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Background: Previous studies have investigated hemodynamic recovery using 21% vs.

100% oxygen during cardiopulmonary resuscitation (CPR) with chest compression (CC)

in term infants. Animal studies indicate that systemic circulatory recovery is the same

whether 21 or 100% oxygen is used during neonatal CPR. One of the main goals of

resuscitation is to maintain cerebral oxygen delivery and prevent cerebral hypo- and

hyperoxygenation. Oxygen delivery to the brain depends on cerebral hemodynamics,

concentration of inhaled oxygen and blood oxygen content. The aim of this paper

was to synthesize available research about cerebral oxygen delivery during CPR using

different oxygen concentrations. Our research questions included how do different

oxygen concentrations during CPR with CC influence cerebral perfusion and oxygen

delivery, and how do cerebral hemodynamics during CC influence outcomes.

Methods: A search in Medline Ovid using the search terms hypoxia AND oxygen AND

cerebrovascular circulation AND infant, newborn. Inclusion criteria included studies of

hypoxia and resuscitation of term infants. Studies were excluded if no measures of

cerebral blood flow (CBF), oxygenation, or perfusion were reported.

Results: The search retrieved 21 papers. None of the studies directly fulfilled our

inclusion criteria. The reference lists of some of the retrieved papers provided relevant

animal studies with slightly conflicting results regarding blood flow and oxygen delivery

to the brain using 21 or 100% oxygen. No study in term infants was identified, but we

included one study in preterm infants. Studies in asphyxiated animals indicate that 100%

oxygen increases CBF and oxygenation during and after CC with a potential increase in

oxidative stress.

Conclusion: In asphyxia, cerebral autoregulation may be impaired. Pure oxygen

administration during CC may result in cerebral hyperperfusion and increased cerebral
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oxygen delivery, which may be associated with oxidative stress-related damage to the

brain tissue. As systemic circulatory recovery is the same whether 21 or 100% oxygen

is used during neonatal CPR, it is important to investigate whether brain damage could

be aggravated when 100% oxygen is used.

Keywords: newborn infant, asphyxia, oxygen, chest compression, cerebral perfusion

INTRODUCTION

Despite a lack of scientific evidence, supplemental oxygen has
been used in neonatal resuscitation for more than 200 years
(1). For the last few decades, research has been focused on the
balancing benefits and potential harms associated with different
oxygen concentrations used in delivery room resuscitation. In
term infants exposed to a high initial oxygen concentration in the
delivery room, neonatal mortality is increased (2). Since 2010, an
initial oxygen concentration of 21% has been recommended to
term infants that require assisted ventilation, but 100% oxygen is
recommended as soon as chest compression (CC) is needed (3).
Exposure to oxygen during resuscitation can be limited in two
ways, either by reducing the fraction of inspired oxygen (FiO2) or
by limiting the time of exposure (4). In term infants, the oxygen
concentration has been the focus of interest, although some
animal studies have addressed the effect of very brief (e.g., 3min)
or limited exposure to 100% oxygen (5–7). No study has assessed
the safety and effect of different oxygen exposures after return
of spontaneous circulation (ROSC) in term asphyxiated infants,
i.e., cumulative oxygen exposure. In addition, long-term data
applicable to term infants after CC are lacking. Although data
from the Canadian Neonatal Network indicated an increased risk
of neurodevelopmental impairment in premature infants <29
weeks resuscitated with 100% oxygen (8), a meta-analysis of eight
studies showed no difference in the risk of bronchopulmonary
dysplasia, intraventricular hemorrhage >grade 3, or death in
premature infants <29 weeks of gestation receiving higher vs.
lower oxygen strategies in the delivery room (9). In premature
infants <32 weeks of gestation, Oei et al. (10) aimed to examine
disability at 2 years after initial delivery room exposure to 21 or
100% oxygen. FiO2 was adjusted to target SpO2 65–95% at 5min
and 85–95% until admission to the neonatal intensive care unit.
At 2 years of age, 215 out of 240 survivors were assessed (11).
There was no difference in disability between infants initially
receiving 21% vs. 100% oxygen (11). This was in agreement
with a meta-analysis of two trials (n = 208) that showed no
difference in neurodevelopmental disability at 18–24 months
between premature infants (<32 weeks and extremely low birth
weight, respectively) receiving lower (FiO2 < 0.4) vs. higher
(FiO2 > 0.4) initial oxygen concentrations targeted to oxygen
saturation (12).

One of the main goals of resuscitation is to maintain
cerebral oxygen delivery and prevent cerebral hypo- and
hyperoxygenation (13). Cerebral oxygen delivery is determined
by cerebral hemodynamics, concentration of inhaled oxygen, and
blood oxygen content as determined by pulmonary gas exchange
and hemoglobin concentration (14). Cerebral hemodynamic

measurements include cerebral blood flow (CBF) and cerebral
blood flow velocity (CBFV). Both hypoxemia and hyperoxemia
influence CBF (15). A review (16) and a meta-analysis (17)
have concluded that 21% oxygen is equivalent to 100% oxygen
regarding the rate of and time to ROSC, as well as post
resuscitationmortality andmorbidity in asphyxiated animals The
aim of this paper is to provide an overview of studies that assessed
CBF, directly or indirectly, during cardiopulmonary resuscitation
(CPR) including CC with different FiO2. Our research questions
were how did FiO2 during CPR with CC influence cerebral
perfusion and oxygenation, and how did cerebral hemodynamics
during CC influence outcomes. We hypothesized that cerebral
autoregulation was impaired in infants that required delivery
room CPR with CC, and that high cerebral perfusion and oxygen
delivery was not beneficial.

MATERIALS AND METHODS

A search in Medline Ovid was performed in July 2019 including
the search terms hypoxia AND oxygen AND cerebrovascular
circulation AND infant, newborn. Conference proceedings and
the reference list of retrieved papers were hand searched for
relevant researchers and papers. Publications were assessed based
on title, abstract, and methods. Studies were included if they
addressed hypoxia and resuscitation in term infants. Studies were
excluded if no measures of CBF/perfusion and/or oxygenation
were reported, or if they were in a different language than English
or Scandinavian.

RESULTS

Results of the Literature Search
(1) The Medline Ovid search retrieved 21 papers that were
all excluded: 7 because they addressed premature infants (18–
24). One paper in Japanese (25) and one in German (26) was
excluded, and 12 papers did not address resuscitation (27–38).
From the reference list of (21), we identified (4), which further
identified (39).

(2) Papers that we identified from hand searches of conference
proceedings and reference lists: there were no clinical data
evaluating cerebral hemodynamics and oxygenation during CC
in newborn term infants, but four animal studies were identified
where CBF/perfusion and/or oxygenation were reported during
CC (Table 1 presents CBF/perfusion/oxygen data).

Table 1 gives an overview of the studies identified through
hand searches with regards to study design, subjects and
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TABLE 1 | Study design, subjects, and main findings related to cerebral oxygenation/perfusion.

Design Reported

according to

ARRIVE

Subjects Age Weight ROSC definition Time to ROSC Post-ROSC

observation

Method for assessing

cerebral

oxygenation/perfusion

Main results

Rawat et al.

(40)

Secondary

analysis of three

previous studies

(not cited)

No power

calculation

Not randomized

Lamb Fetal 3.7 kg HR > 60/min with

a SBP > 30mm

Hg

Mean ± standard

deviation

21% O2 211 ± 145 s

100% O2 306 ± 270 s

30min Flow probe around the left

CA—not specified internal or

external CA

Oxygen delivery was

calculated as oxygen content

in the carotid

arterial blood (CaO2) × carotid

blood flow where CaO2 =

hemoglobin × 1.34

×SaO2/100 + 0.0031 × PaO2

(in mmHg)

During CC, PaO2 was not

different between 21 and

100% oxygen ventilated

lambs, but CA flow was 1.2

(1.6) mL/kg/min (21% oxygen)

vs. 3.2 (3.4) mL/kg/min (100%

oxygen); p = 0.07

Oxygen delivery to the brain

was 0.05 (0.06) mL/kg/min

(21% oxygen) vs. 0.11 (0.09)

mL/kg/min (100% oxygen); p

< 0.001.

Immediately after ROSC,

lambs ventilated with 100%

oxygen had higher PaO2 and

pulmonary blood flow.

Perez-de-Sa

et al. (5)

Randomized

controlled animal

trial

No power

calculation

Lamb Fetal 3.4 kg HR > 150/min Median (interquartile

range)

21% O2 68 (6–150) s

100% O2 3min 107

(5–182) s

100% O2 30min 58

(23–368) s

60min Partial pressure of oxygen in

brain tissue (PbtO2 )

Near infrared spectroscopy

regional cerebral

saturation (CrSO2)

Limiting the time of exposure to

100% oxygen to 3min did not

avoid brain tissue hyperoxia.

Linner et al.

(6)

Randomized

controlled animal

trial

No power

calculation

Randomization,

but

randomization

procedure

not explained

“Domestic”

piglets

12–36 h 1.4–1.8 kg MAP > 40 mmHg

and HR > 150/min

Median (interquartile

range)

21% O2 67 (60–76) s

100% O2 3min 88

(76–126) s

100% O2 30min 68

(56–81) s

4 h Partial pressure of oxygen in

brain tissue (PbtO2 )

Near infrared spectroscopy

regional cerebral

saturation (CrSO2)

Maximum PbtO2 was 12 kPa

(90 mmHg) (6.4 kPa (48

mmHg)) −15 kPa (112 mmHg)

and 25 kPa (187 mmHg) (15

kPa (112 mmHg)) −36 kPa

(270 mmHg) in piglets exposed

to 100% oxygen for 3 and

30min, respectively. In the

21% oxygen ventilated piglets,

maximum PbtO2 was 4.2 kPa

(31 mmHg) (3.3 kPa (25

mmHg)) −5.4 kPa (40 mmHg).

Linner et al.

(7)

Randomized

controlled animal

trial

Power

calculation

performed

Randomization

and blinding, but

randomization

procedure

not explained

“Domestic”

piglets

12–36 h 1.4–1.8 kg MAP > 40 mmHg

and HR > 150/min

Median (interquartile

range)

21% O2 67 (60–76) s

100% O2 3min 88

(76–126) s

100% O2 30min 68

(56–81) s

4 h Partial pressure of oxygen in

brain tissue (PbtO2 )

Near infrared spectroscopy

regional cerebral

saturation (CrSO2)

CrSO2-values were higher in

the piglets that received one

inflation with 100% oxygen per

minute, but no brain hyperoxia

was demonstrated:

Maximum PaO2 during

inadequate ventilation with

100% oxygen was 9.6 kPa (72

mmHg), and the highest PbtO2

was 5.7 kPa (43 mmHg).

(Continued)
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TABLE 1 | Continued

Design Reported

according to

ARRIVE

Subjects Age Weight ROSC definition Time to ROSC Post-ROSC

observation

Method for assessing

cerebral

oxygenation/perfusion

Main results

Presti et al.

(41)

Controlled animal

trial

Power

calculation not

performed

Non-randomized

Mice 3 days Not stated N/A

Not arrest

N/A 24 h and 7

weeks

13 mice were used to study

CBF:

Laser doppler flowmetry.

The changes in CBF were

recorded before, during, and

10min after hypoxia and

expressed as a percentage of

the prehypoxic level.

CBF was re-established faster

with 100% (n = 6) vs. 21%

oxygen (n = 7) in neonatal and

adult mice. However, 100%

oxygen resulted in cerebral

hyperperfusion (150% of

prehypoxic levels). The same

pattern was not seen in mice

exposed to 21% oxygen.

Solas et al.

(39)

Randomized

controlled animal

trial

No power

calculation

Randomization,

but

randomization

procedure

not explained

Noroc

piglets

1–3 days 1.4–2.7 kg N/A

Not arrest model

N/A 2 h Laser Doppler flowmetry MAP was lower and cerebral

cortical hypoperfusion more

pronounced in in piglets

exposed to 21% oxygen vs.

100% oxygen.

Solas et al. (4) Randomized

controlled animal

trial

No power

calculation

Randomization,

but

randomization

procedure

not explained

Noroc

piglets

1–3 days 1.1–2.5 kg N/A

Not arrest model

N/A 2 h Laser Doppler flowmetry There was a higher oxygen

delivery in the two groups (5 or

20min) receiving 100% oxygen

and a close to significantly

higher oxygen extraction ratio

in the 21% oxygen group.

Solas et al.

(42)

Randomized

controlled animal

trial

No power

calculation

Randomization,

but

randomization

procedure

not explained

Noroc

piglets

1–3 days 1.0–2.1 kg N/A

Not arrest model

N/A 2 h Laser Doppler flowmetry PaO2 during the first 30min of

reoxygenation-reperfusion was

higher in piglets ventilated with

100% oxygen. MAP was also

higher compared with piglets

ventilated with 21% oxygen.

MAP reached baseline values

after 10min of

reoxygenation-reperfusion in

the 100% oxygen group and

after 30min in the 21% oxygen

group. Cerebral

microcirculation was

re-established faster in the

group receiving 100% oxygen

vs. the 21% oxygen group.

Repeated-measures ANOVA

for the whole reoxygenation-

reperfusion period showed an

∼20% higher CBF in the 100%

oxygen group.

(Continued)
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TABLE 1 | Continued

Design Reported

according to

ARRIVE

Subjects Age Weight ROSC definition Time to ROSC Post-ROSC

observation

Method for assessing

cerebral

oxygenation/perfusion

Main results

Richards

et al. (43)

Randomized

controlled animal

trial

No power

calculation

Block

randomization,

but

randomization

procedure

nor explained

Yorkshire-

Landrace

piglets

1–3 days 1.5–2.1 kg N/A

Not arrest model:

PaO2

20–40 mmHg

for 2 h

N/A 4 h Left common CA flow

Carotid vascular resistance

was calculated as (mean

arterial pressure–central

venous pressure)/flow in the

common CA

Following reoxygenation

CBF was higher in

piglets resuscitated with

21% oxygen vs. both 50% and

100% oxygen

CBF was not different between

groups after 30min of

reoxygenation.

There was a significant

correlation between arterial

partial

pressure of oxygen and carotid

vascular resistance

Soberg et al.

(44)

Randomized

controlled animal

trial

No power

calculation

Block

randomization,

but

randomization

procedure

not explained

Noroc

piglets

14–36 h 2.0–2.7 kg N/A

Not arrest model:

MAP 15 mmH or

BE −20 mmol/L

N/A 9 h N/A Piglets ventilated with 21%

oxygen had significantly lower

levels of neurofurans and

neuroprostanes than piglets

that were ventilated with

supplementary oxygen in a

dose-dependent manner, i.e.,

21%<40%<100% oxygen.

Isoprostanes were significantly

lower in piglets ventilated with

40% vs. 100% oxygen.

Lundstrom

et al. (45)

Randomized

controlled trial

Power

calculation

performed to

detect a 10%

difference in

CBF

Randomization

procedure

not explained

Premature

infants <33

weeks

Delivery room 550–

2,590 g

N/A

Not arrest

N/A 2 h Xenon clearance 2 h after birth, CBF was 15.9

(13.6–21.9) ml/100 g/min in

the infants that had been

ventilated with 21% oxygen vs.

12.3 (10.7–13.8) ml/100 g/min

in infants ventilated with 80%

oxygen (P < 0.00001).

Studies were identified through hand searches of conference proceedings and reference lists. CC, chest compression; ROSC, return of spontaneous circulation; HR, heart rate; MAP, mean arterial blood pressure; BE, base excess;

SBP, systolic blood pressure; CA, carotid artery; CBF, cerebral blood flow; ARRIVE, Animal Research: Reporting in vivo Experiments.
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main findings related to cerebral oxygenation/perfusion
and oxygenation.

Rawat et al. (40) performed secondary analyses of data from
transitional lambs with cardiac arrest induced by umbilical cord
occlusion (PaCO2 125 mmHg = 16.7 kPa). After 5min of
asystole, ventilation was initiated with 21% oxygen. When CC
was started, oxygen was increased to 100% (n = 25) or kept at
21% (n= 9). Lambs were observed for 30min after ROSC during
which FiO2 was titrated to a preductal SpO2 85–95%. All lambs
achieved ROSC after the same number of epinephrine doses.
The authors concluded that carotid artery (CA) flow, systemic
PaO2, and oxygen delivery to the brain were very low during CC
irrespective of ventilation with 21 or 100% oxygen during CPR.

From the reference list of Rawat et al. (40), we identified
a randomized trial by Perez-de-Sa et al. (5). They examined
asphyxiated (PaCO2 17 kPa = 127 mmHg) transitional lambs;
CC was performed with 21% oxygen (n= 7) or 100% oxygen for
3min (n = 6) or 30min (n = 6). Systemic circulatory recovery
measured by heart rate and blood pressure was similar in the
three groups. One lamb randomized to resuscitation with oxygen
for 30min was excluded because of anemia. The remaining lambs
survived to completion of the protocol. Messenger ribonucleic
acid expression in the brain of interleukin (IL)-1ß, IL-12, and
IL-18 were not different between the groups.

Also, from the reference list of Rawat et al. (40), we identified
a randomized trial by Linner et al. (6) who used asphyxiated
(PaCO2 21 kPa= 157 mmHg) piglets to investigate if ventilation
with 100% oxygen [for 3min (n = 12) + for 30min (n = 13)],
instead of 21% oxygen (n= 13) would improve ROSC during CC.
One piglet resuscitated with 21% oxygen did not achieve ROSC,
whereas one piglet that was assigned to ventilation with oxygen
for 30min achieved ROSC, but died 10min after initiation of
ventilation. The time to recovery of cerebral oxygenation was
defined as the time when CrSO2 reached 30%, and when PbtO2

had increased 0.1 kPa (0.75 mmHg) from its lowest level. They
concluded that shortening the time of exposure to 100% oxygen
to 3min did not prevent brain tissue hyperoxia.

In a randomized controlled trial, Linner et al. (7) used the
same piglet model to investigate whether one inflation perminute
with 100% oxygen (n = 8) would improve recovery compared
to one inflation per minute with 21% oxygen (n = 8). The
setup was designed to mimic a situation with severely inadequate
ventilation. At the end of 10min of inadequate ventilation, the
21% oxygen group had a higher lactate and lower PaCO2 than
the oxygen group. Two animals in the 21% oxygen group did not
achieve ROSC.

(3) Several studies where no CC was provided were included
to supplement the scarce data available from CC animal studies
(Table 1).

Supplemental Oxygen Increases CBF
Presti et al. (41) investigated CA ligated neonatal and adult mice
that had been exposed to 20min of 8% oxygen, followed by
30min of 21 or 100% oxygen. PaCO2 values were not reported,
but presumably, this was a model of normocapnia.

Laser Doppler flowmetry revealed a CBF of 150% of
prehypoxic levels in mice exposed to 100% oxygen. Neonatal

mice exposed to 100% oxygen (n = 32) had significantly delayed
geotaxis reflex at 24 h, when compared with neonatal mice
exposed to 21% oxygen (n= 37). In contrast, adult mice exposed
to 100% oxygen (n= 18) demonstrated significantly better spatial
learning and orientation with a tendency toward better memory
preservation vs. mice exposed to 21% oxygen (n= 27). There was
a trend toward a higher mortality among 100% resuscitated mice
vs. those resuscitated with 21% oxygen.

In a randomized controlled design, Solas et al. (39) used
a piglet model of cerebral hypoxemia-ischemia (8% oxygen
and bilateral common CA occlusion) and demonstrated a
significantly higher mean arterial blood pressure (MAP) and
faster re-establishment of cerebral cortical microcirculation
during ventilation with 100% oxygen for 30min (n = 12)
compared with 21% oxygen (n= 12) (39). Excitatory amino acids
in the striatumwere higher in the 21% oxygen group. No pig died
in either group.

The investigators subsequently added moderate hypercapnia
(mean PaCO2 8.4 kPa = 63 mmHg) to the model and confirmed
that cerebral cortical microcirculation was higher when piglets
were ventilated with 100% oxygen for 5min (n = 12) or 20min
(n = 12) compared with 21% oxygen (n = 12) (4). There
were no differences in biochemical markers including excitatory
amino acids in the striatum between the groups. No pig died in
either group.

In a third randomized study by Solas et al. (42), piglets
with moderate hypercapnia to more closely simulate
perinatal asphyxia, were subjected to 20min of combined
hypoxemia-ischemia-hypercapnia followed by reperfusion and
reoxygenation: (1) with 100% oxygen for the first 30min and
then 21% oxygen for another 90min (n = 11), or (2) with 21%
oxygen for 120min (n = 13). No differences in biochemical
markers were found between the two groups. No pig died in
either group.

Supplemental Oxygen Reduces CBF
In a randomized controlled trial of normocapnic hypoxemia,
Richards et al. (43) subjected piglets to FiO2 0.10–0.15 for 2 h
and randomized them to reoxygenation with 21% oxygen (n
= 8), 50% oxygen (n = 8), or 100% oxygen (n = 8) for 1 h,
followed by 21% oxygen for 3 h. They found an oxygen dose-
dependent increase in global matrix metalloproteinase-2 (MMP-
2) activity in the brain. Based on the relationship between FiO2,
CA vascular resistance and cerebral MMP-2 activity, the authors
speculated that a higher PaO2 may play a role in vasoregulation
through an oxidative stress related activation of peroxynitrite and
vascular MMP-2.

Solberg et al. (44) conducted a randomized controlled trial
in asphyxiated piglets (PaCO2 8.6–8.9 kPa = 64–67 mmHg) to
measure the levels of oxidative stressmarkers (lipid peroxidation-
oxidation products of arachidonic acid and docosahexanoic acid)
in the cerebral cortex after hypoxia and reoxygenation with 21%
(n = 9), 40% (n = 12) or 100% oxygen (n = 8). Solberg et al.
(44) did not measure CBF of perfusion, but discussed the fact that
isoprostanes have been reported to be potent vasoconstrictors of
brain vasculature (46). High values of isoprostanes measured in
the 100% group could thereby promote cerebral vasoconstriction.
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Lundstrom et al. (45) used Xenon clearance to measure
CBF in premature infants <33 completed weeks of gestation.
CBF was lower 2 h after randomization to <10min ventilation
with 80% oxygen (n = 35) compared to <10min ventilation
with 21% oxygen (n = 34) at birth. Median PaCO2 was
6 kPa (45 mmHg) (not different between the groups)
at the time of measurement. The authors suggested a
prolonged effect of hyperoxaemia, possibly mediated by
an effect of toxic oxygen metabolites on the cerebral
vasculature in premature infants. Cardiac left ventricular
output was not significantly lower in the infants treated with
80% oxygen.

DISCUSSION

A fine balance exists between relaxing and contracting factors
in vascular endothelial cells during asphyxia and reoxygenation-
reperfusion, and oxygen radicals are potent regulators of cerebral
arteriole and artery tone (47, 48). The results of this literature
review were slightly conflicting regarding how FiO2 influences
cerebral perfusion and oxygenation in neonatal animals and
premature infants. Epinephrine and anesthetics may influence
cerebral perfusion and -autoregulation, which may explain some
of the differences in experimental animal studies. Epinephrine
increases cerebral perfusion pressure (49), CBF (50, 51), and
cerebral oxygen uptake (51). Solberg et al. (44) used isoflurane
for induction in piglets. Isoflurane abolishes CBF autoregulation
(52), but has a short half-life and was only used in the initial
phases of the experiment.

Moderate hypercapnia may protect the brain from hypoxic-
ischemic injury (39, 53). The mechanisms include reduced
cerebral energy utilization (54) and preserved high-energy
phosphate reserves (55). Hypercapnia also shifts the oxygen-
hemoglobin dissociation curve to the right, resulting in increased
oxygen unloading to the tissues despite tissue hypoperfusion.
Solas et al. (42) demonstrated that MAP and microcirculation
in the cerebral cortex decreased somewhat less during hypoxia-
ischemia, and recovered more rapidly during reoxygenation-
reperfusion when CO2 was added to the model. Although a
higher MAP and cortical microcirculation was found in the 100%
compared with the 21% group, the difference between the groups
was less marked than in normocapnia (39). CO2 influences CBF,
and both term animals and humans have a strong cerebrovascular
sensitivity to changing PaCO2 (56–58), with an increase in CBF
of 25%/kPa PaCO2 in healthy term babies. However, this CO2

reactivity may be lost in severe asphyxia (57).
Richards et al. (43) and Solberg et al. (44) speculated

that elevated MMP-2 and isoprostanes, respectively, in piglets
resuscitated with supplemental oxygen could promote cerebral
vasoconstriction and thus a lower CBF. Based on other
investigations reported in this paper, it is perhaps more likely
that 100% oxygen, when administered after asphyxia, increases
CBF. However, the results of Richards et al. (43) and Solberg et al.
(44) are in agreement with studies that indicate that 100% oxygen
exacerbates reperfusion injury and reduces cerebral perfusion in
premature infants (45).

Autoregulation ensures cerebral perfusion and oxygenation
by maintaining CBF if cerebral perfusion pressure changes
(59). Under normal conditions, hyperoxia induces cerebral
vasoconstriction (60), but this oxygen reactivity may be lost
during tissue ischemia (61). Hyperoxia may work directly on
vascular tone, but also indirectly through the formation of
reactive oxygen species (62). The effects of hydrogen peroxide
(H2O2) on vascular tone have been the most extensively studied.
Exogenous H2O2 produces relaxation of cerebral arteries in vitro
(48, 63–65).

Neonatal oxygen requirements and responsiveness of the
cerebral vasculature to hyperoxia may differ at different levels
of maturity and depend on perinatal factors. Fetal oxygen
saturation is about 50%, and a healthy newborn requires at least
5min to achieve an oxygen saturation >90% (66). The increase
in oxygenation is delayed in infants with halted pulmonary
vasodilatation, e.g., in chorioamnionitis where inflammation and
pulmonary remodeling predispose to impaired gas exchange
and persistent pulmonary hypertension. Initiation of breathing,
together with the use of oxygen and mechanical ventilation
contribute to oxidative stress and inflammation (67, 68), not
only in the lungs, but systemically with consequences for other
organs including the brain. In addition, altered pulmonary
venous return and, subsequently, left ventricular output, result in
CBF fluctuations. Supplemental oxygen contributes to decreased
pulmonary vascular resistance and increased PBF and may thus
be needed in e.g., infants born to mothers with chorioamnionitis.
The effect of arterial oxygen tension on pulmonary arterial
pressure and ductal shunting is gestational age dependent. Left
to right ductal shunting may result in cerebral hypoperfusion
secondary to reduced perfusion pressure in preterm infants and
might explain why ventilation with 100% oxygen resulted in
∼15% reduction in CBF in premature infants (40, 41). Exposure
to supplemental oxygen at birth also resulted in prolonged
cerebral vasoconstriction in preterm infants (6). Tsuji et al.
(69) documented that a high oxygen saturation was associated
with impaired cerebrovascular autoregulation and brain injury
in premature infants. Niijima et al. (60) observed a fall in
CBFV in healthy premature infants with hyperoxemia. Similarly,
Leahy et al. (70) observed a significant decrease in CBF in
healthy premature neonates after inhalation of 100% oxygen (25).
Mechanisms of impaired autoregulation in hyperoxemia include
oxidative stress, local production of vasodilators like nitric oxide,
and direct vasoparalysis. These responses are gestational age
dependent, which may explain that the data by Lundtrom et al.
(45) in premature infants contrast to results in term equivalent
animals that 100% oxygen increases CBF.

The result by Presti et al. (41) in mice is consistent with
the report by Solas et al. (4) who demonstrated that 100%
oxygen restored cerebral cortical microcirculation faster than
21% oxygen in piglets following hypoxia-ischemia (20). Even
though threshold values for regional CBF after asphyxia have not
been established, Solas et al. (39) concluded that a fast restoration
of the cerebral microcirculation is beneficial as it was associated
with less excitatory amino acids in the striatum. However, Presti
et al. (41) demonstrated a trend toward a higher mortality among
100% resuscitated mice vs. mice resuscitated with 21% oxygen
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and concluded that 100% oxygen may be deleterious at the early
stage of recovery due to reactive vasodilatation (71).

Limitations of this review include that we failed in optimizing
our search strategy to capture studies that addressed our research
questions. Thus, selection of the included studies was more
subjective. We did not identify clinical studies that fulfilled our
inclusion criteria, and studies in mainly severely asphyxiated
post-transitional animals, as well as one study in premature
infants were included. During perinatal transition with fluid
filled lungs and less surface area for gas exchange, the effects
of any given FiO2 is likely to differ from the post-transitional
state. During initial stabilization, guidelines recommend that
oxygen should be titrated to achieve a preductal SpO2 that is
reflective of what healthy term infants experience. We identified
no study that investigated weaning/titration of FiO2 after CC
with 100% oxygen. None of the included studies reported
PaO2 levels during CC. Most studies used SpO2 to measures
blood oxygenation. SpO2 does not necessarily represent oxygen
uptake and usage by organs, including the brain. Increased
blood flow and/or oxygen extraction may serve to maintain
oxygen delivery during hypoxemia. Thus, SpO2 alone provides
limited information on oxygen consumption by tissues at high
or low blood oxygen levels. Near-infrared spectroscopy (NIRS)
measures tissue oxygen saturation continuously in a non-invasive
manner (72), and was used in some of the studies. Finally, the use
of CA flow as a surrogate of CBF could be criticized. However,
Gratton et al. (73) demonstrated a direct correlation between CA
flow and CBF during hypoxia and reoxygenation in lambs.

In conclusion, CPR with 100% oxygen may more rapidly
restore CBF after hypoxia-ischemia, and increases cerebral
oxygen delivery. Indeed, the latter may incur oxidative stress-
related damage to the ischemic brain while systemic circulatory
recovery is the same whether 21 or 100% oxygen is used during
neonatal CPR. The advantage of using pure oxygen in neonatal
CPR remains to be determined.
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