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Considering the problems of low resolution and rough details in existing mural images, this paper proposes a superresolution
reconstruction algorithm for enhancing artistic mural images, thereby optimizing mural images. )e algorithm takes a generative
adversarial network (GAN) as the framework. First, a convolutional neural network (CNN) is used to extract image feature
information, and then, the features are mapped to the high-resolution image space of the same size as the original image. Finally,
the reconstructed high-resolution image is output to complete the design of the generative network. )en, a CNN with deep and
residual modules is used for image feature extraction to determine whether the output of the generative network is an authentic,
high-resolution mural image. In detail, the depth of the network increases, the residual module is introduced, the batch
standardization of the network convolution layer is deleted, and the subpixel convolution is used to realize upsampling. Ad-
ditionally, a combination of multiple loss functions and staged construction of the network model is adopted to further optimize
the mural image. A mural dataset is set up by the current team. Compared with several existing image superresolution algorithms,
the peak signal-to-noise ratio (PSNR) of the proposed algorithm increases by an average of 1.2–3.3 dB and the structural similarity
(SSIM) increases by 0.04� 0.13; it is also superior to other algorithms in terms of subjective scoring. )e proposed method in this
study is effective in the superresolution reconstruction of mural images, which contributes to the further optimization of ancient
mural images.

1. Introduction

Ancient murals are the bright pearl in the treasure house of
cultural heritage. At present, the protection of murals mostly
focuses on the field research of ancient murals and the
restoration of damaged areas of murals. For instance, Tong
et al. [1] studied the paint layer and bottom layer of a Tang
Dynasty tomb mural using spectral-domain optical coher-
ence tomography. Wu et al. [2] proved the existence of
casein in ancient Chinese mural pigments. Liang and Wan
[3] proposed the idea of making color charts for Dunhuang
frescoes to improve the color and spectral accuracy of digital
imaging of cultural works of art. Cao et al. [4] proposed an
ASB-LB algorithm to solve the problem of flake shedding of
temple mural images. Sun et al. [5] proposed a line drawing
generationmethod, whichmademural images have different

artistic styles. With the gradual development of ancient
mural protection work and the maturity of superresolution
reconstruction technology, mural image conservation will be
further extended.

Image superresolution reconstruction refers to a tech-
nique that inputs one or more low-resolution images and
outputs the corresponding high-resolution images through a
specific algorithm.)is will make mural images have a better
effect on high-frequency detail information and overall
image performance. From the perspective of algorithm
types, superresolution reconstruction technology can be
divided into interpolation-, reconstruction-, and learning-
based superresolution reconstruction. Li and Orchard [6]
proposed a new edge-oriented self-adaptive interpolation
scheme. Based on the invariability of edge direction reso-
lution, a high resolution was used to guide interpolations to
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enhance the resolution of still images. Interpolation-based
methods have the advantages of low computational com-
plexity and ease of understanding, but they also have some
serious defects. Restored superresolution images often ap-
pear blurred or sawtooth. Li et al. [7] proposed a single image
superresolution reconstruction method based on a genetic
algorithm and regularization prior model. In this model, a
genetic algorithm was used to search the solution space to
avoid a local minimum value; then, the regularization prior
model was used to perform a single point search in the
solution space, and a higher quality superresolution re-
construction estimation was obtained. Zhao et al. [8] pro-
posed a novel single image superresolution reconstruction
method based on the unified partial differential equation,
and the method achieved a good effect in enhancing the
image edge and suppressing noise robustness. Zhang and He
[9] proposed a single image superresolution reconstruction
method based on mixed sparse representation, which was
particularly effective for optimizing the reconstruction of
noisy images. Bahy et al. [10] proposed a method based on
local adaptive regularization parameters instead of fixed
regularization parameters, which is convenient for
addressing the reconstruction of low-resolution multifocus
images. Nayak and Patra [11] proposed a new RSRR
framework to keep the reconstructed image structure
consistent. Dai et al. [12] proposed a method to represent
soft edge smoothness based on SoftCuts measurements. )is
method first obtains the key information in the original
image and combines the prior knowledge of the unknown
superresolution image to constrain the generation of the
corresponding superresolution image. Compared with the
interpolation-based method, the above method has a better
image superresolution reconstruction effect, but the method
of constraining the generation of superresolution images by
prior knowledge of unknown superresolution images may
make the edge of superresolution images too sharp. Fur-
thermore, the details of the image may become increasingly
unstable with increasing image size.

In contrast, the method based on deep learning uses a
large quantity of training data through multilayer nonlinear
transformation to learn the corresponding relationship in
some high-level abstract features between low-resolution
images and high-resolution images and then realizes the
superresolution reconstruction of the image according to the
mapping relationship between the acquired images. Dong
et al. [13] applied a convolutional neural network (CNN) to
the field of superresolution reconstruction for the first time
and proposed a deep-learning method for single image
superresolution. For an input low-resolution image, the input
image was first magnified to the target size by bicubic in-
terpolation; then the nonlinear mapping between the in-
terpolated low-resolution image and the high-resolution
image was fitted by the CNN, and, finally, the reconstructed
high-resolution image was output. However, this algorithm
still retains part of the difference algorithm and does not
thoroughly apply the idea of deep learning. Mao et al. [14]
proposed a complete convolution encoding-decoding
framework. )is network consists of multiple convolution
layers and deconvolution layers. Convolution layers capture

the abstract content of the image and eliminate the damage;
deconvolution layers upsample the features and restore
image details; additionally, symmetric skips are introduced,
which makes the training converge faster. However, this
algorithm is likely to produce overfitting in superresolution
reconstruction of mural image datasets. Huang et al. [15]
proposed a multiframe superresolution method based on the
consideration of image enhancement and image denoising.
)is method suppressed Gaussian noise and salt and pepper
noise andmade the edge of the reconstructed high-resolution
image clear. However, the feature extraction ability of the
algorithm is low, and, therefore, the superresolution re-
construction of the image with complex information is
slightly fuzzy.

Anagun et al. [16] used a variety of loss functions to
combine with the Adam optimizer for the selection of a
satisfactorily convergent loss function. )ey also increased
the residual module of the network to improve the per-
formance of the model and used the Charbonnier or L1 loss
function to reduce the time cost of model construction. Qin
et al. [17] proposed a novel multiscale feature fusion residual
network, which improved the expression ability of the
network to obtain more accurate high-resolution images
with satisfactory accuracy and visual effect. Zhang and An
[18] introduced a superresolution reconstruction method
based on migration learning and deep learning, which can
not only obtain high-quality, high-resolution images but also
reduce the time cost of model construction. Ledig et al. [19]
proposed the SRGAN algorithm and designed a loss func-
tion to enhance the reality of the restored image. In their
method, the adversarial loss function of the generative
adversarial network (GAN) was combined, which enables
the output superresolution image to be more authentic. Lim
et al. [20] proposed the EDSR algorithm, which removed
batch standardization, reduced the space used during
training, and removed the unnecessary modules in the
traditional residual network. To improve the efficiency of
high-resolution image reconstruction, Mei et al. [21] ex-
tended traditional nonlocal attention to a new cross-scale
nonlocal attention to model cross-scale self-similarity. Jiang
et al. [22] proposed a hierarchical dense connection network
structure to improve the efficiency of superresolution re-
construction. Yi et al. [23] proposed a multitemporal ul-
tradense memory network for video superresolution, which
expanded the width of the network and reduced the layer
depth to reduce computational complexity. Jiang et al. [24]
proposed a GAN-based edge-enhancement network, based
on which clearer images were obtained, compared with
previous GAN-based methods. All of the above learning-
based superresolution reconstruction algorithms optimize
the network structure and loss function from different
perspectives and solve specific problems. However, due to
the characteristics of mural images, such as small image
datasets, uneven image quality, and rich image color, there
are still many defects in the direct application of the existing
superresolution reconstruction methods, such as fuzzy
restoration of important texture information of the image,
impure color in the reconstructed image, and changes in the
overall artistic effect of the original image artistic.
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Based on the aforementioned information, this study
proposes a new superresolution reconstruction algorithm,
which is applied to the superresolution reconstruction of
ancient mural images. )e improvement of the proposed
algorithm is mainly as follows:

(1) )e network design takes GAN as the basic frame-
work, including the generative network and the
discriminate network; MSE loss, VGg loss, and
adversarial loss functions are introduced to optimize
the network in two stages.

(2) )e generative network is based on CNN, in which
deconvolution operation is replaced by subpixel
convolution, batch standardization is removed, and
residual module is introduced to deepen the network
to optimize the network structure.

(3) )e discriminant network increases the number of
network layers, and residual modules are integrated
to enable the network to extract more image in-
formation, and the expression ability of the dis-
criminant network is increased to further optimize
the generative network model.

2. Methodology

2.1. GAN. Since GAN was first proposed by Ian Goodfellow
in 2014 [25], there has been a new upsurge of research. GAN
is composed of generators and discriminators.)e generator
is responsible for generating samples, and the discriminator
is responsible for determining whether the samples gener-
ated by the generator are true. )e generator should confuse
the discriminator as much as possible, and the discriminator
should distinguish the samples generated by the generator
from the real samples as much as possible.

)e basic structure of the GAN is illustrated in Figure 1.
)e target function of GAN is as follows:

min
G

max
D

V(D, G) � Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))].
(1)

In the first part, the optimization of the discriminator is
realized through maxDV(D, G), V(D, G) is the objective
function of the discriminator, and the first item V(D, G)

represents themathematical expectation of the probability of
the samples from the real data distribution, which are de-
termined as the real samples by the discriminator. For the
sample from the real data distribution, the closer the
probability of being predicted as a positive sample is to 1, the
better. )e second item Ez∼pz(z)[log(1 − D(G(z)))] repre-
sents the expectation for the negative logarithm of the
prediction probability by the discriminator for the image
generated by the generator that originates from the noise
distribution pz(z). A higher expectation value indicates a
better performance of the discriminator.

In the second part, the optimization of the generator is
realized through minGmaxDV(D, G). )e generator is not
the objective function of the minimized discriminator
minGV(D, G) but the maximum value of the objective
function of the minimized discriminator. )e maximum

value of the objective function of the discriminator repre-
sents the Jensen-Shannon (JS) divergence between the
distribution of the real data and that of the generated data. JS
divergence can measure the similarity of distributions. )e
closer the two distributions are, the smaller the JS divergence
will be.

2.2. ResidualNetwork. By increasing the number of network
layers in the CNN, more abstract and semantic image fea-
tures can be extracted. However, simply increasing the
number of layers of the network causes gradient dispersion
and degradation, which may eventually lead to saturation or
even decline in the accuracy of the model in the training set.
To solve this problem, He et al. [26] proposed a residual
network (ResNet) and achieved satisfactory results in the
classification task in the ImageNet competition. For its
simple and practical characteristics, ResNet has been widely
used in the fields of target detection, image segmentation,
and text recognition. )e basic structure of the residual
module is shown in Figure 2.

In the figure, X represents the input of the residual block of
the current layer, F (x) represents the residual error of the
module, and the weight layer represents the weight of this layer.
X is an input value, and F (x) is the output after linear change
and activation of the first layer. Between the linear change in
the second layer and activation, the input value of the current
layer X is added, and then F (x) is output after activation.

2.3. Superresolution Reconstruction Algorithm of Mural Im-
ages to Enhance Artistry. Based on the characteristics of
ancient murals and image restoration algorithms, this study
designs a new algorithm for the superresolution recon-
struction of artistic mural images. )e overall structure of
the algorithm is shown in Figure 3, which mainly focuses on
three aspects: the network structure design, loss function,
and the training and testing process.

2.3.1. Network Structure Design. )e mural image optimi-
zation network is divided into two parts: the generative
network and the discriminant network. )e generative
network aims to output high-resolution images after
superresolution reconstruction. )e discriminant network
aims to determine the authenticity of the output image of the
generative network and the real mural image.

)e design architecture of the generative network follows
the encoder-decoder structure, which is mainly divided into
feature extraction and image reconstruction. )e input of the
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Figure 1: Basic structure of GAN [25].
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network is a low-resolution mural image and the output is a
high-resolution image corresponding to the input image.

In the feature extraction, 16 residual modules are intro-
duced for feature extraction based on the idea of residual
learning. It is worth noting that when dealing with high-level
computer vision problems, such as image classification, batch
normalization (BN) is usually integrated before each activation
function of the convolution layer of the neural network to
speed up the training time of the network model and solve the
problems of gradient explosion and gradient dispersion [27].

When dealing with the problem of low-level computer
vision and the deep network trained under the GAN

framework, the addition of the BN layer will produce ar-
tifacts, consume more computing performance, and reduce
the effect of image superresolution reconstruction. In such a
situation, the BN operation is removed from the residual
module to further optimize the network structure. )e
comparison between the traditional residual module and the
residual module used in this study is shown in Figure 4.

After the low-resolution features are extracted, super-
resolution image restoration is performed, followed by the
final output of the high-resolution image. During upsampling,
this study uses subpixel convolution instead of transposition
convolution. Subpixel convolution uses a normal convolution
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Figure 3: Structure of the proposed algorithm for the superresolution reconstruction of artistic mural images.
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Figure 2: Basic structure of the residual module [26].
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structure, but the output channel is related to the target
resolution. A shuffle operation is performed over the channel
to obtain the output whose resolution is the same as that of the
target. Compared with transposed convolution, the best
feature of subpixel convolution is that the receptive field of the
feature map is larger, which can provide more image in-
formation for superresolution reconstruction.

)e main purpose of the discriminant network is to
accurately classify real superresolution images and super-
resolution image output by the generative network. With the
improvement in classification accuracy, it promotes the
optimization of the generative network, thereby producing
high-quality, high-resolution images.

)e discriminant network consists of the input layer,
convolution layer, and fully connected layer. Network inputs
include authentic high-resolution images and generated
high-resolution images. To extract higher-dimensional im-
age features, 11 convolution layers are used. )e 9–11th
layers form the residual module, and the outputs of the 8th
layer and 11th layer are then summed to obtain the final
image features. )is treatment makes the network avoid
gradient dispersion and other problems to some extent.
Finally, the discriminant network design is completed after
the classification of the fully connected layer. )e details of
the discriminant network are summarized in Table 1.

2.3.2. Loss Function. )e loss function of the generative
network consists of content loss (lSRX ) and adversarial net-
work loss (lSRGen). )e loss function of the generative network
is calculated as follows:

l
SR

� l
SR
X + 10−3

l
SR
Gen. (2)

Content loss includes MSE loss (lMSE) and VGG loss
(lVGG). Generally, mean square error loss is used for network
optimization to obtain high-resolution images with high
similarity at the pixel level. MSE is the sum of the square of
the distance between the target variable and the predicted
value of each sample. MSE is calculated, which is the sum of
all squared losses for each sample, and then is divided by the
number of samples. )e MSE loss function is as follows:

lMSE �
1
N

􏽘
(x,y)∈D

(y − prediction(x))
2
, (3)

where N refers to the number of samples, (x, y) refers to the
sample (x is the feature set in the training sample, and y is the
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Figure 4: )e comparison of residual modules. (a) Traditional residual module. (b) Improved residual module.

Table 1: Details of the discriminant network.

Name Type Kernel Stride Outputs
Conv1 Conv 4× 4 2× 2 64
Conv2 Conv 4× 4 2× 2 128
Conv3 Conv 4× 4 2× 2 256
Conv4 Conv 4× 4 2× 2 512
Conv5 Conv 4× 4 2× 2 1024
Conv6 Conv 4× 4 2× 2 2048
Conv7 Conv 1× 1 1× 1 1024
Conv8 Conv 1× 1 1× 1 512
Conv9 Conv 1× 1 1× 1 128
Conv10 Conv 3× 3 1× 1 128
Conv11 Conv 3× 3 1× 1 512
FC FC — — 1
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real value in the training sample), and prediction (x) refers to
the predicted value of the sample.

)e mere use of the MSE loss function is likely to
produce local area smoothing, which creates difficulty in
recovering lost high-frequency details, such as texture
information. )erefore, the VGG loss function is inte-
grated. )e VGG loss function obtains the difference in
the feature map between the real high-resolution image
and the generated high-resolution image and then opti-
mizes the model in a higher feature dimension using a
gradient descent algorithm. Specifically, the generated
high-resolution image and real high-resolution image are
input into the pretrained 19-layer VGG network. Based on
the feature map obtained after VGG network processing,
the Euclidean distance is calculated, which is taken as the
VGG loss. )e calculation formula of VGG loss is as
follows:

lVGG(i,j) �
1

Wi,jHi,j

􏽘

Wi,j

x�1
􏽘

Hi,j

y�1
ϕi,j I

HR
􏼐 􏼑

x,y
− ϕi,j GθG

I
LR

􏼐 􏼑􏼐 􏼑
x,y

􏼒 􏼓
2
,

(4)

where i and j represent the jth convolution (after activation)
before the ith pooling layer, W and H represent the width
and height of the feature map, respectively, IHR represents
the real high-resolution image, ILR represents the low-res-
olution image, GθG

(ILR) is the superresolution image of the
low-resolution image generated by the network model, and
ϕi,j(IHR)x,y − ϕi,j(GθG

(ILR))x,y is the difference between the
real superresolution image and the generated super-
resolution image in the feature map obtained through the
VGG19 network.

Finally, the idea of adversarial learning is introduced into
the network, and the generative adversarial loss is included
in the calculation of the loss function to further optimize the
generative network model. )e calculation formula of the
generative adversarial loss is as follows:

l
SR
Gen � 􏽘

N

n�1
−logDθG

GθG
I
LR

􏼐 􏼑􏼐 􏼑, (5)

where DθG
(GθG

(ILR)) represents the probability that the
high-resolution image generated by the generative network
is identified as the real high-resolution image by the dis-
criminant network.

2.3.3. Training-Testing Flow Sheet. In this study, the
training process is divided into the training of the gen-
erative network and that of the generative network com-
bined with the discriminant network. )e specific training
algorithm for the network model is described as follows
(Algorithm 1).

)e flowchart of the model training is shown in Figure 5.
After model training, the generated network model and

discriminant network model are finally obtained. )en, the
generative network model is tested. In the testing process,
the basic processes are basically consistent with those of the

training processes, except that the parameters of the network
model are no longer updated.

3. Results and Discussion

3.1. Experimental Design. Dataset: In this study, the public-
open DIV2K dataset combined with a small number of
mural image datasets is used to complete the construction of
the network model. )e DIV2K contains 800 pairs of images
with various types and rich features, and the mural datasets
contain 100 pairs of ancient high-quality mural images,
which, to a certain extent, solves the problem of the ad-
aptation of the depth domain. In the process of training, we
use DIV2K and 50 pairs of mural images to complete the
construction of the model. In the test process, 50 other pairs
of mural images are used to collect the results data analysis.
)e verification dataset in this study is ancient mural images.
)e comparative experiment is divided into objective index
comparison and subjective evaluation comparison to make
the experiment more complete and the experimental results
more convincing.

Experimental environment: )e effectiveness of the
proposed algorithm is verified. )e hardware environment
primarily consists of an Intel core i5-9400fF@2.90GHz, with
16GB of memory and a Nvidia GeForce RTX2070 video
card. )e software environment is Python 3.7 for language
programming on the Windows 10 system, with TensorFlow
as the framework to complete the superresolution recon-
struction of mural images.

3.2. Experimental Results and Analysis. Ten mural images of
different styles with different color contrast and rich texture
details were locally magnified four times, and the super-
resolution reconstruction effect of the proposed algorithm
was compared with those of the bicubic interpolation (BI)
algorithm [6], EDSR algorithm [19], and SRGAN algorithm
[20]. )e results are shown in Figure 6.

As shown in Figure 6, the superresolution images re-
stored by the interpolation-based BI algorithm appear
blurred with zigzagged image texture. )is is because this
algorithm assumes that the gray value of image pixels
changes continuously and smoothly. However, this as-
sumption is not in line with the actual situation. Addi-
tionally, this algorithm does not consider the degradation
model of the image, resulting in unsatisfactory super-
resolution. Currently, the deep-learning-based EDSR algo-
rithm and SRGAN algorithm are extensively used in
practice. Compared with the BI algorithm, these two greatly
improved the repair effect.

However, due to the small number of network layers
used in these algorithms for image feature extraction, more
image details cannot be obtained. )is drawback results in a
blurred superresolution reconstruction effect at the edge
region of the image. Moreover, large deviations may
sometimes exist in the optimization of image color based on
these algorithms, and, therefore, the restoration effect on
reconstructed image details needs to be improved. Com-
pared with the above-mentioned superresolution
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reconstruction algorithms, the algorithm proposed in this
study achieves a better effect on the superresolution re-
construction in terms of texture information and color
saturation.

3.2.1. Subjective Assessment. Comparisons in objective in-
dices may not fully reflect the human visual perception of the
mural superresolution reconstruction image. To make the
superresolution image reconstruction more universal, we
also selected five experts in the field of mural work and 20
professionals with normal vision to score the optimization
effect of the four different algorithms. )e highest score was
10, and the lowest was 1. )e quality of the mural image was
judged according to the score.

All the selected experts performed much research
work in the field of murals and have a deep understanding
of murals. )e selection of experts for scoring enables the
comparative results to be more referential and authori-
tative. Ten representative mural images were selected by
the five experts, and the optimization effects of the four
algorithms were evaluated from the perspectives of overall
esthetics and texture details. )e scores assigned by the
experts in terms of overall esthetics are shown in
Figure 7(a), which reflects whether the overall color of the
reconstructed images is rich and in line with the artistic
conception of the mural. )e scores assigned by the ex-
perts in terms of texture structure are shown in
Figure 7(b), which reflects whether the changes in the
lines and texture color are consistent with the painting
habits of the murals. )e average scores are shown in
Figure 7(c), which can avoid scoring contingency and
more scientifically exhibit the advantages and disadvan-
tages of different algorithms.

)e purpose of mural image optimization is not only to
protect ancient cultural relics but also to encourage ordinary
people to learn and appreciate the beauty of ancient murals.
For this reason, we selected 20 people from different work
positions to score 5 mural images optimized by different
algorithms. )e average scores of each algorithm were

obtained. )ese scores represent the recognition of the vast
majority of people for different quality mural images and the
excellence of the corresponding algorithm. )erefore, the
score results were more universal. )e scoring results are
shown in Table 2.

Compared with other superresolution reconstruction
algorithms, the experts in the field of murals gave a higher
evaluation of the algorithm proposed in this study in terms
of overall esthetics and texture detail structure, which re-
flects the effectiveness and superiority of the algorithm in the
professional field. Similarly, the volunteers from different
industries also gave a higher score for the mural image
optimized under the proposed algorithm, which shows that
the mural images optimized by the algorithm in this study
achieved satisfactory results. )erefore, the algorithm pro-
posed in this study also outperformed other algorithms in
terms of subjective evaluation.

3.2.2. Objective Assessment. In addition to the three algo-
rithms mentioned above, this study also selects four recently
proposed algorithms that are representative in the field of
the superresolution reconstruction of images, and the al-
gorithm obtained after the discriminant network is removed
from the algorithm proposed in this study, for comparisons
in terms of PSNR, SSIM, natural image quality evaluator
(NIQE), and inference time.

PSRN evaluates the quality of the image by comparing
the differences between the corresponding pixels of the two
images. A higher PSNR indicates a smaller distortion and
better superresolution reconstruction effect. )e PSNR is
calculated as follows:

PSNR � 10 log10
2552 × W × H

􏽐
W
i�1 􏽐

H
j�1 [X(i, j) − Y(i, j)]

2, (6)

where W is the width of the image, H is the height of the
image, and X (i, j) and Y (i, j) represent the pixel values of
two superresolution images.

Input: low-resolution image and the corresponding high-resolution image
Output: the generative and discriminant network models

(1) Step 1: the low-resolution image in the dataset is read
(2) Step 2: the features of the mural image are extracted, and then upsampling is performed to obtain the high-resolution image of the

target size
(3) Step 3: MSE is calculated to update the network model; the reconstructed high-resolution mural image is output
(4) Step 4: steps 1–3 are repeated to optimize the network model until the MSE tends to be relatively stable
(5) Step 5: the generated high-resolution image as the false sample, and the corresponding real high-resolution image as the real

sample are input into the discriminant network
(6) Step 6: high-resolution image features are extracted, and finally, a feature vector is output after the fully connected layer
(7) Step 7: the sigmoid function is used to transform the feature vector into a probability value and then determine whether the input

image is a real superresolution image
(8) Step 8: the sum of the content loss value and countermeasure network loss value is summed, and the generative networkmodel and

the discriminant network model are updated and saved
(9) Step 9: steps 4–8 are repeated to update and optimize the parameters of the generative network and discriminant network model

until the loss value of the model tends to be stable and remains for a period of time

ALGORITHM 1: Algorithm training process.
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SSIM is an index for evaluating image similarities in
terms of brightness, contrast, and structure. )e value range
of SSIM is [0, 1], and a higher value indicates higher sim-
ilarity. SSIM is calculated as follows:

SSIM(x, y) �
2μxμy + c1􏼐 􏼑 2σxy + c2􏼐 􏼑

μ2x + μ2y + c1􏼐 􏼑 σ2x + σ2y + c2􏼐 􏼑
, (7)

where x and y represent the reconstructed superresolution
image and the original high-resolution image, respec-
tively; μx and μy are the average values of x and y, re-
spectively; σ2x and σ2y are the variances in x and y,
respectively; σxy is the covariance of x and y; and c1 and c2
are constants.

NIQE serves as an objective evaluation index, which
extracts features from natural landscapes for image testing
[28]. )e extracted features are fitted into a multiple

Gaussian model, which is responsible for measuring the
difference in the multivariate distribution of the image to be
tested (the distribution is constructed with the features
extracted from a series of normal natural images).

)e experimental results of various algorithms in terms
of PSNR, SSIM, NIQE, and inference time are summarized
in Table 3.

As shown in Table 3, the performance of the algorithm
proposed in this study ranks the first in SSIM and the second
in PSNR and NIQE. However, the proposed algorithm
shows poor performance in terms of inference time, which
ranks sixth among all considered algorithms. )is is because
the algorithm proposed in this study uses a more complex
network structure for image feature learning, which obtains
better quality of images at cost of the inference speed.

Compared with the classic algorithms BI, EDSR, and
SRGAN, the proposed algorithm increases PSNR by
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Figure 5: )e training flow of the proposed model.
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Figure 6: Comparison of superresolution reconstruction effects of different mural images under different algorithms.
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Table 2: )e score of different industry staff.

Algorithm
Personnel

Ave
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BI

5 5 5 6 5 5 6 7 7 6 5 5 4 6 5 5 7 5 4 5

5.45
6 4 6 5 6 5 4 6 6 6 6 6 5 5 6 5 6 6 6 6
6 6 5 4 5 5 5 8 4 7 7 6 5 5 4 5 5 6 5 7
4 5 4 4 4 6 6 6 5 8 4 7 6 5 5 6 5 5 6 5
4 5 6 6 6 6 7 4 7 8 5 4 5 4 6 7 5 4 6 5

EDSR

5 6 6 5 6 6 5 5 6 6 7 6 6 6 7 7 6 7 6 6

6.44
6 7 7 6 8 7 6 7 5 7 6 7 6 7 7 5 6 8 7 7
6 6 7 7 7 6 7 6 7 8 6 6 5 6 7 6 8 7 6 6
7 5 7 6 5 5 8 7 8 8 5 7 7 8 6 6 7 7 6 6
7 7 6 5 6 6 6 8 6 8 7 7 6 7 7 7 5 5 8 7

SRGAN

6 6 6 7 7 6 5 6 7 7 4 7 7 6 6 6 6 6 7 8

6.55
5 7 7 8 6 7 7 7 8 8 6 7 6 8 7 6 7 6 8 7
6 6 8 6 8 6 6 8 8 7 7 8 5 5 8 6 6 7 6 8
7 6 8 5 7 5 6 6 7 7 8 5 7 6 7 8 5 5 7 6
8 7 6 5 6 5 7 6 7 7 6 6 6 8 7 7 6 5 8 5

Method of this study

7 8 7 8 6 7 8 7 8 8 7 8 7 8 7 7 8 8 8 8

7.44
7 8 8 7 7 8 7 9 7 7 7 8 6 9 8 7 9 8 9 7
6 8 8 7 8 6 6 6 8 9 8 6 8 6 8 8 8 6 8 8
8 7 8 6 7 5 6 7 7 8 9 7 6 8 7 8 7 7 8 9
9 7 7 8 6 8 8 8 9 8 6 8 6 7 8 7 8 8 7 7
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Figure 7: )e score of five experts under the different algorithms. (a) )e score of the overall esthetics. (b) )e score of the detailed texture
structure. (c) )e average score.
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1.2–3.3 dB and SSIM by 0.04–0.13. Compared with the al-
gorithms used in the latest research in the field of image
superresolution reconstruction, that is, literature [21], lit-
erature [22], literature [23], and literature [24], the algorithm
proposed in this study also exhibits overall more satisfactory
experimental results: It reduces the algorithm’s interference
time while obtaining higher image quality. Compared with
the algorithm used in the ablation study, the proposed al-
gorithm in this study has greatly improved image quality,
which illustrates the effectiveness of the algorithm im-
provement in this study, although the improvement in-
creases the inference time.

Based on the above analyses, the algorithm proposed in
this paper fully exhibits its effectiveness and excellence in
improving the quality of mural images.

4. Conclusions

Aiming at mural image optimization, this study proposed a
superresolution reconstruction algorithm to enhance the
artistry of mural images.

A CNN is used as the infrastructure to realize feature
extraction for the mural images. )e generative network is
optimized by residual learning, and then the superresolution
reconstruction of the mural image is realized based on the
extracted features through the upsampling of the subpixel
convolution. In the discriminant network, the deep con-
volutional neural network and residual modules are used to
distinguish between the generated high-resolution images
and the real high-resolution images. Different from common
single loss functions, the algorithm proposed in this study
adopts a combination of multiple loss functions. Addi-
tionally, it uses the method of staged network model opti-
mization to realize the scientific transformation process
from low-resolution images to high-resolution images.
Compared with existing algorithms, mural images opti-
mized by the proposed algorithm have noticeable im-
provement according to the subjective visual effect and
objective experimental data. )e results show that this al-
gorithm has a better effect on the superresolution recon-
struction of mural images with rich color and strong texture
structure.

However, this algorithm also suffers from some draw-
backs. In superresolution reconstruction of mural images,
noise of other colors often appears in regions with a single
color and strong contrast, which makes the image color

impure and reduces the artistic value. )e training time of
the adversarial neural network is uncertain. In the future, we
will fuse superresolution reconstruction with an image noise
reduction algorithm to solve the phenomenon of noise in
high-resolution images. We will also conduct research by
adopting more scientific GAN training termination condi-
tions to realize superresolution reconstruction of mural
images.
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