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Abstract: Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary
infection, it can persist in the host throughout their lifetime in a latent form, from which it can
reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator
proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we
discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible
implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA
can deregulate the immune surveillance, allow the immune escape, and favor tumor progression.
It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the
bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating
domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described
in this review outline its importance in EBV-related malignancies.
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1. Introduction

Epstein-Barr Virus (EBV) or Human Herpesvirus 4, is a γ-herpesvirus that predominantly infects
B-lymphocytes, and, to a lesser extent, epithelial, T and Natural Killers (NK) cells [1,2]. Discovered in
1964 as the first human oncogenic virus, EBV is one of the most widespread human viruses, affecting
nearly 90% of the world’s population [3,4]. After an initial infection, it persists as an episome in B
cells for the rest of the host’s life. In the vast majority of cases, EBV infection is asymptomatic, but in
some individuals, it causes infectious mononucleosis. Furthermore, EBV is associated with various
types of malignancies, including Burkitt lymphoma (BL), Hodgkin lymphomas (HL), nasopharyngeal
and gastric carcinoma, and post-transplant lymphoproliferative disorder (PTLD). Indeed, EBV was
classified as a class I carcinogen by World Health Organization (WHO) [5] and the evidence for
EBV-associated oncogenesis have been recently reviewed and updated [6]. The pathogenic and
oncogenic effects of EBV are mediated by several EBV proteins and non-coding RNAs. Here we will
describe the role of one of EBV immediate early (IE) proteins, ZEBRA, in the viral life cycle and in
regulation of the host genome and the consequences thereof.
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1.1. EBV Life Cycle

EBV life cycle involves a latency phase and a lytic cycle, each associated with specific gene
transcription and translation programs. These phases are summarized in Figure 1.

Figure 1. Epstein-Barr Virus (EBV) life cycle. (1) Infection occurs after the contact with an infected
saliva. (2) After initial infection of oropharyngeal epithelial cells, the virus passes into the underlying
lymphoid tissue where it infects naive B cells. (3) This immediately triggers the transient pre-latent
lytic cycle with expression of ZEBRA and other lytic genes involved in resistance to apoptosis and
evasion from the immune system. (4) Infected naive B cells become proliferating B blasts through the
growth program (latency III) where all latency proteins are expressed. (5) Cytotoxic T lymphocytes
(CTL) trigger a strong immune response (which is impaired during immunodeficiency) to eliminate
EBV-infected B cells. (6) Proliferating B blasts migrate into the germinal center (GC) and activate the
default transcription program (latency II) where latency protein expression is restricted to EBNA1,
LMP1 and LMP2. They differentiate into centroblasts and then centrocytes. (7) Centrocytes leave the
GC and differentiate into memory B cells circulating in peripheral blood. These cells have turned off

the expression of all viral proteins (latency 0). (8) Occasionally, circulating EBV-positive memory B cells
express EBNA1 during homeostatic cell division to ensure viral genome replication and segregation
into daughter cells. (9) Following stimulation, latently infected memory B cells can be recruited into
GC. (10) Activated EBV-positive memory B cells can differentiate into plasma cells, reactivate the virus
and undergo productive lytic cycle that leads to (11) viral shedding into saliva and (12) new naive B
cells infection. (13) Activated EBV-positive memory B cells reintegrate the pool of memory B cells. It
is not clear whether in vivo stimulated EBV-positive memory B cells which have not differentiated
into plasma cells undergo an abortive lytic cycle (ZEBRA and early gene expression without viral
production) before reintegrating the pool of memory cells. It is also not clear whether these cells
successively re-express different latency programs in the GC in vivo before reintegrating the pool of
memory cells.

1.1.1. Latency

Following contamination via saliva, primary lytic infection occurs in the epithelial cells of the
oropharynx [7] through virus binding to αvβ integrins and the ephrin A2 receptor [8,9]. EBV also
infects naïve B cells by interaction with complement receptors 1 and 2 (CR1/CD35 and CR2/CD21)
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as well as major histocompatibility complex (MHC) class II as a co-receptor [10,11]; this leads to
latency establishment and lifelong EBV persistence. Latency can be divided into three successive
programs [7,12,13].

The first, called the “growth program” or latency III is characterized by the expression of nine
latency proteins (six nuclear proteins: Epstein Barr Nuclear Antigen (EBNA) 1, 2, 3A, 3B, 3C and
LP, and three membrane proteins: Latent Membran Protein (LMP) 1, 2A and 2B); two Epstein Barr
virus-encoded small non-coding RNAs (EBER1 and 2), BHRF1 miRNA and BamHI-A fragment
rightward transcript (BART) transcripts [14,15]. EBV-infected B cells are activated and differentiate
into proliferating B blasts. This phase triggers a powerful immune T cell cytotoxic response; however,
it is usually insufficient to eliminate all infected B cells [12].

Remaining B blasts migrate to the tonsil germinal center (GC) where the second program, called
the “default program” or latency II, occurs. Infected cells turn off the expression of all latency proteins
except EBNA1 and LMP1 and 2. These proteins are thought to promote B blasts differentiation into
centroblasts and then centrocytes [16].

The last program is named the “latency program” or latency 0. Centrocytes differentiate into
resting memory B cells which leave the GC and circulate in peripheral blood without any latency protein
expression [17]. Finally, during latency I, cell division of infected memory B cells occurs, the weakly
immunogenic EBNA1 is expressed to ensure latent viral genome replication and its persistence within
daughter cells [18].

1.1.2. Lytic Cycle

Occasionally, following stimulation, infected memory B cells may be recruited into GC and then
either reintegrate the memory cell reservoir or differentiate into plasma cells and reactivate the EBV
lytic cycle. In healthy carriers, lytic reactivation is observed only in plasma cells [19]. It is characterized
by sequential expression of lytic cycle proteins resulting in production of new infectious viruses and
lysis of infected cells [7,13].

Studies of the defective EBV genome helped to identify a transcription factor encoded by the EBV
BZLF1 gene as the key actor in switching from latency to lytic phase [20]. This protein, named ZEBRA,
Zta, Z, BZLF1 or EB-1, when expressed in latently infected cells, activates the entire EBV lytic cycle
cascade [21]. ZEBRA also activates transcription of the second IE gene BRLF1 coding for the RTA
transcription factor. ZEBRA and RTA function synergistically to activate the early genes involved in
metabolism and viral DNA replication and the late genes encoding for EBV structural proteins [4].

Thus, EBV has two tightly regulated latent and lytic phases characterized by specific gene
expression patterns. However, there is evidence that both latent and lytic gene expression may be
simultaneously present within the same cell. BZLF1 expression in freshly infected B cells starts as early
as 1.5 h post-infection and lasts for several days. In these cells, transcription of the late gene BLLF1
was not detected suggesting a partial activation of the lytic cycle [22]. This stage, characterized by IE
and early gene expression without production of new virions or cell lysis, is commonly referred to as
an abortive lytic cycle [23,24] or transient pre-latent abortive lytic cycle when it occurs immediately
after infection [25]. Only a minority of EBV-infected B lymphocytes from healthy carriers completes
the lytic cycle after stimulation, the vast majority generating an abortive lytic cycle [26]. However,
how this abortive lytic cycle takes place in vivo remains unclear.

1.2. EBV-Related Oncogenesis

Despite its asymptomatic persistence in most of the adult population worldwide, in a minority
of individuals, EBV is strongly associated with several non-malignant diseases such as infectious
mononucleosis, chronic active infection, hemophagocytic lymphohistiocytosis, oral hairy leukoplakia
and autoimmune diseases [2,27]. The vast majority of EBV-associated diseases are however represented
by cancers occurring both in immunocompetent hosts (Table 1) and in patients with primary or acquired
immunodeficiency (Table 2). They are mostly B cell malignancies (BL, HL, PTLD, diffuse large B
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cell lymphoma (DLBCL)), nasopharyngeal carcinoma (NPC) or, less frequently, T cell malignancies,
gastric, breast and hepatocellular carcinomas, leiomyosarcoma and follicular dendritic sarcoma [1,2,28].
Many mechanisms of EBV related oncogenesis have been proposed and a possible role for different
EBV components has been described (reviewed in [7,27,29–32]). Nevertheless, even if great progress
has been made in understanding the EBV links to cancers, many aspects of EBV-related oncogenesis
are still unknown and represent a major challenge in cancer research.

Table 1. EBV-associated malignancies in immunocompetent hosts and corresponding EBV association
frequency and latent gene expression pattern.

Diseases % EBV Association Latency Type a

B-cells malignancies

Burkitt Lymphoma
• Endemic BL >95% I
• Sporadic BL 20–80% I

Classical Hodgkin Lymphoma 20–90% II
Diffuse Large B Cells Lymphoma (DLBCL)
• EBV+ DLBCL Not Otherwise Specified (NOS) 100% III
• Pyothorax associated Lymphoma (PAL) 100% III

T/NK cells malignancies

Extranodal NK/T-cell lymphoma, nasal type >95% I/II
Virus-associated hemophagocytic syndrome T-cell lymphoma 100% I/II
Angioimmunoblastic T-cell Lymphoma (AITL) b >80% I/II
Hepatosplenic T-cell lymphoma
Non-hepatosplenic γδ T-cell lymphomas
Enteropathy-type T-cell Lymphoma

Epithelial malignancies

Undifferentiated Nasopharyngeal carcinoma 100% II
Gastric carcinoma 10% II
Lymphoepithelioma-like carcinoma (salivary gland, tonsils, larynx,

thymus, lungs, skin, uterus cervix, bladder, stomach)
Breast carcinoma
Hepatocellular carcinoma

Mesenchymal malignancies

Follicular dendritic cell sarcoma
a Latency type: Latency I = EBNA1, EBER 1 and 2, BART miRNA; Latency II = EBNA1, LMP1, 2A and 2B, EBER1
and 2, BART miRNA; Latency III = All EBNAs, LMPs, EBERs and BART miRNA. b In AITL there is no EBV in tumor
cells but EBV is nearly always present in tumor B cells, suggesting an indirect role of EBV [6,33]. Blank spaces
indicate the missing data.

Table 2. EBV-associated malignancies in immunodeficient hosts and corresponding EBV association
frequency and latent gene expression pattern.

Diseases % EBV Association Latency Type a

Acquired Immunodeficiency

AIDS-associated B cell lymphomas
• BL 30–50% I
• Hodgkin Lymphoma 100% II
• DLBCL

# Immunoblastic 70–100% II/III
# Non Immunoblastic 10–30% II/III
# Central Nervous System lymphoma (CNS) >95% II/III
# Primary Effusion Lymphoma (PEL) 70–90% I
# Plasmablastic lymphoma 60–75% I

Post-transplantation lymphoproliferative disorder >90% III
Lymphomatoid granulomatosis
Methotrexate-associated B cell lymphoma
Leiomyosarcoma
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Table 2. Cont.

Diseases % EBV Association Latency Type a

Congenital immunodeficiency

Severe combined immunodeficiency–associated B cell
lymphoma

Wiskott-Aldrich syndrome–associated B cell lymphomas
X-linked lymphoproliferative disorder–associated B cell

lymphomas
a Latency type: Latency I = EBNA1, EBER 1 and 2, BART miRNA; Latency II = EBNA1, LMP1, 2A and 2B, EBER1 and
2, BART miRNA; Latency III = All EBNAs, LMPs, EBERs and BART miRNA. Blank spaces indicate the missing data.

EBV genome contains approximately a hundred genes coding for latency and lytic cycle proteins
and many small non-coding RNAs expressed to ensure the normal life cycle of the virus. Expression
of some proteins and RNAs have been correlated with development of EBV-associated malignancies.
The oncogenic properties of each EBV latent protein has been extensively explored (reviewed in [1,2,7]);
however the involvement of EBV lytic cycle in oncogenesis is no less important than the contribution
of individual proteins. Even though the lytic cycle was long assumed to inhibit tumorigenesis due to
final lysis of the infected cells, an increasing amount of data support its contribution to oncogenesis
mainly at its initiation or through the abortive lytic cycle and/or autocrine or paracrine effects of EBV
IE proteins [27,34,35]. ZEBRA could thus be seen as an important player in EBV-driven oncogenesis,
in collaboration with other viral and cellular proteins since it induces the lytic cycle. Additionally,
ZEBRA can exit EBV-infected cells either by secretion or after cell lysis and potentially penetrate other
cells through its cell penetration domain (CPD) [36]. In EBV-infected cells, ZEBRA alone can switch
EBV from latency to lytic cycle; therefore, it may transduce reactivation signals between infected
cells. ZEBRA can also reactivate transcriptionally silent host genes due to its affinity to methylated
promoters [37] and thus affect key cellular pathways implicated in oncogenesis, control of cell cycle,
proliferation and apoptosis.

We will next discuss the structural and biological properties of ZEBRA to provide insights into its
potential oncogenic activity and clinical applications.

2. ZEBRA Structure and Functions

2.1. ZEBRA Domain Organisation

ZEBRA is encoded by the EBV BZLF1 gene, transcribed to a mRNA composed of three exons and
translated into a 27 kDa protein containing 245 amino acids (Figure 2A).

ZEBRA belongs to the family of basic leucine zipper (bZIP) transcription factors. Its bZIP domain
(residues 175–221) consists of the central basic DNA binding domain (DBD, residues 178–194) and the
C-terminal coiled-coil dimerization domain (DD, residues 195–221) [38,39]. ZEBRA homodimer grasps
DNA via its two long helices, with the DBD contacting the major groove and DD forming a coiled coil.
A185 and S186 of ZEBRA directly interact with methylated cytosines in DNA [37].

Unlike eukaryotic bZIP factors, ZEBRA lacks a classical heptad repeat of the leucine zipper
motif [40], but its bZIP domain is additionally stabilized by the C-terminal tail, which makes a turn and
runs antiparallel to the coiled coil [39]. Residues 167–177 are considered as the “regulatory domain”
and their phosphorylation can modulate ZEBRA activity [38,41].

In the N-terminal transactivation domain (TAD, residues 1–166), the residues 52–64 and 77–86 are
rather unstructured and amorphic [42,43] (Figure 2A). The basic region within TAD (residues 157–161)
is considered to be important for recognition and high affinity binding to methylated DNA [44].

ZEBRA can exit and enter cells and nuclei due to its CPD situated within the bZIP domain between
residues 170 and 220 [36]. This CPD was successfully used to transduce human cells in vitro [36,45].
CPDs are short sequences with a composition that enables them (and the adjacent protein) to penetrate
cells either via endocytotic entry followed by endosomal escape, or by directly penetrating the cell
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membrane. Their composition is usually either cationic (with a high number of positively charged
residues) or amphipathic (with hydrophilic and hydrophobic regions of residues) [46]. ZEBRA
CPD is rich in positively charged residues (seven lysines and seven arginines), mostly within DBD
(basic region) (Figure S1A in blue), whereas hydrophobic amino acids (one valine, five alanines,
seven leucines) of CPD are mostly within DD (leucine zipper) (Figure S1B in red) [36]. In another
protein possessing the CPD, human immunodeficiency virus (HIV)-1 Tat, the CPD region is also
multifunctional [47]. Presumably, the cationic part serves for interaction with the negatively charged
phosphate groups of membrane phospholipids as well as on DNA, while hydrophobic residues interact
with the hydrophobic part of the phospholipid membrane and participate in ZEBRA’s dimerization
(Figure S1C).

When entering cells, ZEBRA is targeted to the nucleus and has a pan-nuclear localization, with the
exception of the nucleolus [48]. Substitution of several amino acids within DBD can alter subnuclear
localization from pan-nuclear to focal [49]. The bipartite nuclear localization sequence of ZEBRA
is located within DBD (residues 178-194), but a small region within TAD (residues 157-162) is also
important for the nuclear import [50].

To summarize, ZEBRA structure accounts for its important functions because the
chromatin-binding capacity via its DBD and DD and its ability to act as a transcriptional activator
thanks to its TAD allows it to regulate expression of both viral and host genes [36,51]. ZEBRA also
possesses a CPD that allows it to penetrate into uninfected cells [36].

2.2. Posttranslational Modifications of ZEBRA

ZEBRA is prone to posttranslational modifications. It is constitutively phosphorylated in vivo
at multiple sites mostly clustered within TAD and the regulatory domain [52]. Phosphorylation of
S173 and to a lesser extent S167 within the regulatory domain is important for DNA binding [41,53].
Constitutive phosphorylation may also explain why ZEBRA’s apparent mass on gel electrophoresis is
35 kDa [40] instead of the predicted 27 kDa [54].

ZEBRA also has a sustained N-terminal M1 acetylation [55]. K12 of ZEBRA is a substrate of
partial and reversible SUMOylation [56,57] that affects neither protein stability nor its subcellular
localization but significantly decreases ZEBRA transactivation activity by inhibiting its binding to CBP
(CREB-binding protein) (see below) [57,58]. SUMOylation is diminished in DD-deficient ZEBRA [57];
EBV-encoded protein kinase also reduces ZEBRA’s SUMOylation, and this effect is not related to S209
phosphorylation, conventional site of ZEBRA modification by this kinase [59].

Thus, ZEBRA is extensively and mostly constitutively modified after translation, presumably
by certain viral and host enzymes. The regulation of posttranslational modifications, their role and
possible regulatory potential for ZEBRA activity and the EBV status remain to be elucidated.

2.3. ZEBRA Functioning in Host Cells

ZEBRA functions in host cells rely on its capacity to bind specific DNA motifs and interact with other
proteins. DBD of ZEBRA binds to heptamer DNA motifs, named ZEBRA response elements (ZREs).
ZREs are present within both viral and host gene promoters. At present, two types of ZREs are identified:
an activator protein 1 (AP-1)-like recognition elements (non-CpG-containing) [40] and CpG-containing
recognition elements [60] (Figure 2B). Binding to CpG-ZREs depends on DNA methylation [60,61].
During latency, EBV genome becomes heavily methylated to suppress its transcription, however,
ZEBRA binds methylated promoters with high affinity and activates gene transcription to initiate
lytic cascade [44]. ZEBRA’s selectivity and preference for methylated DNA is a key to hijacking host
epigenetic silencing, which is important for EBV latency reversal, oncogenesis, control of cell cycle,
proliferation and apoptosis [37]. Ten-eleven translocation methylcytosine dioxygenase that reduces
ZEBRA binding to methylated promoters [37] can be considered as ZEBRA host restriction factor.
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Figure 2. Structure of the ZEBRA protein. (A) ZEBRA structure. ZEBRA is encoded by the BZLF1
gene containing three exons. ZEBRA protein has an N-terminal transactivation domain (TAD, residues
1-166), a regulatory domain (residues 167–177), a bZIP domain, which consists of a central basic
DNA binding domain (DBD, residues 178-194) and a C-terminal coiled-coil dimerization domain (DD,
residues 195–221). The minimal domain for cell penetration is located between residues 170-220. Three
available partial 3D structures were imported from the SWISS-MODEL Repository [62] (accession
number P03206) and are based on crystal structure data published by [39,42,43]. They are shown below
the respective primary sequence. Rainbow color code is used to map approximate residue position
concordance between primary and tertiary (or quaternary) structure. (B) ZEBRA-response elements
(ZREs). Sequences of ZEBRA DNA binding sites (ZREs) of two types: AP-1-like (non-CpG-containing)
ZREs and CpG-containing ZREs are depicted as sequence logos, adapted from [51,60].

2.3.1. Transcriptional Regulation

ZEBRA can both activate and downregulate transcription of viral and host genes. Transcriptomic
analysis of B cells with ectopic expression of ZEBRA revealed 2263 deregulated genes (74% upregulated,
26% downregulated) [49]. Upregulated genes include those involved in cell adhesion, morphogenesis,
projection and response to hormones, while downregulated genes are involved in the immune response,
induction of apoptosis and lymphocyte activation [49]. In total, 12% of these genes (207 upregulated
and 71 downregulated) are directly regulated by ZEBRA which binds to their promoters, as identified
by chromatin immunoprecipitation followed by sequencing (ChIP-seq).

During activation of lytic cycle, ZEBRA binds promoters of early lytic viral genes and host
genes and, via its TAD, interacts with basal transcription factors IID [63] and IIA [64] (TFIID and
TFIIA); this leads to sequential recruitment of other basal transcription factors and RNA polymerase II
(Figure 3A). In addition, ZEBRA binds the transcriptional coactivator and histone acetyltransferase
CBP (CREB binding protein) which increases ZEBRA transactivation properties [65]. Direct binding to
the Transducer of Regulated CREB coactivator enhances ZEBRA-mediated transcription [66].

Transcriptional repression by ZEBRA is related to its specific binding to cellular transcription
factors mainly via its bZIP or TAD. In most cases, such interaction mutually impedes their function
as transcription factors and results in repression of target genes for both ZEBRA and the associated
transcription factors [67,68].

Direct binding to p53 [69,70], p65 [71] and c/EBP family of transcription factors [68] inhibits their
transcriptional activity. ZEBRA directly binds B cell specific transcription factors Pax5 and Oct2 via
bZIP domain; this inhibits ZEBRA activity, however, the reciprocal inhibition was proven only for
Pax5 [72,73]. Unidirectional inactivation of the family of nuclear factor of activated T cells (NFAT)
transcription factors, involved in calcium signal transduction, by direct interaction with ZEBRA was
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also reported [74]. Presumably, the same mechanism related to ZEBRA inhibitory binding to host
transcriptional factor is involved in the class II transactivator (CIITA) repression, however, it involves
the TAD and a transcriptional factor inhibited by ZEBRA was not identified [67]. ZEBRA also binds
to interferon regulatory factor 7 (IRF-7) through its TAD, decreasing the transcription of interferon
(IFN) α4, IFNβ, and antigen presentation 2 (Tap-2) [75]. Finally, SUMOylation of ZEBRA appears to
be important for transcriptional repression since it promotes recruitment of histone deacetylases to
responsive promoters [57] (Figure 3B).

Figure 3. ZEBRA functions. (A) transcriptional activation by ZEBRA. ZEBRA is shown as a homodimer,
relative positions of transactivation domain (TAD), DNA binding domain (DBD) and dimerization
domain (DD) are indicated. ZEBRA binds to specific ZEBRA response elements (ZREs) within
promoters of viral and host genes with a preference to methylated-CpG DNA. ZEBRA binding leads
to sequential recruitment of basal transcription factors and RNA polymerase II. In addition, ZEBRA
binds transcriptional coactivator CREB binding protein (CBP). (B) transcriptional repression via
ZEBRA binding to cellular transcription factors and by SUMOylated ZEBRA. Transcription factors
that interact directly with ZEBRA are listed. The interaction occurs mainly via ZEBRA’s bZIP domain
and mutually impedes the function of both ZEBRA and bound transcription factor and results in
repression of targeted genes. SUMOylated ZEBRA has a low transactivation activity related to
decreased CBP binding and the ability to recruit histone deacetylases (HDAC) to responsive promoters.
(C) activation of EBV lytic replication. ZEBRA recognizes the EBV lytic origin (oriLyt), serves as
the origin binding protein and recruits viral core replication enzymes to initiate lytic replication
of EBV. (D) interaction with cellular proteins not directly involved in transcriptional regulation.
ZEBRA interaction partners are listed. ZEBRA interaction with Cul2/Cul5 induces the formation of
multimolecular ECS complex (Elongin B/C-Cul2/5-SOCS-box protein) with the ubiquitin ligase activity
that targets p53 for proteasomal degradation.
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2.3.2. Binding to the Replication Origin in EBV Lytic Replication

During the lytic cycle, ZEBRA binds EBV lytic origin (oriLyt) and recruits viral core replication
enzymes to initiate replication [76,77] (Figure 3C). In contrast to latent replication, EBV lytic replication
relies on virally encoded replication enzymes, whose expression is induced during the lytic cycle:
helicase (BBLF4), primase (BSLF1), primase-associated factor (BBLF2/3), DNA polymerase (BALF5),
DNA polymerase processivity factor (BMRF1), and single-stranded DNA binding protein (BALF2) [41].
This function is mediated by the TAD (residues 11–25), which interacts with the viral helicase, primase
and DNA polymerase [78,79]; and by the bZIP domain which interacts with the DNA polymerase
processivity factor [41]. S173 phosphorylation within the regulatory domain is essential for ZEBRA
action as a replication factor [41].

2.3.3. Interaction with Other Cellular Proteins

ZEBRA also interacts with proteins other than transcription factors (Figure 3D). For example,
ZEBRA interaction with Cul2 and Cul5 induces the formation of the multimolecular ECS complex
(Elongin B/C-Cul2/5-SOCS-box protein) that ubiquitinates p53 for proteasomal degradation [80].

Other ZEBRA cellular partners include mitochondrial single-stranded DNA binding protein
(mtSSB) [81], nuclear protein 53BP1, a component of the ATM DNA damage response pathway [82],
INO80 chromatin remodeler ATPase [83]; these interactions are important for EBV lytic cycle reactivation
and replication.

In summary, ZEBRA binds specific DNA motifs and/or interacts with other proteins, either
recruiting them to DNA binding sites or altering their activity. However, ZEBRA direct interactions
with many other cellular proteins [74] are much less studied as compared to interaction with
chromatin-binding proteins.

3. EBV-Related Diseases and Oncogenic Properties of ZEBRA

3.1. ZEBRA Implication in EBV-Related Malignancies

Increasing evidence supports that BZLF1 gene expression could contribute, directly or indirectly,
to EBV-induced tumorigenesis. ZEBRA protein and mRNA were detected in more than 80% of
biopsies from 44 PTLD patients [84]. Lymphoblastoid cell lines (LCLs) derived with wild-type (WT)
EBV are more prone to induce a lymphoproliferative disorder when injected into Severe Combined
Immunodeficient (SCID) mice than LCLs derived with BZLF1-KO EBV [85]. Interestingly, the same
results were observed after acyclovir treatment, which inhibits viral DNA replication but not BZLF1
expression. These data suggest that ZEBRA, and not the production of infectious viral particles,
is required for tumor formation in SCID mice [85]. These results were also confirmed in a humanized
mouse model where both human fetal CD34+ hematopoietic stem cells and human thymus/liver tissues
were transplanted. Indeed, in this model, the development of CD20+ DLBCL was more frequent in
mice infected with WT EBV as compared to BZLF1-KO EBV [86]. Soluble ZEBRA can be detected in the
serum of PTLD patients at concentrations up to 4 µg/mL and it is significantly higher in PTLD patients
compared to transplanted patients without PTLD [87]. ZEBRA is also present in serum samples
from immunocompromised humanized mice developing lymphoma, with a correlation with tumor
mass [35]. The presence of ZEBRA protein or its mRNA was also reported in tumor cells or in tumor
tissue biopsies in other types of EBV-induced lymphomas, such as HL, DLBCL and BL [88–91].

In some EBV-associated lymphoma, there is also evidence for indirect action of ZEBRA. BHRF1
and BALF1, two EBV early lytic genes whose expression is induced by ZEBRA, are found highly
expressed in DLBCL [89]. The products of these two genes are the viral Bcl-2 homologs required for B
cells immortalization [92]. Moreover, EBV cofactors for endemic BL (Plasmodium falciparum, Euphorbia
tirucalli and potentially Aflatoxin B1) are all able to reactivate EBV in vitro and in vivo [93–95].

High ZEBRA expression at mRNA or protein level was also reported in NPC biopsies [96,97] and
in breast carcinoma [98]. High anti-ZEBRA IgG titers in sera correlate with poorer clinical outcome in
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patients [99,100]. The presence of anti-ZEBRA antibody has a high diagnostic accuracy for early-stage
NPC [101]. More generally, EBV replication and expression of some early lytic cycle genes were
detected in EBV-induced epithelial malignancies including NPC [102,103]. In addition, EBV-infected
individuals with elevated titers of IgA antibodies against EBV lytic viral capsid antigen (VCA) have
a higher risk of NPC [104]. A subset of EBV-associated gastric carcinoma and some NPC cells also
express early lytic genes such as BHRF1, BALF1, BARF1 and BGLF5 [105–108]. A specific EBV strain
isolated from NPC and gastric carcinoma has an enhanced capacity for spontaneous lytic replication
and therefore ZEBRA expression [109,110].

3.2. ZEBRA Oncogenic Properties

In this section, we will discuss the mechanism by which ZEBRA contributes to acquisition of
cancer hallmarks by cells (Figure 4).

Figure 4. ZEBRA oncogenic properties. ZEBRA directly, or through its target genes, contributes to the
acquisition of cancer hallmarks by cells including sustained proliferative signaling, evading or altering
the immune response, resisting cell death, enabling replicative immortality, inducing angiogenesis and
activating tumor invasion and metastasis. A part of these effects is mediated by genome instability
and tumor-promoting inflammation that induce an environment favorable to cancer development and
progression. Adapted from [111].

3.2.1. Genome Instability

Genome instability (GI), one of the major factors of oncogenic transformation, may result in
random mutations and chromosomal rearrangements which can confer selective advantage to certain
cells through oncogene activation, downregulation or loss of tumor suppressor genes [111]. GI can
occur through different mechanisms: (1) DNA damage production with incapacity to detect damaged
DNA; (2) DNA damage with defects in DNA repair; (3) defects in preventing the action of potential
mutagens [112–114].

Although ZEBRA can interact with proteins implicated in DNA damage response (e.g., 53BP1,
a component of the ATM pathway) [82], not much data exist in support of a direct relationship between
GI and ZEBRA. However, some events such as oxidative stress that lead to GI occur following EBV
reactivation and can thus be related to ZEBRA expression [115,116]. Oxidative stress was also described
in purified B cells and epithelial cells at an early stage of EBV infection when ZEBRA is expressed [117].
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Furthermore, several early lytic proteins induced by ZEBRA may participate in GI. For example,
BMRF1 induces centrosome amplification and chromosome instability in B cells in vitro and in vivo
in a mouse model [118]. BGLF4 directly or indirectly induces DNA damage by retarding cellular
S-phase progression or inducing premature chromosome condensation associated with a high risk of
chromosomal breaks at common fragile sites [119–121]. EBV DNase was also found to induce GI in
human epithelial cells through DNA damage induction and DNA repair repression [122]. BALF3 has
also been linked to DNA strand breaks induction, resulting in copy number aberrations accumulation
in NPC cells [123]. Recurrent chemical reactivation of EBV in NPC cells appears to induce GI [124].
EBV reactivation in LCLs induces global nuclear architecture remodeling that could enhance formation
of chromosomal translocations [125].

3.2.2. Tumor-Promoting Inflammation

Inflammation favors tumor development and progression. This could be related to high levels
of cytokines, chemokines and growth factors observed upon EBV reactivation, including interleukin
(IL)-8, IL-10, IL-6, IL-13, Transforming Growth Factor-beta (TGF-β) [25]. ZEBRA can also directly
transactivate IL-8 promoter through its two ZREs, resulting in IL-8 upregulation in NPC cells [126].
ZEBRA expression in NPC is also associated with upregulation of growth related oncogene and
macrophage inflammatory protein-1β [126].

ZEBRA can also bind directly to the human IL-10 (hIL-10) minimal promoter to induce transcription
of hIL-10 during the early phase of the lytic cycle in EBV-infected B cells [127]. IL-10 is upregulated in
breast cancer and NPC [127–129]. A viral analog of the hIL-10 (vIL-10) encoded by the BCRF1 gene can
be produced during the lytic cycle [130].

Other interleukin genes contain ZREs in their promoters [25] and IL-6 and IL-13 production can
be directly activated by ZEBRA in infected cells [131–133]. ZEBRA also increases expression of the
genes coding for TGF-β [134] and the Vascular Endothelial Growth Factor (VEGF) [135] in B cells
undergoing lytic cycle. Finally, ZEBRA can also induce inflammatory cytokines through expression
of the early lytic gene BLLF3, which can activate NF-κB and induce secretion of pro-inflammatory
cytokines (tumor necrosis factor (TNF)-α, IL-1β, IL-6, IL-8 and IL-10) in human monocyte-derived
macrophages [136,137].

3.2.3. Immune Evasion

ZEBRA-induced viral and human IL-10 production protects infected cells from immune recognition
and elimination. Indeed, IL-10 interferes with antiviral cytokines and NK/NKT cell-mediated lysis [130].
Moreover, IL-10 downregulates transporter proteins associated with TAP1 and consequently induces
a reduction of surface MHC I molecules on infected B lymphocytes [138]. IL-10 also inhibits IFNγ

release which plays a central role in resistance of the host to infection [139].
ZEBRA also promotes immune evasion by disrupting cell signaling pathways activated by IFNγ

such as the JAK-STAT pathway. It decreases IFNγ receptor expression and inhibits phosphorylation
of Jak1, Jak2 and STAT1 molecules consequently downregulating their downstream target genes,
including MHC II [140]. ZEBRA can also directly thwart surface expression of MHC II molecules
by transcriptional repression of CIITA, a main regulator of human leukocyte antigen (HLA) class II
genes [141] and CD74, the invariant chain of MHC II that facilitates its transport to the cell surface [142].

The immunomodulatory effects can be induced by three EBV lytic cycle proteins called
immunoevasins (BILF1, BNLF2a and BGLF5). They interfere with host antigen processing pathways
and consequently allow EBV-infected cells to escape from immune system action. BILF1 reduces
MHC I molecules on the cell surface by physical interaction and inhibits CD8+ T cell recognition of
endogenous target antigens [143,144]. BNLF2, a TAP inhibitor, impairs peptide loading onto HLA class
I molecules thus blocking antigen presentation to cytotoxic T cells [130,145]. BGLF5, the EBV alkaline
exonuclease, downregulates HLA class I and II impairing antigen recognition by immune cells [146].
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It is noteworthy that the described immunomodulatory effects induced by ZEBRA are associated
not only with cancer progression but also with development of autoimmune diseases, e.g., systemic
lupus erythematosus [147].

3.2.4. Cell Proliferation and Growth

ZEBRA-induced IL-10 enhances the viability of resting B lymphocytes and supports growth
and differentiation of EBV-infected cells [127,139]. Both IL-6 and IL-13 promote proliferation of
EBV-infected cells and long term growth of LCLs [131,133]. In agreement with this, growth of both
LCLs and EBV-induced B cells after primary infection can be inhibited by treatment with an anti-IL-13
antibody [133]. Treatment with an anti-IL-6 antibody led to remission of B-lymphoproliferative disorder
in eight out of 12 patients studied [148].

ZEBRA-induced IL-8 may be used by some tumor cells as an autocrine growth factor [149].
The early lytic gene BARF1 also possesses an autocrine mitogenic activity and is an in vivo growth
factor [150]. BARF1 is associated with Cyclin D1 overexpression in EBV-associated gastric cancer [151].

3.2.5. Resistance to Cell Death

The most common anti-apoptotic effect following ZEBRA expression is through activation of the
two viral Bcl-2 homologs BHRF1 and BALF1. Another EBV early lytic gene, BARF1, can activate the
cellular anti-apoptotic protein Bcl-2 in fibroblasts [152]. BARF1 expression leads to an increased Bcl-2
and Bax ratio and decreased PARP cleavage in gastric carcinoma cells [153].

BZLF1-KO LCLs showed a significant increase in the percentage of dead cells, reversible after BZLF1
expression, whereas no difference was observed between BRLF1-KO and WT LCLs, thus suggesting a
direct ZEBRA-mediated anti-apoptotic effect [85]. ZEBRA also downregulates the expression of tumor
necrosis factor receptor 1 (TNFR1) by direct binding to its promoter [68,154]. This prevents TNF-α
activation and consequently TNF-α induced apoptosis.

3.2.6. Other Oncogenic Effects

ZEBRA can positively affect tumor progression by inducing the expression of VEGF and IL-8, both
associated with angiogenesis, tumor development, metastasis and resistance to chemotherapy [135,155,156].
Moreover, expression of ZEBRA by tumor cells from NPC patients correlates with advanced lymph
node metastasis, and this effect has been related to direct transactivation of the Matrix Metalloproteinase
(MMP9) promoter by ZEBRA [157]. In addition to MMP9, ZEBRA can also induce MMP3 upregulation
in epithelial cells by binding to the ZRE in the MMP3 promoter. Both MMP3 and MMP9 act in synergy
to promote tumor invasion and metastasis [158]. The oncogenic early lytic gene BARF1 enables
replicative immortality through induced activation of telomerase in primary epithelial cells [159].

ZEBRA, through its bZIP domain, can also directly interact with cancer-associated transcription
factors: p53, RAR, CBP, and C/EBPα [160–163]. These interactions have a functional importance for
EBV life cycle, but a direct demonstration for their role in human disease is still lacking even if these
ZEBRA targets are often deregulated in cancers [164,165].

Interestingly, ZEBRA has a functional homology with another viral protein: the HIV-1
transactivator protein Tat. Like ZEBRA, Tat can be secreted into the bloodstream by HIV-1 infected T
cells and, through its cell penetration domain, can enter uninfected cells, including B cells. Tat protein
is potentially oncogenic in B cells since it induces a relocation in the nuclear space of the MYC locus
close to the IGH gene in circulating B-cells [166] and an overexpression of the AICDA gene coding for
the Activation-induced Deaminase (AID) [167]. These two events promote formation of BL-specific
translocations and could at least partly account for the high frequency of BL in HIV-infected patients.
Tat also promotes mitochondrial production of reactive oxygen species (ROS) and thus DNA damage
and genome instability in B cells [168]. Interestingly, ZEBRA and Tat can be present in a cell at the
same time in the blood of HIV-infected individuals and possibly interact. This hypothetical interaction
could have an antagonistic or synergistic effect on their oncogenic activity.
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4. ZEBRA in Diagnosis and Therapy

Many articles report the presence of EBV lytic cycle in tumor cells from HL [169], NPC [99,170–174],
in transplant patients [175], and in breast tumors [98]. Clinical studies on EBV lytic proteins including
ZEBRA in patients with PTLD or HIV-associated non-Hodgkin lymphoma NHL are mostly related to
the role of these proteins in neoplastic tissues [84,89,176,177]. Both high EBV copy number and strong
BZLF1 mRNA expression in the peripheral blood lymphocytes (PBL) of patients are sensitive markers
of EBV-related PTLD [178]. ZEBRA was expressed in 5% of whole peripheral blood mononuclear
cells from a patient with a lymphoproliferative disease who underwent non-myeloablative allogeneic
stem cell transplantation [179]. Moreover, the number of EBV-infected cells in the peripheral blood
increases after immunosuppression: on average, 1.6 latently-infected cells per 104 B lymphocytes [180]
vs. 12.5 per 106 B cells in persistently infected healthy individuals [181].

Soluble ZEBRA concentrations of >100 ng/mL detected by an enzyme-linked immunosorbent
assay (ELISA) in serum of patients after solid organ or hematopoietic stem cell transplant were
predictive of PTLD in 80% of the cases within three weeks [87]. Interestingly, the circulating ZEBRA
could be detected during periods in which the viral DNA was not detectable by qPCR. For example,
in two patients, ZEBRA was detected at 2 and 6 weeks, respectively, prior to the PTLD episode and
before an increase in qPCR signals. Thus, ZEBRA testing in serum could help identify patients likely to
develop severe outcomes during the critical posttransplant period and serve as a potential diagnostic
marker for EBV follow-up in immunocompromised patients.

The relevance of EBV lytic cycle to human pathology prompted researchers to target certain
lytic proteins with therapeutic aims. Adenovirus vectors expressing BZLF1 or BRLF1 were used to
treat EBV-positive tumors [182]. On the other hand, Food and Drug Administration (FDA)-approved
leflunomide, which targets EBV replication, was shown to inhibit the earliest step of lytic EBV
reactivation (BZLF1 and BMRF1 expression) and prevented the development of EBV-induced
lymphomas in both a humanized mouse model and a xenograft model [183]. More recently, duvelisib
(a molecule inhibiting the PI3K/AKT signaling pathway, and B cell receptor (BCR) signaling) was
shown to reduce cell growth and expression of EBV lytic genes BZLF1 and gp350/220 in EBV-positive
cell lines [184]. The histone deacetylase (HDAC) and DNA methyltransferase inhibitors are also
possible avenues to suppress the ZEBRA expression and the entire lytic cascade [185].

Immunotherapeutic approaches, such as vaccination against IE proteins or IE-specific therapeutic
monoclonal antibodies also represent a promising approach. A recent study demonstrated that
vaccination of hu-PBL-SCID mice against ZEBRA could enhance specific cellular immunity and
significantly delay the development of the lethal EBV-related lymphoproliferative disease [186].

5. Conclusions and Remaining Questions

The role of ZEBRA in EBV infection, lytic cycle and oncogenesis has been extensively studied, but
numerous questions remain:

Abortive lytic cycle: ZEBRA can affect host cells by inducing the abortive lytic cycle in B cells
(production of early EBV lytic proteins without cell lysis); however the fate of these cells remains
unclear: they may reintegrate the memory cell reservoir after the abortive lytic cycle, return to latency 0
profile or restart the latency cycle as for the primary infection (Figure 1). Another remaining question is
whether some stimuli are more prone than others to specifically induce the abortive lytic cycle. In vitro,
EBV reactivation stimuli such as stress inducing agents, ROS, anticancer drugs or hypoxia [14,187]
directly reactivate the virus in EBV-positive cell lines. Thus, in vivo, the abortive lytic cycle may occur
after stimulation by these stress-induced agents, instead of an immunological stimulation which mainly
leads to a productive lytic cycle in plasma cells.

A role of ZEBRA in oncogenesis: ZEBRA upregulates the transcription of host cell genes coding
for cytokines involved in inflammation, angiogenesis, metastasis and cell proliferation. ZEBRA
downregulates the expression of MHC II class genes thus promoting the immune evasion and genes
related to apoptosis thus inducing cell death resistance. ZEBRA also interacts with cancer-related
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cellular proteins altering their activity. The net cellular effect of these interactions is quite complex and
depends on protein localization, concentration, nuclear architecture, nature of promoters involved.
Indeed, for p53 signaling pathway, both inhibitory and stimulatory effects of ZEBRA have been
described [69,164,165]. This activity of ZEBRA needs additional studies.

A role of ZEBRA in non-infected cells: ZEBRA is released into the bloodstream by infected cells
and, due to its CPD, can potentially penetrate into uninfected cells and alter their transcriptional
program either directly or via interaction with cellular proteins. These potentially oncogenic effects of
ZEBRA in non-infected cells are worth investigating and could link EBV to other as yet unidentified
pathologies, independently of EBV presence in cells, thus potentially expanding the spectrum of
EBV-associated diseases.

ZEBRA interaction with other proteins: the cellular interactome of ZEBRA needs further
investigation to explain the functional significance of ZEBRA interaction network [74]. ZEBRA is
extensively modified in vivo [52], however, the enzymes (viral and cellular) and signaling pathways
involved in its post-translational modifications are largely unknown, as well as the effect of these
modifications on ZEBRA activity. A splicing variant of ZEBRA was also described but its functional
role is poorly understood [188]. Some EBV strains as well as sequence variations in the BZLF1 gene
may have an enhanced ability to reactivate the lytic cycle [109,110,189]. A better characterization of
the variations in the structure of the ZEBRA protein produced by these different virus strains could
be relevant.

The relevance of the lytic cycle and the role of ZEBRA in lymphomagenesis is a new paradigm
pertaining to the prevention and treatment strategies for EBV-associated cancers. It is therefore
important to investigate the lytic EBV infection in immunocompromised patients, such as organ
transplant recipients, who are highly prone to developing EBV-associated malignancies. More efforts
should be invested to examine the potential of drugs that target EBV lytic proteins, including ZEBRA.

ZEBRA as a biomarker (mRNA, anti-ZEBRA IgG and soluble ZEBRA concentration in blood) has
mainly been studied in PTLD. It would be important to test whether circulating ZEBRA could serve as
a biomarker for other EBV-associated diseases, especially those with the lytic cycle involvement, e.g.,
endemic BL.

A better understanding of the mechanisms underlying ZEBRA activity in cells will shed light on
its role in oncogenesis and open perspectives in early diagnosis and treatment of EBV-related cancers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1479/s1,
Figure S1: ZEBRA cell penetration domain.
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Abbreviations

AID activation-induced deaminase
AIDS acute immunodeficiency syndrome
AITL angioimmunoblastic T cell lymphoma
AP-1 activator protein 1
ATM ataxia telangiectasia mutated
BALF BamHI-A fragment leftward open reading frame
BARF BamHI-A fragment rightward open reading frame
BART BamHI-A fragment rightward transcript
BGLF BamHI-G fragment leftward open reading frame
BHRF BamHI-H fragment rightward open reading frame
BILF BamHI-I fragment leftward open reading frame
BL Burkitt’s lymphoma
BLLF BamHI-L fragment leftward open reading frame
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BMRF BamHI-M fragment rightward open reading frame
BNLF BamHI-N fragment leftward open reading frame
bZIP basic leucine zipper
BRLF BamHI-R fragment leftward open reading frame
BZLF BamH1-Z fragment leftward open reading frame
CNS central nervous system
CPB CREB binding protein
CPD cell penetration domain
CR complement receptors
DBD DNA binding domain of ZEBRA
DD dimerization domain of ZEBRA
DLBCL diffuse large B cell lymphoma
EBER EBV-encoded small RNA
eBL endemic Burkitt’s lymphoma
EBNA EBV nuclear antigen
EBV Epstein-Barr Virus
ECS Elongin B/C-Cul2/5-SOCS-box protein
GC germinal center
GI genome instability
HDAC histone deacetylases
hIL human interleukin
HIV human immunodeficiency virus
HL Hodgkin lymphoma
HLA human leukocyte antigen
IARC international agency for research on cancer
IE immediate early
IFN interferon
IGH immunoglobulin heavy chain
IL interleukin
LCL lymphoblastoid cell lines
LMP latent membrane protein
MHC major histocompatibility complex
MMP matrix metalloproteinase
MYC myelocytoma
NF-κB nuclear factor kappa B
NFAT nuclear factor activated T cells
NHL non-hodgkin lymphoma
NK natural killers
NLS nuclear localization sequence
NOS DLBCL not otherwise specified
NPC nasopharyngeal carcinoma
PAL pyothorax associated lymphoma
PBL peripheral blood lymphocytes
PEL primary effusion lymphoma
PTLD post-transplant lymphoproliferative disorders
ROS reactive oxygen species
SCID severe combined immunodeficiency
SUMO-1 small ubiquitin-related modifier 1
TAD transactivation domain of ZEBRA
TAP transporter associated with antigen processing
TGF-β tumor growth factor β
TNF tumor necrosis factor
TNFR tumor necrosis factor receptor
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VEGF vascular endothelial growth factor
vIL viral interleukin
WT wild type
ZRE ZEBRA response elements
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