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Introduction
The discovery that eukaryotic genes are interrupted by intron 
sequences is an important milestone of biological research.1-3 
Soon after this discovery, the debate about early or late emergence 
of introns began and continues even today.4-6 The “introns-early” 
theory states that introns emerged early in ancestral prokaryotes 
and continuous intron sequence loss is the main event involved in 
evolution of prokaryotes and eukaryotes.7-10 This theory is sup-
ported by existence of intronless or intron-poor genomes in 
extant organisms.11,12 The “introns-late” theory posits that introns 
emerged late in ancestral eukaryotes and continuous intron gain 
is the main event involved in the evolution of eukaryotes.13,14 
This theory is supported by the existence of a higher number and 
size of introns in more complex organisms.15,16 In the past dec-
ades, considerable evidence has been found to support the 
introns-early theory. For instance, ancestral eukaryotic genomes 
have a much higher intron density than extant eukaryotic 
genomes,17-21 and intron loss has occurred predominantly during 
the evolution of eukaryotic lineages.22-26 However, these findings 
are mainly based on the presence or absence of introns among the 
surveyed organisms. They constitute sufficient evidence merely 
for reduction in intron number during the evolution of eukaryotic 
genomes. For an intron that exists in all surveyed organisms, the 
reason of an increase in its size according to the complexity of the 
organism has not been clearly explained. This remains a challeng-
ing question against the introns-early theory.

Owing to the high variation of intron sequences, studies on 
intron size evolution have been confined within relatively small 
taxonomic groups. This is mainly because homology between 

intron sequences only exists among organisms that belong to 
the same order/family. Therefore, studies on intron size varia-
tion have been conducted only in a few lineages including 
fungi, nematodes, fruit flies, pigeons, peas, and a carnivorous 
plant genus,27-32 in which intron sizes have been found to 
change in a strong deletion-biased pattern. As no homologous 
intronic segments are available for examination of the presence 
or absence of a specific intronic segment, the study of size vari-
ation of an intron in organisms belonging to different phyla/
classes requires novel approaches, such as sequence simulation. 
Previously, we have constructed evolutionary models to simu-
late the evolution of an intron in organisms from 7 classes of 
chordates.33 We found that introns in various chordate species 
could evolve from a longer ancestral sequence through base 
deletion, and the existence of longer introns in higher organ-
isms could be attributed to a lower efficiency in base deletion. 
In the present study, the same approach was used to simulate 
the evolution of an intron from 16 invertebrate species using 
re-constructed deletion- and insertion-biased evolution mod-
els. Testing results from the execution of all re-constructed evo-
lution models suggested that the surveyed invertebrate introns 
were evolved in a deletion-biased pattern as well.

Materials and Methods
Invertebrate introns and their attributes

In invertebrates, the coding sequence for bHLH (basic helix-
loop-helix) motif of the microphthalmia transcription factor 
(MITF) has a conserved phase 1 intron in the basic region. 
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This intron has 259 to 3104 base pairs (bp) in the 16 species 
selected to represent different phyla/classes of invertebrates 
(Table 1). These invertebrate introns are considered to evolve 
from a common ancestral sequence, because each invertebrate 
species has only 1 MITF gene and the nucleotides flanking 
this intron are highly conserved (Figure 1). Therefore, they are 
eligible targets for this study which focused on simulation of 
intron evolution from one common ancestral sequence.

The multiple sequence alignment obtained using Muscle 
program34 has very few conserved sites among these introns 
(Supplemental Figure S1), based on which no sequence inser-
tion or deletion can be identified. Accordingly, the phylogenetic 
tree constructed using MEGA 5.2 software35 has very low boot-
strap values at branching nodes (Figure 2), based on which no 
clear evolutionary inference can be made. Therefore, sequence 
simulation was conducted toward these introns by following the 
method described in our previous report.33 These 16 invertebrate 
introns were found to have an LMSA (size of multiple sequence 
alignment) value of 3434 bp, an RT92+G+I (ratio of transition to 
transversion under the Tamura 3 parameter model36 with gamma 
distribution and invariant sites) value of 1.95, a D̅ (overall mean 
distance) value of 1.425, an SED̅ (standard error of the overall 
mean distance) value of 0.119, and a TSML (topology score of the 
constructed ML tree) of 32.

Design of evolution models

In our previous report,33 mutation-and-deletion (MD) and 
mutation-and-insertion (MI) models were designed to simu-
late consecutive deletion and consecutive insertion events, 

respectively. In the present work, we introduced an insertion 
event in the MD model and a deletion event in the MI model 
at various frequencies to construct deletion- and insertion-
biased models, respectively. For example, the MD90/10 model 
allows for 90% chances of base deletion and 10% chances of 
base insertion, while the MI90/10 model allows for 90% 
chances of base insertion and 10% chances of base deletion. 
Overall, 6 deletion- and 6 insertion-biased models were con-
structed. They are designated as MD100, MD90/10, MD80/20, 
MD70/30, MD60/40, MD55/45, MI100, MI90/10, MI80/20, 
MI70/30, MI60/40, and MI55/45. All models were con-
structed using the C++ computational language.

Simulation of intron evolution

Each of the above-mentioned constructed evolution models was 
first tested using factors and levels designed in accordance with 
the L16(4*5) orthogonal table (Table 2). For model testing, the 
phylogenetic tree of the 16 invertebrate introns (Figure 2) was 
referenced to determine the evolution steps for all 16 sequences 
intended for generation. Based on statistical analysis of the results 
of the orthogonal test, further tests were conducted against each 
model to confirm whether the model-generated sequences had 
attributes that matched the 16 invertebrate introns. Please refer 
to our previous report33 for detailed operational procedures.

R value of the constructed models

The transition to transversion ratio (R) was set to 2.0 in all 
deletion- and insertion-biased models because the R value of 

Table 1. Sixteen species selected to represent different phylum/class of invertebrates.

PhYLUM CLASS SPECiES iNTRoN (BP)

Porifera (sponges) Demospongiae Amphimedon queenslandica 1201

Cnidaria (cnidarians) Anthozoa (anthozoans) Nematostella vectensis (starlet sea anemone) 567

Platyhelminthes (flatworms) Trematoda Schistosoma haematobium 828

Nemertea (ribbon worms) Pilidiophora Notospermus geniculatus 1342

Priapulida (priapulids) Priapulimorpha Priapulus caudatus 971

Annelida (annelid worms) Polychaeta (polychaetes) Hydroides elegans (calcareous tube worm) 380

Mollusca (mollusks) Bivalvia (bivalves) Crassostrea gigas (Pacific oyster) 1188

Brachiopoda (lampshells) Not available Phoronis australis 1878

Echinodermata (echinoderms) Echinoidea (sea urchins) Strongylocentrotus purpuratus (purple sea urchin) 1061

Hemichordata (hemichordates) Enteropneusta (acorn worms) Saccoglossus kowalevskii 490

Tunicata (tunicates) Ascidiacea (sea squirts) Ciona intestinalis (vase tunicate) 672

Arthropoda (arthropods) Arachnida (arachnids) Latrodectus Hesperus (western black widow) 3104

Merostomata (horseshoe crabs) Limulus polyphemus (Atlantic horseshoe crab) 1168

Branchiopoda Daphnia pulex (common water flea) 1335

Malacostraca Hyalella azteca 2008

Insecta (true insects) Danaus plexippus (monarch butterfly) 259
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the 16 invertebrate introns was 1.95, as determined by model 
testing using the MEGA 5.2 software.

Statistical analysis

The SPSS software (version 17.0) was used to perform all sta-
tistical analyses as described in our previous report.33

Results
Testing of deletion-biased models

The orthogonal tests (test nos. 1 to 16) for each deletion-biased 
model were repeated 10 times to obtain average attribute values 
of the model-generated sequences. Thereafter, the model 
parameters were optimized to perform more tests (test nos. 17 

Figure 1. Partial structure of microphthalmia transcription factor (MiTF) gene in invertebrate.
Shown here is a phase 1 intron flanked by conserved exon nucleotides encoding the basic region of bhLh motif from invertebrate MiTF gene. The intron is located after A 
of the codon ATT which codes for isoleucine (i). Number between lines indicates intron length (base pairs). invertebrate species is given in common name or abbreviated 
scientific name with taxon name in brackets. intron locations were obtained by viewing gene structures linked to sequence numbers beginning with “XP” or “NP” at 
GenBank (www.ncbi.nlm.nih.gov). intron locations of other sequence numbers were determined by manually comparing genomic sequences with those of known gene 
structures. Please refer to Table 1 for full scientific names of invertebrate species.

Figure 2. Phylogenetic tree of 16 invertebrate introns.
The original maximum likelihood (ML) tree constructed using 16 invertebrate introns is shown. invertebrate species is shown in common name or abbreviated scientific 
name with taxon name in brackets. Branch sizes are indicated by values above or below each branch. AS1 to AS15 indicate the locations of ancestral sequence No. 1 to 
15. Numbers at nodes are bootstrap values obtained using 1000 replicates. Please refer to Table 1 for full scientific name and intron length of each invertebrate species.

www.ncbi.nlm.nih.gov
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to 24) according to the statistical analysis results of the orthog-
onal test. The results of orthogonal tests for all deletion-biased 
models are listed in Supplemental Tables S1 to S6. The effects 
of the model parameters on the attributes of the model-gener-
ated sequences are shown in Supplemental Figures S2 to S7, 
and the results of parameter optimization are listed in 
Supplemental Tables S7 to S12. By progressively adjusting 
parameter values, each deletion-biased model generated 
sequences with attributes that were not significantly different 
(P > 0.1) with the 16 invertebrate introns (Table 3, upper half ). 
However, the optimal value of a specific parameter varied con-
siderably with the evolution model. For instance, the optimal 
M1 (mutated bases per 1 branch size) for models with less than 
20% insertion frequency was 1200 bp, while that for models 
with 30%, 40%, and 45% insertion frequencies were 600, 200, 
and 800 bp, respectively. Additionally, the optimal LI/D (size of 
bases inserted or deleted each time) for models with less than 
30% insertion frequency was below 50 bp, whereas that for 
models with 40% and 45% insertion frequency was above 
111 bp. Although the optimal values for specific parameters 
were markedly different, a fine-adjusted combination of 
parameter values could always allow the deletion-biased mod-
els to generate sequences with attributes matched to the 16 
invertebrate introns (Table 3, upper half ). Therefore, we con-
clude that the surveyed invertebrate introns may have evolved 
from longer ancestral sequences (e.g., 5000 to 8000 base pairs) 
in a deletion-biased pattern.

Testing of insertion-biased models

The orthogonal tests (test nos. 1 to 16) for each insertion-biased 
model were repeated 10 times to obtain average attribute values 
of the model-generated sequences. Then, the model parameters 
were optimized to perform more tests (test nos. 17-24) accord-
ing to the statistical analysis results of the orthogonal test. The 
results of orthogonal tests for all insertion-biased models are 

listed in Supplemental Tables S13 to S18. The effects of the 
model parameters on the attributes of the model-generated 
sequences are shown in Supplemental Figures S8 to S13, and 
the results of parameter optimization are listed in Supplemental 
Tables S19 to S24. By progressively adjusting parameter values, 
all insertion-biased models failed to generate sequences with 
attributes matched to the 16 invertebrate introns. Specifically, D̅ 
(overall mean distance) of the model-generated sequences was 
always significantly higher (P < .01) than that of invertebrate 
introns (Table 3, lower half ). In case that our orthogonal tests 
did not investigate the correlations between factors, the effi-
ciency of parameter optimization might be lowered to some 
extent. Therefore, apart from the tests listed in Supplemental 
Tables S19 to S24, additional tests were conducted against each 
insertion-biased model using different parameter settings. 
However, all these tests provided negative results. Therefore, we 
conclude that the surveyed invertebrate introns may not have 
evolved from a shorter ancestral sequence (e.g., less than 80 base 
pairs) in an insertion-biased pattern.

Discussion
Owing to a high variability in the number and size of introns, 
their evolution remains poorly understood. Intron variability 
results from multiple evolutionary events including intron 
gain, intron loss, intron slippage, DNA recombination, DNA 
transposition, and horizontal gene transfer.15,37-40 While 
reduction in intron number has been observed during genome 
evolution in many eukaryotic lineages,17-26 reduction of intron 
size has only been observed during genome evolution of 
organisms from different families/genera27-32 and from differ-
ent classes.33 Our present work extends the study on intron 
size variation in organisms from different metazoan phyla. 
Theoretically, the evolution models established in this study 
can be used to test whether introns from other taxonomic 
groups evolve in a deletion- or insertion-biased pattern, 
because the phylogenetic tree formed by introns of interest is 

Table 2. Factor and level design for testing evolution models using L16 (4*5) orthogonal table.

EVoLUTioN MoDEL LEVEL FACToRS

LAS1 LAS15 M1 Li/D Mi/D

Mutation-and-deletion 1 5000 3000 200 31-50 11-20

2 6000 3250 400 71-90 21-30

3 7000 3500 600 111-130 31-40

4 8000 3750 800 151-170 41-50

Mutation-and-insertion 1 20 150 200 31-50 11-20

2 40 200 400 71-90 21-30

3 60 250 600 111-130 31-40

4 80 300 800 151-170 41-50

Abbreviations: LAS1, length of ancestral sequence 1; LAS15, length of ancestral sequence 15; Li/D, length of bases inserted or deleted each time; Mi/D, number of bases 
mutated each time; M1, mutated bases per 1 branch length.
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only referenced for setting model parameters. While the over-
all trend of intron evolution is toward the loss of bases (i.e., 
shortening of introns), a question arises on intron length; why 
are introns longer in higher organisms compared to those in 
lower organisms? In our opinion, this is because lower organ-
isms are more efficient in shortening introns. This is possible 
because, in general, lower organisms are reproduced more fre-
quently than higher organisms; thus, they have more opportu-
nities for genome reorganization.41,42 However, further 
investigations are needed to compare the intron-shortening 
efficiency between lower and higher organisms.

While deletion-biased patterns are followed by intron evo-
lution in certain eukaryotic lineages, the ratio of deletion to 
insertion may vary considerably among different organisms. It 
is 3- and 6-fold higher among nematode and avian species, 
respectively.28,30 It ranges from 1.2 to 9.0 in all deletion-biased 
models of the present study. Since all these models are profi-
cient in simulating the evolution of the 16 invertebrate introns, 
we suggest that the intron deletion efficiency may be remark-
ably different among these invertebrate species. However, such 
differences can also result from certain inadequacies in design-
ing evolution models. After examining our model designs, we 
conclude that they can be improved in 2 aspects. First, we may 
consider the effect of insertion/deletion on the phyletic clade 
formation of each intron. Second, we may use different sizes 
for stepwise insertion/deletion in simulation of the evolution of 
each intron. It is anticipated that the newly designed models 
will narrow the range of deletion to insertion bias to simulate 
the evolution of these invertebrate introns.

The deletion-biased evolution leads to the shortening of an 
intron but does not lead to its removal. It is advantageous in 
retaining functional introns and improving gene expression 
efficiency. Retention of a long intron lowers gene expression 
efficiency because it consumes substantial energy in both tran-
scription and post-transcriptional processes. However, intron 
removal may lead to loss of important functional elements 
because an intron may be able to stimulate gene expression, 
regulate protein isoform formation, maintain RNA stability, or 
improve translation efficiency.43-46 Therefore, in cases where an 
intron has an important regulatory function,47 its shortening 
would be preferable compared to its complete removal. This 
probably explains the reason of maintenance of many introns in 
certain genes.
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