopters of a precision-based approach to
medical care, and the results, in terms of outcomes, have been
phenomenal, especially concerning the application of advances
in molecular genetics to specific disease states.

To facilitate and broaden the reach of a national goal of preci-
sion medicine, the All of Us research project was created by the
National Institutes of Health (NIH) to enroll ≥1 million subjects
in order to create a database for the enhancement of precision
medicine projects [5]. While the initial focus of this initiative
was on cancer, it has spread to include kidney disease in very
important ways and spawned many novel approaches to the
application of precision medicine in, in particular, glomerular
disease. The 100 000 Genomes Project of the UK National Health
Service is another example of how precision medicine based
on genomic analysis can help augment the correct diagnosis
of rare diseases, including those involving the kidney [6], thus
providing new approaches to precision testing, and hopefully
personalized therapy. The overarching purpose of this brief
review is to examine the current status of precision medicine
in the management of several forms of GN, to consider the
problems and obstacles challenging success in this new field
and to lay out a possible road map for the future.

CURRENT INITIATIVES OF KIDNEY-SPECIFIC
PRECISION MEDICINE

While one might regard many avenues of research as directly
impinging on the practice of precision medicine in kidney dis-
ease, such as ‘deep phenotyping’, unbiased hierarchical clus-
ter analysis and genome-based diagnosis [7], only a few will be
discussed here. The Kidney Precision Medicine Project (KPMP),
sponsored by the NIH and inaugurated in 2017 after a landmark
workshop held in 2016, recommended that a new initiative be
launched [8]. The KPMP seeks to ‘redefine chronic kidney disease
(CKD) and acute kidney injury (AKI) by “integrating deep molec-
ular phenotyping,” employing clinical characterization, digital
pathology of kidney biopsies and clinical outcomes analysis’
[8]. The unique aspect of this project is that the acquisition
of the molecular pathologic profile of CKD and AKI developed
from research protocol kidney biopsies will be linked to spe-
cific outcomes to identify critical pathways and targets for novel
therapies. Novel methods of molecular analysis (multi-omics),
digital pathology, imaging technology and bioinformatics will be
employed. Integration of patient priorities and community en-
gagement has been a highlight of this project since its beginning
[9, 10]. While it is anticipated that GN will be among the dis-
eases studied, the initial focus will be on diabetic nephropathy
and AKI. The project has been thoroughly and exhaustively de-
signed, with due respect for safety, ethical issues, feasibility and
acceptance by willing participants [11]. A pilot trial anticipating
the enrollment of �200 participants has commenced. Prelimi-
nary results are beginning to appear in the published literature
[11, 12]. The role of artificial intelligence (AI) and machine learn-
ing (ML) analysis of the ‘big data’ generated from this and other
similar studies will be crucial for the emergence of new ontolo-
gies (models of entities and relationships within a domain) in
glomerular disease [13]. It is reasonable to fully expect a signifi-
cant reordering of the current classification of GN. It seems quite

likely that this evolution will blur or even eliminate the current
primary versus secondary dichotomy of disease classification of
GN [14, 15].

Another precisionmedicine project, the Nephrotic Syndrome
Study Network (NEPTUNE), a multisite collaboration, has been
actively studying several forms (in reality ‘patterns of injury’) of
GN [minimal change disease (MCD), focal segmental glomeru-
losclerosis (FSGS) andmembranous nephropathy (MN)] prospec-
tively since 2010 [16]. Very recently NEPTUNE has added Alport
syndrome to its portfolio of ‘disease’ entities [17]. The NEPTUNE
study is complementary to and integrated with the KPMP, but
is a stand-alone study. NEPTUNE is funded substantially by the
NIH (Rare Disease Clinical Collaboration), NephCure Interna-
tional and the Halpin Foundation and is strongly connected to
patient-centered organizations. NEPTUNE is focused on using
a systems biology approach to better understand the molec-
ular pathways involved in GN, including nephrotic syndrome
[18]. This approach involves gene expression (transcriptomics)
of specially processed kidney biopsy tissue, next-generation
image analysis and other ‘multi-omic’ techniques to unravel
and interconnect critical pathways in glomerular disease
evolution, such as the development of interstitial fibrosis or
glomerulosclerosis [19]. Already several key pathways have been
identified. Novel programs have been developed to help ensure
that patients expressing a particular signature of a molecular
pathway (e.g. tumor necrosis factor-α) are linked to clinical
trials involving drugs that impact the posited pathogenic cas-
cade (the NEPTUNE–MATCH Program) [20]. Advancing from
whole tissue or glomerular-specific messenger RNA charac-
terization, single-cell transcriptomics show great promise in
accelerating the search for drugable targets in glomerular
diseases [21, 22].

Another multisite collaborative, prospective observational
study, CureGN, is designed to foster translation of phenotyp-
ing of baseline characteristics of patients with minimal change
disease, FSGS, MN and immunoglobulin A nephropathy (IgAN)
linked to outcomes [23]. The Digital Pathology Repository (DPR)
component of this study and the KPMP will permit the identi-
fication of potential novel morphologic parameters that might
have utility in creating precision medicine pathways for the
treatment of GN, although specific randomized controlled trials
(RCTs) are not a fundamental part of the CureGN andKPMP orga-
nizational structure [24]. Finally, theNational Kidney Foundation
(USA) has announced its intent to develop a national registry of
patients’ kidney diseases in order to foster the aims of precision
medicine (www.NKFPatientNetwork.org).

Taken together, these ambitious initiatives and the ancillary
studies they have generated show great promise in moving the
field of therapeutics in kidney disease, including GN, toward
a precision medicine ‘modus operandi’. However, only a few
changes in how we treat patients with glomerular disease today
can be traced to findings in this branch of research. Perhaps
none should be expected so soon, as the methods are complex,
the pathways innumerable and extensively interactive. A focus
on novel therapies directed at a single molecular target may
prove to be insufficient and a multi-target approach may be
required. The large data generated from such studies demand
high-level computational accessibility (e.g. informatics, AI, ML).
These sophisticated analytical tools demand careful attention
to the potential pitfalls of applying them to biological data, such
as genomics [25]. Extensive (global) collaboration is called for
in order to ensure appropriate ancestral diversity and sample
sizes for inferring meaningful conclusions and creating testable
hypotheses concerning treatment effects [26].

http://www.NKFPatientNetwork.org
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FIGURE 1: A simplified pathway for precision medicine in GN.

The quality control issues surrounding a multi-omics ap-
proach to recategorization of GN are formidable but are being
addressed prospectively in a rigorous manner [26]. The current
pace of discovery emboldens an optimistic assessment of the fu-
ture for these initiatives. A simplified schema for how precision
medicine based on the strategies mentioned above will utilize a
pathway of discovery and testing is given in Figure 1.

DEEP PHENOTYPING/GENOTYPING OF
PATIENTS WITH GN

While the studies mentioned above will provide crucial in-
sight into the application of precision medicine in glomeru-
lar disease, many advances in individualized therapeutic inter-
ventions have been made through smaller studies focused on
specific diseases or ‘patterns of injury’. Deep phenotyping of
patients based on urinary or serum biomarkers (such as uri-
nary proteomics or serology) on deep molecular probing of tis-
sue (transcriptomics, single-cell RNA sequencing, laser dissec-
tion/mass spectrometry) has shown very promising results. The
prospects of a ‘liquid’ biopsy replacing the standard kidney
biopsy have been realized in a few instances [27, 28]. A few of
the forms of GN where precision medicine is beginning to have
an impact on diagnosis and treatment are discussed below.

MN

The lesion of MN has evolved from a specific disease diagno-
sis to a less-precise ‘pattern of injury’ category as a result of
defining specific antigen/antibody systems operating in disease
pathogenesis via laser dissection–mass spectrometrymethodol-
ogy [29–31]. One ‘disease’ has becomemany ‘diseases’, each hav-
ing particular clinical features, prognosis and perhaps therapy.
The identification of primary versus secondary MN has been ir-
reversibly blurred [14]. Serologic studies detecting and quantify-
ing autoantibody responses (particularly anti-phospholipase A2
receptor antibodies) have now redefined the importance of im-
munological remission compared with clinical responsiveness
(continuum of proteinuria reduction) in defining treatment tar-
gets associated with better outcomes [31]. The addition of ge-
nomics to the autoantibody profiling of individual patients may
also be an emerging paradigm in the diagnosis and treatment of
MN [32].

Membranoproliferative GN

The lesion of membranoproliferative GN (MPGN) observed by
light microscopy has undergone a similar sequence of being
‘downgraded’ from a diagnostic term to a pattern of injury that
can be evoked by a panorama of pathogeneses [33]. C3 glomeru-
lopathy has emerged as a distinct phenotype, but this lesion
is quite heterogeneous in its pathologic pattern and underly-
ing pathogenesis. The complement dysregulation forms of the
MPGN lesion have generated widespread interest in comple-
ment inhibition as a precision medicine intervention strategy
[34]. Early results have been encouraging from the perspective
of efficacy and safety [35], but much more needs to be accom-
plished in order to fully realize the potential of interventions
of specific components of the complement cascade (classical,
lectin and alternate). There is little doubt that deep phenotyping
of the MPGN pattern of injury lesion has brought with it better
precision in therapeutic strategies. Unbiased hierarchical clus-
tering analysis of multiple data sources can also generate pos-
sible new approaches to therapy [36]. Adding genomic data can
even further refine the categorization of disease entities within
the rather crude analysis of pathologic findings [37].

IgAN

Much progress has been made in defining the pathogenesis of
this common form of GN [38]. A ‘four-hit’ pathogenic sequence
is now fairly firmly established in primary IgAN [39]. Clinical
trial design has now incorporated directed therapy to one or
more ‘hits’, but we still fall considerably short of having a well-
established precision-based treatment for IgAN-based patho-
genesis. Current treatments, such as steroids and/or sodium–
glucose cotransporter-2 (SGLT2) inhibitors, lack biomarkers that
efficiently predict response in order to facilitate precision
medicine [40, 41]. While prognostic scoring systems using clini-
cal features and pathology (Oxford MEST scores) are well estab-
lished, their role in the selection of patients for specific treat-
ment regimens is highly uncertain [42]. AI methods may even
further refine the predictive accuracy for outcomes, such as kid-
ney failure [43]; however, applying these tools to examine the
differential efficacy of therapeutic regimens to alter the pre-
dicted trajectory is still needed. Perhaps one ormore of the trials
in progress will fill this gap. Complement inhibition strategies
(Hit 4), immune-modulatory drugs focused on B cells (Hits 1 and
2), anti-inflammatory agents (Hit 4) and hemodynamically active
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agents (Hit 4) all appear very promising, based on completed or
in-progress trials. Novel approaches and biomarkers are sorely
needed in IgAN to better delineate the prospects for precision
medicine [44].A preliminary study has suggested that evaluating
CD206+ macrophage infiltration in glomeruli might fulfill this
role [45].

A large multicenter prospective study is under way to
examine the effect of personalized treatment of IgAN with
steroids, SGLT2 inhibitors and renin–angiotensin inhibitors
(NCT04662723). This trial expects to complete the primary phase
by July 2024 [46]. The very impressive findings of a large genome-
wide association study (GWAS) involving 38 897 individuals
(10 146 with IgAN and 28 751 controls) that identified 30 inde-
pendent risk loci (16 novel and 14 known), each of which might
represent a drugable target, provide much optimism concerning
the utility of polygenic risk scoring and deep phenotyping as a
route to precision medicine in IgAN [47]. The ‘big’ data nature of
these studies also invokes the powerful tools of AI and ML for
unraveling the complexity of the genome-treatment axis. How-
ever, rigorous attention to the details of analytic processes will
be required [25]. These GWAS discoveries also raise a new long-
standing question as to whether IgAN, as it has been historically
phenotypically described, represents just a single disease or
many different diseases. Nevertheless, the convergence of sets
of inflammatory signaling pathways,mucosal immunity and cy-
tokine engagement pathways elucidates a framework for novel
agent development and a movement toward precision medicine
in IgAN, similar to the events occurring inmedical oncology [47].

FSGS

The pattern of injury lesion of FSGS is the best example of how
deep phenotyping can lead to precision diagnosis and treat-
ment. Among the glomerulonephritides, it is the poster child
for the potential of tangible benefits of a precision medicine ap-
proach. The light microscopic lesion of FSGS is very heteroge-
neous in both pathology and pathogenesis and is not a logical
target per se for treatment. We now clearly understand that this
lesion requires a cause-specific management strategy [48]. This
is a model of how precision medicine can be practiced to the
benefit of patients, avoiding useless treatment and employing
effective and available therapies judiciously. The next step will
be to develop and test agents, in suitably designed RCTs, tar-
geted to the unique pathogenesis of FSGS in the individual pa-
tient. The definition of categories of the FSGS lesion [primary
(presumed permeability factor related), genetic, secondary and
unknown] is crucial to the rational design of clinical trial strate-
gies for finding safe and effective treatmentmodalities [48]. Such
strategies are already in progress. Nevertheless, a large gap ex-
ists in the precisionmedicine approaches to an FSGS lesion. The
lack of a reliable and accurate biomarker for definition of pri-
mary (permeability factor related) FSGS is a major stumbling
block [49]. Perhaps the multi-omics approach using kidney tis-
sue or urine will help to identify new target pathways. Prelimi-
nary findings from the NEPTUNE study and others are encour-
aging [50–52]; however, the results of clinical trials of therapy
on pathways defined by bulk or single-cell transcriptomic sig-
natures will be needed to confirm the value of this approach.

Lupus nephritis (LN) and vasculitis

Precision medicine has made few inroads in the management
of LN. Yes, kidney biopsy and the application of classification of
morphological categories are commonly used tomake decisions
concerning the type of immunosuppression utilized [53]. How-

ever, this is a rather crude and not entirely dependable approach.
Molecular probing of pathways involved in the generation of LN
patterns of injury is in a developmental phase and much needs
to be accomplished before a truly precision medicine paradigm
can be applied in the very heterogeneous disorder covered by
the blanket term of LN [54]. Preliminary findings of genetic loci
responsible for heterogeneity of systemic lupus erythematosus
and LN among ancestral groups are a promising avenue of re-
search [55]. Perhaps a polygenic risk score for LN will emerge
from these pioneering studies, thus facilitating the design of
therapeutic trials based on genetic determinants of risk rather
than pathology or clinical variables, similar to that being de-
scribed in IgAN [55].

Systemic and renal-limited vasculitis has been a bit more
successful than LN in engaging a precision medicine ap-
proach to therapy. The serology of such vasculitides, anti-
proteinase 3 versus anti-myeloperoxidase, seems to be linked to
the efficacy of common therapeutic agents, such as rituximab or
cyclophosphamide, for initial therapy and long-term avoidance
of relapses [56–58]. Serological classification of the vasculitic dis-
orders holds promise in providing tools for precisionmedicine in
diagnosis and management. The recognition that complement
activation plays a vital role in the inflammatory component of
small vessel vasculitis has led to a highly encouraging advance
in the therapeutic armamentarium available in these disorders
[59–62].

A WAY FORWARD

The route to an era of precision medicine for all has many alter-
nate versions. No single path can yet be identified that will al-
low us to reach this goal most expeditiously and economically.
Very clearly, at least to me, reaching this utopian goal will be
fraught with obstacles that must, and can, be overcome. First,
it will require a strong commitment to universal collaboration,
across geopolitical boundaries, to ensure that the extraordinary
diversity of Homo sapiens is accounted for in the designed stud-
ies involving humans. Second, engagement with patients, both
real and expected, and their families will be necessary to en-
sure that hopes, wishes, desires and risk tolerance of the af-
fected patients are incorporated into the structure of the re-
search effort. In the end, the realization of precision medicine
as a viable and evidence-based practice enterprise will require
that the patients willingly and in a well-informed way volun-
teer for participation in the required RCTs implicit to the full
realization of the defined goal. Third, investment of funds sup-
porting the needed infrastructure (computational, imaging and
molecular) for the research enabling precisionmedicinemust be
sufficient and a long-term commitment to support these very
promising initiatives will be absolutely necessary. Fourth, a syn-
ergistic, well-structured collaborative effort between consortia
of precision medicine investigators and the pharmaceutical in-
dustrywill facilitate the translation of new discoveries into prac-
tical reality. Fulfillment of these perceived requirements seems
achievable and already many of the precision medicine projects
have incorporated these principles. Eventually the overall cost-
effectiveness of a precision medicine approach will have to be
critically examined andwayswill have to be found to bring these
advances to high-, middle- and low-income countries in an eq-
uitable fashion. All in all, the future appears bright, but the road
ahead will be challenging. Whatever path is taken, the trip is a
worthy one and many future patients are likely to experience
the benefits of an individualized rather than a one size-fits-all
treatment of their disease.
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